Section 3.5. Undetermined Coefficients aka ”Guessing” Find a particular solution of y 00 + ay 0 + by = f (x) NOTE: This method can be used only when: 1. constant coefficients 2. f is an ”exponential” function 1 • If f (x) = cerx set z(x) = Aerx Example: y 00 − 5y 0 + 6y = 7e−4x. Set z = Ae−4x where A is to be determined. 2 −4x . Answer: z = 1 e 6 The general solution of the differential equation is: y = C1 e2x + C2 e3x + 1 −4x e . 6 3 • If f (x) = c cos βx, or set d sin βx, c cos βx + d sin βx, z(x) = A cos βx + B sin βx where A, B are to be determined 4 Example: y 00 − 2y 0 + y = 3 cos 2x. Set z = A cos 2x + B sin 2x 5 9 cos 2x − 12 sin 2x. Answer: z = − 25 25 The general solution of the differential equation is: y= C1ex+C2xex− 12 9 cos 2x− sin 2x. 25 25 6 Example: Find a particular solution of y 00 − 2y 0 + 5y = 2 cos 3x − 4 sin 3x + e2x Set z = A cos 3x + B sin 3x + Ce2x where A, B, C are to be determined. Answer 8 1 1 2x z=− cos 3x + sin 3x + e . 13 13 5 7 • If f (x) = ceαx cos βx, or set deαx sin βx ceαx cos βx + deαx sin βx z(x) = Aeαx cos βx + Beαx sin βx where A, B are to be determined. 8 Example: y 00 + 9y = 4ex sin 2x. Set z = Aex cos 2x + Bex sin 2x 4 ex cos 2x+ 6 ex sin 2x. Answer: z = − 13 13 9 A BIG Difficulty: The trial solution z is a solution of the reduced equation. 10 Examples: 1. Find a particular solution z1 of y 00 + y 0 − 6y = 3e2x. See Example 3, Section 3.4 11 2. Find a particular solution z2 of y 00 − 6y 0 + 9y = 5e3x. 12 3. Find a particular solution z3 of y 00 + 4y = 2 cos 2x. 13 4. Find a particular solution z4 of y 00 − 5y 0 + 6y = 4e2x + 3 14 5. Find a particular solution z5 of y 00 − 3y 0 = 4e3x − 2 15 Answers: 3 2x z1 = x e 5 5 2 3x z2 = x e 2 1 z3 = x sin 2x 2 z4 = −4xe2x + 1 2 4 3x 2 z5 = e − x 3 3 16 The Method of Undetermined Coefficients A. Applies only to equations of the form y 00 + ay 0 + by = f (x) where a, b are constants and f is an “exponential” function. c.f Variation of Parameters 17 B. Basic Case: • f (x) = aerx If: set z = Aerx. • f (x) = c cos βx, d sin βx, or c cos βx + d sin βx, set z = A cos βx + B sin βx. • f (x) = ceαx cos βx, deαx sin βx or ceαx cos βx + deαx sin βx, set z = Aeαx cos βx + Beαx sin βx. 18 BUT: • If z satisfies the reduced equation, try xz; • if xz also satisfies the reduced equation, then x2z will give a particular solution. 19 C. General Case: • If f (x) = p(x)erx where p is a polynomial of degree n, then set z = P (x)erx where P is a polynomial of degree n with undetermined coefficients. 20 Example: Find a particular solution of y 00 − y 0 − 6y = (2x2 − 1)e2x. Set z = (Ax2 + Bx + C)e2x. Answer: z = 2 −1 x 2 − 3x − 9 4 16 e2x. 21 • If f (x) = p(x) cos βx + q(x) sin βx where p, q are polynomials of degree n, then set z = P (x) cos βx + Q(x) sin βx where P, Q are polynomials of degree n with undetermined coefficients. 22 Example: y 00 − 2y 0 − 3y = 3 cos x + (x − 2) sin x. Set z = (Ax+B) cos x+(Cx+D) sin x. Answer: 47 1 2 1 x− cos x − x − sin x. z= 10 50 5 25 ! ! 23 • If f (x) = p(x)eαx cos βx + q(x)eαx sin βx where p, q are polynomials of degree n, then set z = P (x)eαx cos βx + Q(x)eαx sin βx where P, Q are polynomials of degree n with undetermined coefficients. 24 Example: y 00 + 4y = 2x ex cos x. Set z = (Ax + B)ex cos x + (Cx + D)ex sin x Answer: 1 1 x z= (10x−7)e cos x+ (5x−1)ex sin x. 25 25 25 BUT: Warning!!! • If any part of z satisfies the reduced equation, try xz; • if any part of xz also satisfies the reduced equation, then x2z will give a particular solution. 26 Examples: 1. Give the form of a particular solution of y 00 − 4y 0 − 5y = 2 cos 3x − 5e5x + 4. Answer: z = A cos 3x + B sin 3x + Cxe5x + D 27 2. Give the form of a particular solution of y 00 + 8y 0 + 16y = 2x − 1 + 7e−4x. Answer: z = Ax + B + Cx2e−4x 28 3. Give the form of a particular solution of y 00 + y = 4 sin x − cos 2x + 2e2x. Answer: z = Ax cos x+Bx sin x+C cos 2x+D sin 2x +Ee2x 29 4. Give the form of the general solution of y 00 + 9y = −4 cos 2x + 3 sin 2x Answer: z = A cos 2x + B sin 2x 30 5. Give the form of the general solution of y 00 + 9y = −4 cos 3x + 3 sin 2x z = Ax cos 3x+Bx sin 3x+D cos 2x+E sin 2x 31 6. Give the form of the general solution of y 00 + 4y 0 + 4y = 4xe−2x + 3 Answer: z = (Ax3 + Bx2 )e−2x + C 32 7. Give the form of the general solution of y 00 + 4y 0 + 4y = 4e−2x sin 2x + 3x Answer: z = Ae−2x cos 2x+Be−2x sin 2x+Cx+D 33 8. Give the form of the general solution of y 00 + 4y 0 = 4 sin 2x + 3 Answer: z = A cos 2x + B sin 2x + Cx 34 9. Give the form of the general solution of y 00 + 2y 0 + 10y = 2e3x sin x + 4e3x Answer: z = Ae3x cos x + Be3x sin x + Ce4x 35 10. Give the form of the general solution of y 00 + 2y 0 + 10y = 2e−x sin 3x + 2e−x Answer: z = Axe−x cos 3x+Bxe−x sin 3x+Ce−x 36 11. Give the form of a particular solution of y 00 −2y 0 −8y = 2 cos 3x−(3x+1)e−2x −4 Answer: z = A cos 3x+B sin 3x+(Cx2 +Dx)e−2x +E 37 12. Give the form of a particular solution of y 00 − 2y 0 − 8y = 2 cos 3x − 3xe−2x − 3x Answer: z = A cos 3x+B sin 3x+(Cx2 +Dx)e−2x +Ex + F 38 13. Find the general solution of 2x e y 00 − 4y 0 + 4y = −4e2x + x Answer: y = C1e2x + C2xe2x − 2x2e2x + xe2x ln x 39
© Copyright 2026 Paperzz