Problem 3.43 For the scalar function U = R1 sin2 θ , determine its directional derivative along the range direction R̂ and then evaluate it at P = (5, π /4, π /2). Solution: 1 2 sin θ , R 1 ∂U sin2 θ ∂U 1 ∂U 2 sin θ cos θ ∇U = R̂ + φ̂φ = −R̂ 2 − θ̂θ + θ̂θ , ∂R R ∂θ R sin θ ∂ φ R R sin2 θ dU = ∇U · R̂ = − 2 , dl R ¯ 2 ¯ dU ¯ sin (π /4) = −0.02 . =− ¯ dl (5,π /4,π /2) 25 U= Problem 3.44 Each of the following vector fields is displayed in Fig. P3.44 in the form of a vector representation. Determine ∇ · A analytically and then compare the result with your expectations on the basis of the displayed pattern. (a) A = −x̂ cos x sin y + ŷ sin x cos y, for −π ≤ x, y ≤ π Figure P3.44(a) Solution: A = −x̂ cos x sin y + ŷ sin x cos y ∂ Ax ∂ Ay + ∇·A = ∂x ∂y ∂ ∂ (− cos x sin y) + (− sin x cos y) = ∂x ∂y = sin x sin y − sin x sin y = 0 Yes, A is divergenceless everywhere. (b) A = −x̂ sin 2y + ŷ cos 2x, for −π ≤ x, y ≤ π Figure P3.44(b) Solution: A = −x̂ sin 2y + ŷ cos 2x ∂ Ax ∂ Ay + ∇·A = ∂x ∂y ∂ ∂ (− sin 2y) + (cos 2x) = 0 = ∂x ∂y Yes, A is divergenceless everywhere. (c) A = −x̂ xy + ŷ y2 , for −10 ≤ x, y ≤ 10 Figure P3.44(c) Solution: A = −x̂ xy + ŷ y2 ∂ Ax ∂ Ay + ∇·A = ∂x ∂y ∂ ∂ (−xy) + (y2 ) = −y + 2y = y = ∂x ∂y NO, A is not divergenceless everywhere. It is divergenceless only at y = 0. (d) A = −x̂ cos x + ŷ sin y, for −π ≤ x, y ≤ π Figure P3.44(d) Solution: A = −x̂ cos x + ŷ sin y ∂ Ax ∂ Ay + ∇·A = ∂x ∂y ∂ ∂ (− cos x) + (sin y) = sin x + cos y = ∂x ∂y NO, A is not divergenceless everywhere. (e) A = x̂ x, for −10 ≤ x ≤ 10 Figure P3.44(e) Solution: A = x̂ x ∂ Ax ∂ Ay ∂ Az + + ∂x ∂y ∂z =1 ∇·A = This indicates that the divergence of A is the same at all points in the defined space. In other words, every small volume is a source of flux (more flux leaving the volume than entering it), and the net generated flux is the same at all locations. (f) A = x̂ xy2 , for −10 ≤ x, y ≤ 10 Figure P3.44(f) Solution: A = x̂ xy2 ∂ Ax ∂ Ay ∂ Az + + ∂x ∂y ∂z 2 =y ∇·A = (g) A = x̂ xy2 + ŷ x2 y, for −10 ≤ x, y ≤ 10 Figure P3.44(g) Solution: A = x̂ xy2 + ŷ x2 y ∂ Ax ∂ Ay ∂ Az + + ∇·A = ∂x ∂y ∂z 2 2 = y +x (h) A = x̂ sin ¡ πx ¢ 10 + ŷ sin ¡ πy ¢ 10 , for −10 ≤ x, y ≤ 10 Figure P3.44(h) Solution: A = x̂ sin(π x/10) + ŷ sin(π y/10) ∂ Ax ∂ Ay ∂ Az ∇·A = + + ∂x ∂y ∂z π = [cos(π x/10) + cos(π y/10)] 10 (i) A = r̂ r + φ̂φ r cos φ , for ½ 0 ≤ r ≤ 10 0 ≤ φ ≤ 2π . Figure P3.44(i) Solution: A = r̂ r + φ̂φ r cos φ 1 ∂ 1 ∂ Aφ ∂ Az + (rAr ) + r ∂r r ∂φ ∂z = 2 − sin φ ∇·A = (j) A = r̂ r2 + φ̂φ r2 sin φ , for ½ 0 ≤ r ≤ 10 0 ≤ φ ≤ 2π . Figure P3.44(j) Solution: A = r̂ r2 + φ̂φ r2 sin φ 1 ∂ 1 ∂ Aφ ∂ Az + (rAr ) + r ∂r r ∂φ ∂z = 3r + r cos φ ∇·A = Problem 3.52 Verify Stokes’s theorem for the vector field B = (r̂r cos φ + φ̂φ sin φ ) by evaluating: Z (a) B · dl over the semicircular contour shown in Fig. P3.52(a), and n ZC (b) S × B) · ds over the surface of the semicircle. (∇× y 2 y 2 L2 1 -2 L3 0 L1 (a) x 2 0 L2 L3 L4 L1 1 2 x (b) Figure P3.52: Contour paths for (a) Problem 3.52 and (b) Problem 3.53. Solution: (a) Z B · dl = n Z L1 B · dl + Z L2 B · dl + Z L3 B · dl, B · dl = (r̂r cos φ + φ̂φ sin φ ) · (r̂ dr + φ̂φr d φ + ẑ dz) = r cos φ dr + r sin φ d φ , µZ 2 µZ 0 ¶¯ ¶¯ ¯ ¯ r cos φ dr ¯¯ B · dl = + r sin φ d φ ¯¯ r=0 L1 φ =0 φ =0, z=0 z=0 ¡ 1 2 ¢¯2 = 2 r ¯r=0 + 0 = 2, ¶¯ ¶¯ µZ π µZ 2 Z ¯ ¯ r sin φ d φ ¯¯ B · dl = r cos φ dr ¯¯ + L φ =0 r=2 Z 2 Z L3 Z = 0+ µZ B · dl = z=0 π (−2 cos φ )|φ =0 = 4, ¶¯ 0 ¯ + r cos φ dr ¯¯ r=2 φ =π ,z=0 ¡ ¢¯0 = − 21 r2 ¯r=2 + 0 = 2, B · dl = 2 + 4 + 2 = 8. n r=2, z=0 π ¶¯ ¯ r sin φ d φ ¯¯ φ =π µZ z=0 (b) ∇×B = ∇×(r̂r cos φ + φ̂φ sin φ ) µ ¶ µ ¶ 1 ∂ ∂ ∂ ∂ = r̂ 0 − (sin φ ) + φ̂φ (r cos φ ) − 0 r ∂φ ∂z ∂z ∂r ¶ µ ∂ 1 ∂ (r cos φ ) (r(sin φ )) − + ẑ r ∂r ∂φ ¶ µ 1 1 = r̂0 + φ̂φ0 + ẑ (sin φ + (r sin φ )) = ẑ sin φ 1 + , r r µ ¶¶ ZZ Z π Z 2 µ 1 ∇×B · ds = · (ẑr dr d φ ) ẑ sin φ 1 + r φ =0 r=0 Z π Z 2 ³¡ ¢¯2 ´¯¯π sin φ (r + 1) dr d φ = − cos φ ( 12 r2 + r) ¯r=0 ¯ = φ =0 r=0 φ =0 = 8.
© Copyright 2026 Paperzz