Development of Diaryliodonium Salts as Precursors to [18F]Fluoroarenes Dr M. A. Carroll School of Chemistry CR-UK & EPSRC Cancer Imaging Programme at the Universities of Newcastle and Durham in association with the MRC and Department of Health (England) Outline Medical Imaging at Newcastle Fluorine-18 radiochemistry Diaryliodonium salts as precursors to [18F]fluoroarenes Fluorine-18 oncology/neuroscience tracers Summary Imaging Facilities Clinical MRI (Philips 3T) Pre-clinical MRI (Varian 7T) Clinical PET-CT (Siemens Biograph 40) Pre-clinical PET (Philips), CT (Bioscan) Why restricted to [18F]FDG? Challenges No systematic studies to optimise radiolabelling process (>5 Ci) Few combination studies (different isotopes and techniques) Low material yield Low radiochemical yield + RCY(DC) Low specific activity (isotopic dilution) Label is incorporated where it is easy to introduce – not necessarily where it is needed! Short half lives – conventional synthetic routes/procedures not appropriate Metabolism Automation/translation to clinical setting [18F]Fluorine Chemistry Starting material is [18F]fluoride anion in [18O]H2O Aromatic fluorine - enhanced metabolic stability - restrictions on the aromatic ring - restrictions on the substituents X X = NO2, [NMe3]+, Br, Cl Aliphatic fluorine - limited metabolic stability - restrictions on the position - restrictions on other substituents R X [18F]fluoride R 18F X = OTs, OTf, ONs, OMs, Br Fluorine ‘tags’ - can be aromatic or aliphatic - requires suitable linking group 18F [18F]fluoride 18F X Y 18F X = NH2, OH, SH, COOH Pike et al., Eur. J. Org. Chem., 2008, 2853 (review); Miller et al. Angew. Chem., 2008, 47, 8998 (review) Radiopharmaceutical Production Radiochemical yield - RCY Decay corrected radiochemical yield – RCY(DC) Specific activity – radioactivity per mole of compound cyclotron EOB 1 2 3 EOS 1. 2. 3. 4. 5. 6. 4 5 6 ready for injection EOB EOB Transfer of 18F from cyclotron to radiosynthesis unit Trapping and drying of [18F]fluoride Reaction of [18F]fluoride to make imaging agent (may be multi-step) Isolation/purification of imaging agent Formulation Transfer to scanner ready for injection (passed QC) Technology: Selection Criteria [18F]fluoride is the starting material of choice [18F]fluoroarene preferred No restriction on the:- electronic nature of the target (hetero)aromatic ring - steric constraints of the target (hetero)aromatic ring - substitution pattern of the target (hetero)aromatic ring Compatible with multiple and sensitive functionality Single-step generic process - technology fit with existing automation Iodonium Route to [18F]Fluoroarenes Diaryliodonium salts may be prepared:- by direct aromatic substitution - from aryltrialkylstannanes - from arylboronic acids ArI(OAc)2 R2 X R1 R2 X I X = H, SnR3, B(OH)2 [18F]Fluoride: high specific activity electron-deficient and electron-rich (hetero)aromatic rings no restriction on substitution pattern control of ring selectivity on fluorination X R1 R2 I [18F]Fluoride R1 R2 + I 18F For some examples see:Coenen et al. J. Am. Chem. Soc., 2007, 129, 8018; Carroll et al J. Label Compd. Radiopharm., 2007, 50, 452; Wüst et al. Org. Biomol. Chem., 2005, 3, 503; Coenen et al. J. Label Compd. Radiopharm., 2004, 47, 429; Widdowson et al. J. Label Compd. Radiopharm., 1997, 39, 65; Pike et al. J. Chem. Soc., Chem. Commun, 1995, 2215; Wuest et al. Steroids, 2003, 68, 177; Suzuki et al. Tetrahedron Lett., 2007, 48, 8632. Synthesis of Ethyl-3-[18F]fluorobenzoate COOEt COOEt CF3COO or ArI ArF 18 F S Ar = COOEt fluoridea Ar = F 57% 1 : 0b 21-80% (n = 6) 70% 1 : 0b 4-35% (n = 6) 49% 11 : 1 7-23% (n = 6) MeO Ar = OMe a 19 F; CsF, TEMPO (10 mol%), DMF, 130 oC, 1.5 h: 18F; [18F]KF/K222, TEMPO (10 mol%), DMF, 130 oC, 5 min. b Not detected All compounds in the initial studies, using our routine screening conditions, provided the target 3-[18F]fluoro derivative in practical yields. (Carroll et al J. Nucl. Med., 2008, 49S, 303P) [18F]Fluorobenzaldehyde, [18F]FBA CF3COO I OHC 18F [18F]fluoride OMe OHC Heteroaromatics: 3-[18F]Fluoropyridine CF3COO I N OMe RCY = 55 - 63% ICl2 18F 18 [ F]fluoride N Carroll et al., US12/647,169 Carroll et al. J. Labelled Compd. Radiopharm., 2007, 50, 452; WO2007/141529; N Rapid Purification: Fluorous SPE CF3COO I 18F 18 [ F]fluoride O I + C6F13 C6F13 O COOEt COOEt Reproducibility: Radical Scavengers The addition of a radical scavenger e.g. TEMPO improved reproducibility Steric Effect IPh X 18 [ F]fluoride Carroll et al J. Fluorine Chem., 2007, 128, 127. WO2005/061415A1 Carroll et al., J. Labelled Compd. Radiopharm., 2008, 51, 259 18F 4-[18F]SFB: Typical Approach COOEt COOEt O COOH O [18F]Fluoride O N O 18F NMe3 18F 18F 4-[18F]SFB 4-[18F]SFB: Most commonly used prosthetic group Multi-step, multi-pot synthesis Difficult to automate Iodonium Route - challenge Reduce the number of reaction steps Selective reaction of [18F]fluoride in the presence of the active ester Generic approach to all regioisomers Okaryi., Eur. J. Nucl. Med., 2001, 28, 929 (review) 4-[18F]SFB: Iodonium Approach O O CF3COO O O O S K[18F]/K222 N O O I DMF 130 oC 18 N O F 4-[18F]SFB RCY= 4-23% (n = 8) 4-[18F]SFB: The first single-step synthesis Selective for both 19F and 18F Other non-participating aromatic rings may be used Suitable for automation Optimisation of process (yield/automation) and application as a prosthetic group is currently underway Carroll et al., J. Nucl. Med., 2008, 49S, 298P; US12/647,169 Radiochemistry Laboratory FIRST PET radiochemistry facility in the North East Located: School of Chemistry Research & pre-clinical production of fluorine-18 radiopharmaceuticals 2 PET research hotcells Refurbishment Q1 2009 Operational (18F) Q4 2009 Future proof design - additional hotcells - PET & SPECT isotopes Synthetic Radiochemistry Batch production - Eckert & Zeigler Modular Lab - Multi-step, flexible system Microwave - Resonance Instruments ABT: Biomarker Generator ‘mini-cyclotron’ • 7.5 MeV Positive Ion Cyclotron • 3 Internal targets • Production Rate of 1.0 mCi/min [18F]fluoride • 1.16 T Magnet • 2-5 µA Beam current • 250 µL Target Volume [18F]Fluorine Targets in Oncology Hypoxia Glucose metabolism Cellular proliferation O HO HO NH OH OH O N OH 18F 18 N F N HO O O NO2 18F [18F]FDG [18F]FMISO PARP O Choline transport Amino acid transporters H N HO NHMe 18F [18F]FLT N COOH 18F TsO 18 F O N H [18F]AG140699 [18F]FEC [18F]FET NH2 [18F]Fluorine Targets in Neuroscience 5HT1A β-amyloid D2 OMe N OMe N 18 N N OMe H N 18F F MeHN N [18F]AV45 O O O O O 18F 18F OH S [18F]MPPF 5HT2 H N dopamine transporters 18F S 18F HO MeO COOH N COOMe HO N COOH [18F]FPIB N dopamine metabolism N O MeHN [18F]Fallypride 18F NH2 HO 18F NH2 Cl O [18F]Altanserin [18F]FDOPA [18F]FMT [18F]FECNT ‘peripheral’ benzodiazepine N OMe F N 18F 18F [18F]DAA1106 N H α4β2 nicotinic [18F]FMeNER-d2 neurokinin mGluR5 type-1 receptors 18 N N N [18F]NS10743 F O S N O O O N [18F]Flumazenil α7 nicotinic 18F O O OMe OPh Ph D D COOEt N O 18 noradrenaline transport benzodiazepine N H O 18F Me 18 N CN N [18F]nifene F CF3 NH HN N N N N [18F]MTEB [18F]SPA-RQ Biomacromolecules: peptides, antibodies, oligonucleotides O O ‘amine/alcohol’ selective COOH O N 18F O 18F [18F]SFB O ‘thiol’ selective O N O 18F CHO 18F NH2 N H 18F other O 18F ‘carboxylate’ selective Br/I N N H O 18F O 18 N3 18F NH2 F H N Br 18F O O 18F N PET Radiochemistry - Summary ALL of the major methods for incorporation of fluorine-18 have been achieved (SN2, 19F/18F, SNAr, iodonium) [18F]Fluorination has been achieved, both batch and microfluidic systems Microwave and conventional heating have been employed Pre-clinical production of a range of imaging agents: - [18F]FEC, [18F]FET, [18F]MPPF, [18F]SFB, [18F]FBA, [18F]DAA1106, [18F]MTEB New methodology and targets in progress Precursor production: - automation, robust/reproducible, high purity, QC - GMP grade material Next steps ABT Biomarker Generator, carbon-11 and other radioisotopes Clincial production – MHRA Specials Licence Expand the range of pre-clinical imaging agents – single kit design New castle - Chem istry L. M. Kamara J. Woodcraft S.-L. Tang Dr S. Jiang Dr G. Smith Dr R. Yan Dr L. Dixon E. Fisher P. D. Hancock P. K. D. Dawson Dr S. Hobson Dr G. Launay C. Reed M. Charlton C. McCardle S. Bhatt I m perial College Dr. D. A. Widdowson Dr. E. Wilson Dr H. S. Rzepa Dr S. Martin-Santamaria W BI C, Cam bridge Dr. F. I. Aigbirhio Dr. D. Soloviev Dr L. Brichard New castle - I m aging Prof. H. Newell, Dr R. Maxwell Dr I. Wilson, Dr S. Gartside NI M H, USA Prof. V. W. Pike Ham m ersm ith I m anet Dr S. Luthra, Dr F. Brady, Dr F. Shah, G. Brown Funding Newcastle University (NICR, IoN, IAH) ONE North East Cancer Research UK EPSRC, MRC, NHS Royal Society Hammersmith Imanet GE-Healthcare ‘I+PET’ Technology Improved preparation of known targets 35-45 min 1 min [18F]SFB ‘I+PET’ current route Access to ‘impossible’ targets 3-[18F]pyridine 63% ‘I+PET’ Unique understanding/skills in the preparation and purification of ‘I+PET’ reagents 4-[18F]SFB: Iodonium Approach O O O O COOH O I N O O I N O Bu3Sn O O CF3COO O N O I S Newcastle – Fine Chemical Production ‘on-demand’ synthesis of organics Multi-step synthesis of both precursors and imaging agents - reduce synthetic steps (pre- and post-labelling) - enhanced purity requirements cf. APIs - uses many metal catalysed steps (key: selectivity, rate, mild conditions) (reagents with low reactivity e.g. [11C]CH4, [11C]CO, [11C]CO2) - rapid optimisation required (automated process) - flow and batch processes (micro and meso) - scale range (mgs – 100gs – kgs) - translate rapidly to GMP - specific Newcastle technology NOT restricted to fluorination PET: Applications/Potential Almost any biological process may be studied Range of half-lives and elements available Low dose – typically ng or pg required (limits toxicity) Label species of interest Diagnostic – response to treatment Biological data - Combination with other techniques – MRI, CT Real-time monitoring - improved data handling/processing in vivo data whole body: off-target activity, non-specific binding Early in the drug development process Fluorine-18 Automation Batch (Eckert & Zeigler Modular Lab) - [18F]FEC Microwave - [18F]MPPF cps 34.67% radiochemical incorporation 35000.0 30000.0 25000.0 O 20000.0 15000.0 18F 10000.0 5000.0 0.0 0:00 m AU 5:00 15:00 10:00 m m :s s O 300.0 250.0 NO2 200.0 O 150.0 100.0 50.0 18F 0.0 0:00 5:00 10:00 15:00 m m :s s Synthetic Radiochemistry Microfluidic production - Advion NanoTek LF - Multi-step, flexible system Fluorine-18 Automation Microfluidic (Advion NanoTek) Variation of multiple reaction parameters Rapid optimisation of protocols (>30 runs per batch of [18F]fluoride) Robust performance Introduction of Et4N.HCO3 as a new phase transfer reagent ALL reaction types now achieved Analytical/QC Radiochemistry Radioanalytical Systems - radioHPLC (Agilent1200) - radioGC (Agilent 6890) - radioTLC (Bioscan AR2000) Summary Very flexible radiosynthetic & analytical facility Batch and microfluidic production Range of [18F]fluoride chemistries possible Small molecule and biomacromolecule targets Integrated Chemistry and QC Lead Shield Reagent Metering Kit HPLC Column Chemistry Card UV Detector Syringe Pump Radiation Detector Probe RI Detector Isocratic Pump Gas Manifold NI RIO Chassis Power Supply (24 vdc) Degasser Waste container mounted on side Radiochemistry Facility
© Copyright 2026 Paperzz