Reteach 5-2 - Humble ISD

Name
LESSON
5-2
Date
Class
Reteach
Properties of Quadratic Functions in Standard Form
You can use the properties of a parabola to graph a quadratic function in standard form:
f x ax 2 bx c, a 0.
Property
Example: f x x 2 2x 2
a 0: opens upward
a 1, b 2, c 2
a 0: opens downward
a 0, so parabola opens downward.
b
Axis of symmetry: x ___
2a
b , f ___
b
Vertex: ___
2a
2a
2 b ______
Axis of symmetry: x ___
1
2a
2 1 b f 1 1 1 2 2 1 2 3
f ___
2a
Vertex: 1, 3 y-intercept is 2, so 0, 2 is a point on the graph.
y-intercept: c
2
To graph f x x 2x 2:
Y
1.
Plot vertex.
2.
Sketch axis of symmetry through vertex.
3.
Plot y-intercept.
4.
Use symmetry to plot 2, 2 .
5.
Sketch graph.
X
2
Use the properties of a parabola to graph f x x 4x 3.
1. a 1
,b
4 , c 3
Upward
2. The graph opens
b 3. Axis of symmetry: x ___
2a
b f 2 1
4. f ___
2a
5. Vertex:
Y
.
x2
2, 1 X
6. y-intercept:
3
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c05-2_rt.indd 14
14
Holt Algebra 2
12/15/05 4:36:22 PM
Process Black
Name
LESSON
5-2
Date
Class
Reteach
Properties of Quadratic Functions in Standard Form
(continued)
The maximum or the minimum value of a parabola is the y-value of the vertex,
b . If the parabola opens upward, a 0, then it is a minimum value. If the
or f ___
2a
parabola opens downward, a 0, then it is a maximum value.
f x 2x 2 4x 3
2
f x 3x 12x 1
a 2: Find maximum.
a 3: Find minimum.
b for a 2 and b 4.
Evaluate ___
2a
b ______
4
___
1
2a
2 2 b f 1 f ___
2a
b for a 3 and b 12.
Evaluate ___
2a
b ____
12 2
___
2a
2 3 b f 2 f ___
2a
2 1 2 4 1 3 1
3 2 2 12 2 1 11
Maximum value is 1.
Minimum value is 11.
Range: { y y 1 }
Range: { y y 11 }
All other y-values must be less
than or equal to the maximum.
All other y-values must be greater
than or equal to the minimum.
Find the minimum or maximum value of each function.
Then state the range of each function.
7. f x 2x 2 8x 9
Minimum or maximum?
8 b _____
___
2a
2 2 b f ___
2a
Range:
8. f x 3x 2 6x 4
Minimum
Minimum or maximum?
2
b ___
2a
1
a207c05-2_rt.indd 15
1
b f ___
2a
{ y y 1 }
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
Range:
15
Maximum
1
{ y y 1 }
Holt Algebra 2
12/15/05 4:36:25 PM
Process Black
--"
x‡Ó
*À>V̈ViÊ
0ROPERTIESOF1UADRATIC&UNCTIONSIN3TANDARD&ORM
x‡Ó
)DENTIFYTHEAXISOFSYMMETRYFORTHEGRAPHOFEACHFUNCTION
)DENTIFYTHEAXISOFSYMMETRYFORTHEGRAPHOFEACHFUNCTION
XÊÊ{
XÊÊÓ
XÊÊÈ
XÊÊ£
FSXDSXD GSXDSXD GSXDSXD FSXDSXD 4HEGRAPHOFFSXDXHASAMAXIMUMVALUEATSD
B !XISOFSYMMETRY
C
D
£
B
T
C
T£]ÊäÊEÊ
D
Ó
Y
X
E
ˆ˜ˆ“Õ“
E
>݈“Õ“
F
ÚÚ
ÊÓÊ
F
ä
C 6ERTEX
D YINTERCEPT
XÊÊÓ
ÊÊÊTÓ]ÊÓÊEÊ
{
GSXDSXD
A 5PWARDORDOWNWARD
B !XISOFSYMMETRY
C 6ERTEX
D YINTERCEPT
X
œÜ˜Ü>À`
XÊÊÎ
TÎ]Ê£ÊEÊ
£Ç
>݈“Õ“\Ên°ÓxÆÊ`œ“>ˆ˜\Ê>ÊÀi>Ê
˜Õ“LiÀÃÆÊÀ>˜}i\ÊÊOÊYÊNÊYÊÊn°ÓxÊPÊ
4HENUMBEROFALBUMSSOLDISAFUNCTIONOFTIMETINDAYS/NWHICHDAY
WERETHEMOSTALBUMSSOLD7HATISTHEMAXIMUMNUMBEROFALBUMSSOLD
ONTHATDAY
>ÞÊ{xÆÊ£nÓ]ÓxäÊÀiVœÀ`Ã
œÌʏ}iLÀ>ÊÓ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
,%33/.
x‡Ó
œÌʏ}iLÀ>ÊÓ
,iÌi>V…
0ROPERTIESOF1UADRATIC&UNCTIONSIN3TANDARD&ORM
9OUCANUSETHEPROPERTIESOFAPARABOLATOGRAPHAQUADRATICFUNCTIONINSTANDARDFORM
FSXDAXBXCAp
0ROPERTY
%XAMPLEFSXDX X
AOPENSUPWARD
AOPENSDOWNWARD
ABC
ASOPARABOLAOPENSDOWNWARD
!XISOFSYMMETRYX???
B
A
6ERTEX ???
BF ???
B A
A
SD
!XISOFSYMMETRYX???
B??????
A
SD
F ???
B FSDSD SD
A
6ERTEXSD
YINTERCEPTC
YINTERCEPTISSOSDISAPOINTONTHEGRAPH
S
ASTDTT
&OREACHFUNCTIONDETERMINEWHETHERTHEGRAPHOPENSUPWARDOR
DOWNWARDFINDTHEAXISOFSYMMETRYTHEVERTEXANDTHEYINTERCEPT
4HENGRAPHTHEFUNCTION
XX
FSXD??
Y
1«Ü>À`
A 5PWARDORDOWNWARD
B !XISOFSYMMETRY
*À>V̈ViÊ
0ROPERTIESOF1UADRATIC&UNCTIONSIN3TANDARD&ORM
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
!RECORDLABELUSESTHEFOLLOWINGFUNCTIONTOMODELTHESALESOFANEWRELEASE
X
Î
3OLVE
HSXDX X
ˆ˜ˆ“Õ“\ÊäÆÊ`œ“>ˆ˜\Ê>ÊÀi>Ê
˜Õ“LiÀÃÆÊÀ>˜}i\ÊÊOÊYNÊYÊÊäÊPÊ
&INDTHEMINIMUMORMAXIMUMVALUEOFEACHFUNCTION4HENSTATETHE
DOMAINANDRANGEOFTHEFUNCTION
x‡Ó
C 6ERTEX
GSXDX X
--"
B !XISOFSYMMETRY
D YINTERCEPT
Y
B
1«Ü>À`
XÊÊ£Ê
T£]Ê{ÊEÊ
Ó
A 5PWARDORDOWNWARD
XÊÊ£
E
A
Y
GSXDX X
œÜ˜Ü>À`
œÜ˜Ü>À`
XÊÊ£°x
­£°x]ÊΰÓx®
£
A 5PWARDORDOWNWARD
D YINTERCEPT
FSXDX X
A
XÊÊÎ
FSXDX X
C 6ERTEX
GSXDX X
ÎÊ
XÊÊÊÊÚÚ
{
KSXDSXD &OREACHFUNCTIONTAEDETERMINEWHETHERTHEGRAPHOPENSUPWARDOR
DOWNWARDTBEFINDTHEAXISOFSYMMETRYTCEFINDTHEVERTEXAND
TDEFINDTHEYINTERCEPT4HENGRAPHTHEFUNCTION
&ORTHEFOLLOWINGFUNCTIONSTAEDETERMINEWHETHERTHEGRAPHOPENS
UPWARDORDOWNWARD4HENFINDTBETHEAXISOFSYMMETRYTCETHE
VERTEXANDTDETHEYINTERCEPT'RAPHEACHFUNCTION4HENTEE
DETERMINEIFTHEFUNCTIONHASAMINIMUMORAMAXIMUMANDTFEFIND
THEVALUEOFTHEMINIMUMORMAXIMUM
1«Ü>À`
£Ê
XÊÊÊÊÚÚ
Î
£Ê]ÊÊÊÚÚ
ÓÊ Ê
ÊÊÊ ÊÚÚ
Î Î
HSXDX X
XÊÊÓ
/ÀÕi
>Ãi
>Ãi
4HEGRAPHOFAQUADRATICFUNCTIONISALWAYSAPARABOLA
4HEGRAPHSOFALLQUADRATICFUNCTIONSOPENUPWARD
GSXDX X
4ELLWHETHEREACHSTATEMENTISTRUEORFALSE
*À>V̈ViÊ
0ROPERTIESOF1UADRATIC&UNCTIONSIN3TANDARD&ORM
--"
S D D
S D
X
4OGRAPHFSXDX X
0LOTVERTEX
3KETCHAXISOFSYMMETRYTHROUGHVERTEX
0LOTYINTERCEPT
3OLVE
7RITETHEVERTEXFORMOFAQUADRATICFUNCTIONTHAT
OPENSUPWARDANDHASAYINTERCEPTOF
5SESYMMETRYTOPLOTSD
*œÃÈLiÊ>˜ÃÜiÀ\ÊÊ
3KETCHGRAPH
FTXETXÓÊEÊÓÊ£
X
4HEVERTEXOFTHEFUNCTIONGSXDX BX
ISATSD&INDTHEVALUEOFBFORTHEFUNCTION
Y
BÊÊ£È
4HEYINTERCEPTOFGSXDSXD KIS
&INDTHEVALUEOFK
KÊÊÓä
5SETHEPROPERTIESOFAPARABOLATOGRAPHFSXDX X
!NAIRLINESELLSADAYVACATIONPACKAGE3ALESFROMTHISVACATIONPACKAGE
CANBEMODELEDBYTHEQUADRATICFUNCTIONSSPDPP3ALESARE
DEPENDENTONTHEPRICEPOFTHEPACKAGE)FTHEPRICEISSETTOOHIGHTHE
PACKAGEWONTSELLBUTIFTHEPRICEISTOOLOWPROSPECTIVEBUYERSWILLTHINK
ITISASCAM
A !TWHATPRICEPDOESTHECOMPANYHAVETHE
GREATESTREVENUE
f{ää
B 7HATARETHEMAXIMUMSALESPOSSIBLEBASED
ONTHISMODEL
fÈ]{ää]äää
A
B C
4HEGRAPHOPENS
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 77
5PWARD
S D
6ERTEX
Y
BX
!XISOFSYMMETRYX???
A
F ???
B FTE A
TE
X
YINTERCEPT
C 7HATISTHEREVENUEFROMTHEVACATIONPACKAGE
IFTHEPRICEISSETAT
/…iÊÀiÛi˜ÕiʈÃÊä]ÊLiV>ÕÃiÊÊ
˜œÊ«>VŽ>}iÃÊܜՏ`ÊLiÊ܏`ÊÊ
>ÌÊfnää°
œÌʏ}iLÀ>ÊÓ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
77
(OLT!LGEBRA
Holt Algebra 2
5/20/06 2:37:04 PM
,%33/.
x‡Ó
,iÌi>V…
0ROPERTIESOF1UADRATIC&UNCTIONSIN3TANDARD&ORM
CONTINUED
,%33/.
x‡Ó
1UADRATICFUNCTIONSAREFREQUENTLYUSEDINOPTIMIZATIONPROBLEMSWHEN
AMAXIMUMORMINIMUMVALUEISNEEDEDFORAFUNCTION4HEVERTEXOF
APARABOLAISTHEMINIMUMVALUEOFTHEFUNCTIONWHENAANDTHE
MAXIMUMVALUEOFTHEFUNCTIONWHENA
4HEMAXIMUMORTHEMINIMUMVALUEOFAPARABOLAISTHEYVALUEOFTHEVERTEX
ORF ???
B )FTHEPARABOLAOPENSUPWARDATHENITISAMINIMUMVALUE)FTHE
A
PARABOLAOPENSDOWNWARDATHENITISAMAXIMUMVALUE
S D
FSXDXX
FSXDXX
A&INDMAXIMUM
A&INDMINIMUM
BFORAANDB
%VALUATE???
A
B
??????
???
A
SD
F ???
B FSD
A
BFORAANDB
%VALUATE???
A
B
????
???
A
SD
F ???
B FSD
A
S D
…>i˜}i
-AXIMIZINGA1UADRATIC&UNCTION
0AMJUSTPURCHASEDANEWHOUSEANDPLANSTOFENCEINAPORTIONOFTHE
BACKYARD4HEHOUSEISFEETWIDEANDFEETLONG3HEWILLUSE
FEETOFFENCINGANDWANTSTOFENCETHEAREASHOWNBELOW3HEWANTSTO
PLACETHETWOSHORTSECTIONSOFFENCINGLABELEDXTOENCLOSETHEGREATEST
POSSIBLEAREA
200 4X
2
S D
X
SD SD
SD SD
-AXIMUMVALUEIS
-INIMUMVALUEIS
2ANGEOÊY\YP
2ANGEOÊY\YP
60
House
Backyard
60 + 2X
X
4HELENGTHOFTHEBACKFENCEISLABELEDX%XPLAINHOWTHISVALUEWASDERIVED
!LLOTHERYVALUESMUSTBELESS
THANOREQUALTOTHEMAXIMUM
!LLOTHERYVALUESMUSTBEGREATER
THANOREQUALTOTHEMINIMUM
????????
X
%XPLAINHOWTHISVALUEWASDERIVED
4HELENGTHOFTHESIDEFENCEISLABELED
&INDTHEMINIMUMORMAXIMUMVALUEOFEACHFUNCTION
4HENSTATETHERANGEOFEACHFUNCTION
FSXDX X
S
S A D
F ???
B 2ANGE
D
0OSSIBLEANSWER4HEPERIMETEROFTHEFENCECANBEAMAXIMUMOF
FEET3UBTRACTFEETFORTHEHOUSELENGTHANDTHEXLENGTHSTOGET
TXEANDTHENDIVIDEBYFORTHETWOEQUALSIDES
FSXDXX
-INIMUM
-INIMUMORMAXIMUM
???
B?????
A
SD
0OSSIBLEANSWER4HEHOUSEISFEETLONGPLUSTHEADDITIONALXLENGTHOF
FENCEONEACHSIDEOFTHEHOUSE
-INIMUMORMAXIMUM
S A D
A 7RITEAQUADRATICFUNCTIONFORTHEAREAOFTHEBACKYARDTOBEFENCED
FTXEXX
2ANGE OÊY] YP
%XACTLYATTHEENDSOFTHEBACKSIDEOFTHEHOUSE
F ???
B OÊY]YP
7HERESHOULDTHESHORTSIDESOFTHEFENCELABELEDXBELOCATED
???
B
A
-AXIMUM
B &INDTHEMAXIMUMVALUEOFTHEFUNCTION7HATDOESTHISREPRESENT
SQUAREFEETISTHEMAXIMUMAREAOFTHEBACKYARDTHATCANBE
FENCED
C 7HATDIMENSIONSOFTHEBACKYARDWILLMAXIMIZETHEAREAOFTHERECTANGLE
FEETBYFEET
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
--"
x‡Ó
(OLT!LGEBRA
*ÀœLi“Ê-œÛˆ˜}
0ROPERTIESOF1UADRATIC&UNCTIONSIN3TANDARD&ORM
--"
x‡Ó
+IMWANTSTOBUYAUSEDCARWITHGOODGASMILEAGE(EKNOWSTHAT
THEMILESPERGALLONORMILEAGEVARIESACCORDINGTOVARIOUSFACTORS
INCLUDINGTHESPEED(EFINDSTHATHIGHWAYMILEAGEFORTHEMAKEAND
MODELHEWANTSCANBEAPPROXIMATEDBYTHEFUNCTION
FTSESSWHERESISTHESPEEDINMILESPERHOUR
(EWANTSTOGRAPHTHISFUNCTIONTOESTIMATEPOSSIBLEGASMILEAGESAT
VARIOUSSPEEDS
)DENTIFYTHEAXISOFSYMMETRYFORTHEGRAPH
OFTHEFUNCTION
,i>`ˆ˜}Ê-ÌÀ>Ìi}Þ
$RAW#ONCLUSIONS
-INIMUM
Îä
ÊT{ä]Ê£nÊEÊ
Y
X
X
X
4HEYVALUEOFTHEVERTEXISTHEFUNCTIONS
MINIMUM
4HEYVALUEOFTHEVERTEXISTHEFUNCTIONS
MAXIMUM
FSXDX
GSXDXX
£n
HSXD??
XX
KSXDXX
A 7HATCONCLUSIONCANYOUDRAWABOUTTHEGRAPHOFTHEFUNCTION
*œÃÈLiÊ>˜ÃÜiÀ\Ê£nʓˆiÃÊ«iÀÊ}>œ˜ÊˆÃÊ̅iʅˆ}…iÃÌÊ}>Ãʓˆi>}iÊ̅>ÌÊ̅ˆÃÊ
V>ÀÊ܈Ê>V…ˆiÛi°Ê/…>ÌʜVVÕÀÃÊ>ÌÊ>Êëii`ʜvÊ{äʓˆiÃÊ«iÀʅœÕÀ°
7HATISTHEMAXIMUMHEIGHTTHEBALL
REACHES
!BOUTHOWLONGISTHEBALLINTHEAIR
! SECONDS
" SECONDS
# SECONDS
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
*œÃÈLiÊ>˜ÃÜiÀ\Ê1ÃiÊ̅iÊvœÀ“Տ>ÊXÊÊÚÚÚ
BÊÊ̜Êvˆ˜`Ê̅iÊX‡Û>ÕiʜvÊ̅iÊ
ÓA
ÛiÀÌiݰÊ/…i˜ÊÃÕLÃ̈ÌÕÌiÊ̅iÊX‡Û>Õiʈ˜Ê̅iÊv՘V̈œ˜Ê̜Êvˆ˜`Ê̅iÊY‡Û>Õi]Ê
܅ˆV…ʈÃÊ̅iʓˆ˜ˆ“Õ“°
#ANAQUADRATICFUNCTIONHAVEBOTHAMAXIMUMANDAMINIMUM%XPLAIN
œÆÊ>ʵÕ>`À>̈VÊv՘V̈œ˜Êœ«i˜ÃÊiˆÌ…iÀÊÕ«Ü>À`ʜÀÊ`œÜ˜Ü>À`]ʘœÌÊLœÌ…°
" FEET
4HEVERTEXOFAFUNCTIONGSXDISATSD4HEFUNCTIONOPENSDOWNWARD7HATISTHE
MAXIMUMVALUEOFTHISFUNCTION
$ FEET
*œÃÈLiÊ>˜ÃÜiÀ\Ê-ˆ˜ViÊAÊÊä]Ê̅iÊ«>À>Lœ>ʜ«i˜ÃÊÕ«Ü>À`ÊÜÊ̅iÊÛiÀÌiÝʈÃÊ
>ÌÊ̅iʏœÜiÃÌÊ«œˆ˜Ì°Ê/…iÀivœÀi]Ê̅iÊv՘V̈œ˜Ê…>ÃÊ>ʓˆ˜ˆ“Õ“°
! FEET
# FEET
$ SECONDS
B $ESCRIBEHOWTOFINDTHEMINIMUMORMAXIMUMOFTHEFUNCTION
!BALLISHITINTOTHEAIRFROMAHEIGHTOFFEET4HEFUNCTION
GTTETTCANBEUSEDTOMODELTHEHEIGHTOFTHEBALL
WHERETISTHETIMEINSECONDSAFTERTHEBALLISHIT#HOOSETHE
LETTERFORTHEBESTANSWER
AK4up.indd 78
Y
&ORTHEFUNCTIONFSXDX X
C %XPLAINWHATTHISPOINTMEANSINTERMSOFGASMILEAGE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
#IRCLETHEFUNCTIONSWHOSEGRAPHOPENSUPWARD$RAWARECTANGLEAROUNDTHOSETHAT
OPENDOWNWARD
B 7HATISTHEVALUEOFTHEYCOORDINATEATTHE
MAXIMUMORMINIMUM
!NSWEREACHQUESTION
>݈“Õ“
B3UBSTITUTETHISVALUEOFXINTHEQUADRATIC
4HEXVALUEOFTHEVERTEXIS???
A
FUNCTIONTOGETITSMAXIMUMORMINIMUMVALUE
A $OESTHECURVEHAVEAMAXIMUMORAMINIMUM
VALUE
'RAPHTHEFUNCTION
Y
&INDTHEVERTEX
ATHEPARABOLAOPENSDOWN
4HEFUNCTIONHASAMAXIMUM
X{ä
&INDTHEYINTERCEPT
-AXIMUM
ATHEPARABOLAOPENSUP
4HEFUNCTIONHASAMINIMUM
(OLT!LGEBRA
4HEGRAPHOFAQUADRATICFUNCTIONFSXDAXBXCISAPARABOLATHAT
CANOPENUPWARDORDOWNWARD4HISTELLSYOUWHETHERTHEFUNCTIONHASA
MINIMUMORAMAXIMUM
Aä]ÊÜÊ̅iÊ}À>«…Êœ«i˜ÃÊÊ
`œÜ˜Ü>À`°
$ETERMINEWHETHERTHEGRAPHOPENSUPWARD
ORDOWNWARD
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
œÌʏ}iLÀ>ÊÓ
-ˆ˜ViÊ̅iÊv՘V̈œ˜Êœ«i˜ÃÊ`œÜ˜Ü>À`]Ê̅iÊÛiÀÌiÝʈÃÊ̅iʅˆ}…iÃÌÊ«œˆ˜Ì°Ê/…iÊ
Y‡Û>ÕiʜvÊ̅iÊÛiÀÌiÝʈÃÊ̅iʓ>݈“Õ“ÊœvÊ̅iÊv՘V̈œ˜°Ê/…iʓ>݈“ՓʈÃÊx°
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
78
œÌʏ}iLÀ>ÊÓ
Holt Algebra 2
5/20/06 2:37:30 PM