#4 # 4 47. m ! " " 0#7 #8 !" " #7 8 ! ""; perpendicular 7 2 2 6c. P(4 tails or 1 head) ! "1" % "1" % "1" % "1" % "1" % "1" % C(6, 4) $ slope ! 2 2 2 2 2 2 1 1 1 1 1 1 "" % "" % "" % "" % "" % "" 2 2 2 2 2 2 ! ! ! "1" "6" $ "1" "6" 64 2!4! 64 5!1! ! "1"(15) $ "1"(6) 64 64 ! "21" 64 #"7" 8 ! " 48. 12a $ bc ! 12(3) $ (7)(#2) ! 12(9) $ (#14) ! 108 # 14 ! 94 2 2 2 2 2 2 1 1 1 1 1 1 "" % "" % "" % "" % "" % "" 2 2 2 2 2 2 ! ! ! "1" "6" $ "1" "6" 64 0!6! 64 0!6! ! "1" $ "1" 64 64 ! "2" or "1" 64 32 ! " Page 748 Check for Understanding 1. Mutually exclusive events cannot occur at the same time, whereas inclusive events can. 2. Sample answer: going to school, eating pizza, or watching TV. 3. 134 # 62 !72 Glass Aluminum 108 # 62 !46 72 26 8. P(French or algebra) 9 52 2 "" 13 ! "5" 9 9 10. inclusive; 2 P(black card or face card) ! "26" $ "1" # "6" 52 52 8 "" 13 ! "32" or 52 52 11. inclusive; P(tossing 5 or number greater than 3) ! "1" $ "3" # "1" 52 6 ! "3" or 6 ! " 34 ! "21" 34 34 34 C(4, 2) % C(5, 1) ! " 6%5 !" " 84 C(9,3) ! "30" or 84 5 "" 14 14. P(all 3 gold or all 3 silver) ! P(3 gold) $ P(3 silver) C(5, 3) C(4, 3) ! "" $ "" C(9, 3) ! "10" $ "4" 84 ! "14" or % C(6, 2) 84 ! " © Glencoe/McGraw-Hill 6 13. P(exactly 2 silver) ! "" 6b. P(3 tails or 2 heads) ! "1" % "1" % "1" % "1" % "1" % "1" % C(6, 3) $ 2 2 2 2 2 2 1 1 1 1 1 1 "" % "" % "" % "" % "" % "" 2 2 2 2 2 2 ! ! ! "1" "6" $ "1" "6" 64 3!3! 64 4!2! ! "1"(20) $ "1"(15) 64 64 ! "35" 64 6 1 "" 2 12. inclusive; 1 P(boy or a senior) ! "14" $ "1" # "4" 2 2 2 2 2 2 1 1 1 1 1 1 "" % "" % "" % "" % "" % "" % C(6, 5) $ 2 2 2 2 2 2 1 1 1 1 1 1 "" % "" % "" % "" % "" % "" % C(6, 6) 2 2 2 2 2 2 ! ! ! ! "1" "6" $ "1" "6" $ "1" "6" 64 2!4! 64 1!5! 64 0!6! ! "1"(15) $ "1"(6) $ "1"(1) 64 64 64 1 ! "22" or "1" 64 32 ! " 26 550 700 400 ! "" $ "" # " " 1400 1400 1400 850 ! "" 1400 ! "17" 28 9. mutally exclusive; P(physics book or history book) ! "3" $ "2" 6a. P(at least 4 heads) ! P(4 heads) $ P(5 heads) $ P(6 heads) ! "1" % "1" % "1" % "1" % "1" % "1" % C(6, 4) $ ! " 26 Pages 749–751 Exercises or 5b. inclusive; P(jack or diamond) ! P(jack) $ P(diamond) # P(jack and diamond) 3 ! "4" $ "1" # "1" 52 or "4" 13 ! " ! "8" 46 52 ! "8" 52 % C(6, 6) 7. P(vowel or letter from equation) !"5" $ "3" 4a. The events are not mutally exclusive. 4b. probability of rain on both days 5a. mutually exclusive; P(5 or ace) ! P(5) $ P(ace) ! "4" $ "4" 52 ! "16" 52 ! " 6d. P(all heads or all tails) ! "1" % "1" % "1" % "1" % "1" % "1" % C(6, 6) $ 12-6 Adding Probabilities Alum. and Glass 62 % C(6, 1) C(9, 3) 84 1 "" 6 15. P(at least 2 gold) ! P(2 gold) $ P(3 gold) C(5, 2) % C(4, 1) C(5, 3) % C(4, 0) ! "" $ "" C(9, 3) 10 % 4 10 % 1 !" " $ "" 84 84 0 ! "40" $ "1" 84 84 5 ! "50" or "2" 84 42 345 C(9, 3) Algebra 2 Chapter 12 16. P(at least 1 silver) ! P(1 silver) $ P(2 silver) $ P(3 silver) C(4, 1) % C(5, 2) C(4, 2) % C(5, 1) 24. P(at least 3 women) ! P(3 women) $ P(4 women) $ P(5 women) C(4, 3) % C(5, 0) C(7, 3) % C(6, 2) C(9, 3) C(9, 3) 4 % 10 6%5 4%1 !" " $ "" $ "" 84 84 84 0 ! "40" $ "3" $ "4" 84 84 84 7 ! "74" or "3" 84 42 C(9, 3) 25. 17. P(both kings or both black) ! P(both kings) $ P(both black) # P(both black kings) 6 25 ! "4" % "3" $ "2" % "" # "2" % "1" 52 51 52 51 52 2 650 2 ! "1" $" " # "" 2652 2652 2652 660 55 !" " or "" 2652 221 26. 51 27. 18. P(both kings or both face cards) ! P(both kings) $ P(both face cards) # P(both kings) 2 11 ! "4" % "3" $ "1" % "" # "4" % "3" 52 51 52 51 2 132 12 ! "1" $" " # "" 2652 132 !" " 2652 2652 1 or "1" 221 52 51 28. 2652 52 52 52 51 2652 752 !" " or 2652 2652 188 "" 663 52 51 2652 20. P(both either red or a king) ! P(both red or both kings) $ P(red but not a king, 1 king) ! [P(both red) $ P(both kings) C(24, 1) % C(4, 1) # P(both red kings)] $ "" # 26 25 4 "" % "" $ "" 52 51 52 5 6 ! "5" $ "9" 2 21 1326 426 71 !" " or "" 1326 221 ! $ C(52, 2) 24 % 4 % "3" # "2" % "1" $ " " 51 52 51 1326 21. P(4 women, 1 man or 4 men, 1 woman) ! P(4 women, 1 man) $ P(4 men, 1 woman) C(7, 4) % C(6, 1) C(6, 4) % C(7, 1) C(13, 5) C(13, 5) 1287 315 !" " or 1287 1287 35 "" 143 22. P(3 women, 2 men or 3 men, 2 women) ! P(3 women, 2 men) $ P(3 men, 2 women) C(7, 3) % C(6, 2) C(6, 3) % C(7, 2) ! "" $ "" C(13, 5) 35 % 15 20 % 21 !" " $ "" 1287 1287 945 105 !" " or "" 1287 143 C(13, 5) flat 26 round flat round flat round flat round flat round flat 32b. P(advancing 2 lines) ! "1" 8 23. P(all women or all men) ! P(all men) $ P(all women) P(advancing 1 line) ! "1" 8 P(advancing at least 1 line) ! "1" $ "1" C(6, 5) % C(7, 0) C(7, 5) % C(6, 0) ! "" $ "" C(13, 5) C(13, 5) 6%1 21 % 1 !" " $ "" 1287 1287 7 ! "2" or "3" 1287 143 © Glencoe/McGraw-Hill % "1" 6000 ! 52% $ 74% # 30% ! 96% 32a. round round flat ! "" $ "" 35 % 6 15 % 7 !" " $ "" C(13, 5) C(13, 5) C(13, 5) 35 % 15 35 % 6 21 % 1 ! "" $ "" $ "" 1287 1287 1287 756 84 ! "" or "" 1287 143 P(each is a 25) ! "1" % "1" 30 26 ! "1" 780 9 25 P(neither is a 20) ! "2" % "" 30 26 145 !" " 15 6 6 0 P(at least one is a 30) !"1" % "2" $ "3" % "1" # "1" 30 26 30 26 30 26 30 1 ! "" $ "" # "" 780 7 80 780 5 1 ! "5" or "1" 780 156 P(each is greater than 15) ! "15" % "26" 30 26 ! "1" 2 29. P(A), P(B), P(C), P(A and B), P(B and C), P(A and C), P(A and B and C); P(A or B or C) ! P(A) $ P(B) $ P(C) # P(A and B) # P(B and C) # P(A and C) $ P(A and B and C) 30. Sample answer: Let A stand for a white counter in the bag in the beginning, B for a black counter, and C for the added white counter. After a white counter is taken, there are three equally possible situations: 1. C has been taken, leaving A. 2. A has been taken, leaving C. 3. C has been taken, leaving B. Since a white counter remains in the bag for the first two cases and a black counter remains in the third case, the answer is therefore "2". 3 31. P(woman or person in his or her 20s) ! P(woman) $ P(person in his or her 20s) # P(woman in 20s) 1800 ! 52% $ 74% # " " 19. P(both face cards or both red) ! P(both face cards) $ P(both red) # P(both red face cards) 6 25 ! "12" % "11" $ "2" % "" # "6" % "5" 132 650 30 !" " $ "" # "" C(7, 5) % C(6, 0) C(7, 4) % C(6, 1) ! "" $ " " $ "" ! "" $ "" $ "" 8 8 ! "1" P(losing a turn) ! "6" or 8 346 3 "" 4 4 Algebra 2 Chapter 12 33a. First Serve Second Serve Point in 80% yes no yes no 75% 25% 90% out 10% 20% in out 40. M&1 " $1$ &21 ! 25 35% 65% 4 " 35 &57 # # " xy # " " 48 # " 1 &7 5 $$ 4 &5 3 0.75(0.80) ! 0.25(0.90)(0.35) 34b. 34c. 34d. 35a. " 0.8839779 or about 88.4% P(being intoxicated and having an unimpeded trip) " 0.02 # 0.99911 " 0.0199822 P(being unintoxicated and having an unimpeded trip) " 0.98 # 0.99984 " 0.9798432 P(being intoxicated, arrested, and convicted) " 0.02 # 0.00044 # 0.70 " 0.00000616 P(being intoxicated, arrested, and dismissed) " 0.02 # 0.00044 # 0.30 " 0.00000264 P(1 red gumball, then another red gumball, then another red gumball) " $7$ % $6$ % $5$ 36 35 210 "$ $ or 42840 36 35 42840 " xy # " $14$" 124 # " xy # " " 31 #; (3, 1) 36 35 36. 37. 42840 d " 15 & 6 or 9 a57 " 6 ! (57 & 1)9 " 510 3x ! 5 $$ 3x ! 1 &2 3 ! $3x$ " 1 & 2x 34 1 $$ 204 Pages 755–756 Check for Understanding 1. A binomial experiment exists if and only if these conditions occur. a. There are exactly 2 possible outcomes for any trial. b. There is a fixed number of trials. c. The trials are independent. d. The probability of each trial is the same. 2. S S M S S M M S S S M M S M M S S M S S M M M S S M M S M M 3. Sample answer: coins, dice, spinners, random draws from a bag 4. See students’ work. 5. The results will be closer to the theoretical probability. 6a. (G ! W )4 " G4 ! 4G3W ! 6G2W 2 ! 4GW 3 ! W 4 P(at least one white) " 4G3W ! 6G2W 2 ! 4GW 3 ! W 4 34 1 $$ 119 " 34 3 $$ 340 3x ! 5 2(3x ! 1) $$ & $$ 3x ! 1 3x ! 1 3(1 & 2x) $$ 1 & 2x ! $3x $ 1 & 2x 3x ! 5 & 6x & 2 $$ 3x ! 1 3 & 6 x ! 3x $$ 1&2x &3x ! 3 1 & 2x "$ $ # $$ 3x ! 1 &3x ! 3 1 & 2x "$ $ 3x ! 1 38. f(x) "&3x3 ! 2 f(2) " &3(2)3 ! 2 " &22 39a. a " 23, b " 48 y2 x2 $$ ! $$ " 1 2304 Binomial Experiments and Simulations 12-7 35c. P(1 white gumball, then another white gumball, then 1 purple gumball) " $7$ % $6$ % $9$ 378 "$ $ or x &7 5 # " $1$" # # " 35 &5 # # " 48 # &7 # " y # 4 &5 3 ! 40 " xy # " $14$" &28 &20 ! 24 # 35b. P(1 purple gumball, then 1 orange gumball, then 1 yellow gumball) " $9$ % $8$ % $5$ 360 "$ $ or 5 " &7 # &5 3 " $1$ 33b. 0.75(0.80) ! 0.25(0.90)(0.35) " 0.67875 or about 67.9% 0.75(0.80) 33c. $$$$ 34a. 5 " &7 &5 3 # 529 39b. The desk is at one focus point. c2 " 2304 & 529 c2 " 1775 c ! 42 He had to stand about 84 feet away. "4 $$34$% $$14$% ! 6$$34$% $$14$% 3 2 2 7 " $27$ ! $2$ ! $3$ ! $1$ 64 175 "$ $ 128 64 $$34$%$$14$% !4 3 ! $$14$% 4 256 256 ! 0.6836 or about 68.4% © Glencoe/McGraw-Hill 347 Algebra 2 Chapter 12
© Copyright 2026 Paperzz