Advanced Math Quadratics [Day 3] Notes: Converting from General to Vertex Form Name:___________________________ 2016 WARM UP : Think back to the procedure for completing the square in order to complete the blanks. a. b. c. Use your notes from D1 and D2 to fill in the following information: Quadratic Function in GENERAL FORM Quadratic Function in VERTEX FORM How to find the vertex in GENERAL FORM How to find the vertex in VERTEX FORM **Notice** _______ is the one thing that doesn’t change in both forms! To convert an equation from general to vertex form, __________________________________________ When : Use the method of completing the square to find the vertex form of the quadratic function. Identify the vertex and axis of symmetry. Does the quadratic have a max or a min? What is the max or min? Lastly, identify the domain and range (in interval notation). Example 1: vertex form:_________________________ vertex:____________________ axis of symmetry:_________ max or min:____________ domain: ________________ range:__________________ When : Use the method of completing the square to find the vertex form of the quadratic function. Identify the vertex and axis of symmetry. Does the quadratic have a max or a min? What is the max or min? Lastly, identify the domain and range (in interval notation). Example 2: vertex form:_________________________ vertex:____________________ axis of symmetry:_________ max or min:____________ domain: ________________ range:__________________ When : Use to find the -coordinate of the vertex. Then plug that value back into the equation to find the -coordinate of the vertex. What you have found is ______________!! Lastly, identify the value for , and put the equation into vertex form. Example 3: What is the value for ? What is the value for ? What is the value for ? Take those values and put them into the equation How does it open? :________________________________ axis of symmetry:_________ max or min:____________ domain: ______________ range:____________ Example 4: a. Using the procedure from Example 3, write the equation in vertex form. b. Advanced Math Quadratics [Day 3] HW: Converting from General to Vertex Form Name:___________________________ 2016 When : Use the method of completing the square to find the vertex form of the quadratic function. Identify the vertex and axis of symmetry. Does the quadratic have a max or a min? What is the max or min? Lastly, identify the domain and range (in interval notation). 1. vertex form:_________________________ vertex:____________________ axis of symmetry:___________ max or min:______________ domain: ___________________ range:_____________________ 2. vertex form:_________________________ vertex:____________________ axis of symmetry:___________ max or min:______________ domain: __________________ range:____________________ 3. vertex form:_________________________ vertex:____________________ axis of symmetry:___________ max or min:______________ domain: __________________ range:____________________ 4. vertex form:_________________________ vertex:____________________ axis of symmetry:___________ max or min:______________ domain: __________________ range:____________________ When : Use to find the -coordinate of the vertex. Then plug that value back into the equation to find the -coordinate of the vertex. What you have found is . Lastly, identify the value for , and put the equation into vertex form. For #5 and #6, also find the axis of symmetry, max/min, domain and range. 5. vertex:__________________ ___________ opens:______________ vertex form:______________________________ axis of sym:__________ max or min:______________ domain: __________________ range:____________________ 6. vertex:__________________ ___________ opens:______________ vertex form:______________________________ axis of sym:__________ max or min:______________ domain: __________________ range:____________________ 7. vertex:__________________ ___________ opens:______________ vertex form:______________________________ 8. vertex:__________________ ___________ opens:______________ vertex form:______________________________ ; vertex: ; axis of symmetry: 2. ; vertex: ; axis of symmetry: 3. ; vertex: ; axis of symmetry: ; min value: ; domain: ; range: [ 4. ; vertex: ; axis of symmetry: ; min value: ; domain: ; range: [ ; axis of symmetry: ; max value: 5. 6. 7. ; vertex: ; vertex: ; vertex: ; axis of symmetry: ; min value: ; range: [ 1. ; min value: ; min value: 8. ; domain: ; range: [ ; domain: ; domain: ; range: ; range: [ ; domain: ; vertex: ]
© Copyright 2025 Paperzz