AP Calculus Summer Review Packet
Simplify and write answers using positive exponents:
5π¦ 5 βπ₯ π§ 7
2
π₯ β3 π¦ 5 π§ 6
1) (7π₯ 2 π§3 3 π¦)
2) π₯ 5 π¦2 π§β5
3) (5π₯ β3 π¦ 5 π§ β4 )β3
4)
β
π₯ β3 βπ₯
π₯6
Find the product (simplify).
5) (2π₯ β 3π¦)3
Perform the indicated operation.
6) π₯ 3 β 2π₯ β (1 + π₯ 2 ) β 3π₯ 2
7) (4π₯ 3 β 6π₯ 2 )(π₯ β 1) β (π₯ 4 β 2π₯ 3 )
Factor completely.
8) π₯ 4 + 64π₯
9) 3π₯ 2 + 5π₯ + 2
11) (π₯ β 3)3 (π₯ + 2)2 β (π₯ β 3)4 (π₯ + 2)
10) 9π₯ 2 β 81π¦ 2
12) π₯ 3 + 3π₯ 2 + 4π₯ + 12
Perform the operation and simplify.
13)
4π₯ 2 β21π₯+5 3β2π₯βπ₯ 2
β π₯ 2 +2π₯+1
2π₯ 2 βπ₯β1
÷
16π₯ 2 β1
1βπ₯ 2
14) 1 + π₯ β1
15) (π₯ + 5)4 (3π₯ β 3)β2 + (π₯ + 5)3 (3π₯ β 1)β1
17)
16)
1
+2
π₯
1
4β
π₯
18)
1
3π₯
+
1
1
β
5(2π₯β1)
15(π₯+2)
3+
1
π₯+4
1
β1
π₯β4
Solve each equation.
19) π₯ 2 + 2π₯ = 8
20) (3π₯ β 1)2 = β12
21) 8π₯ 3 = 27
22) π₯β3 β π₯β3 = 4
6
6
3
5
π₯+2
4π₯β8
23) π₯ 2 +π₯β2 + π₯ 2 βπ₯ = π₯β1
24) 3π₯ 2β3 = 0
25) 18π₯ 2 β 9π₯ = 20
26) 81π₯ 3 = 27
3
27) 1+ βπ₯ + 3 = 7
28) 3π₯ 2 β 11π₯ = β6
29) 81π₯ 4 = 16
30) π₯+1 = 3 β 6π₯+6
1
1
1
Write an equation in point-slope form with the given information.
31) through (2, -7) and (3, 5)
32) through (2, -7) and perpendicular to 3π₯ β 5π¦ = 12
For the piecewise function, find:
7 β π₯, π₯ < β3
33) π(π₯) = { 3, β3 β€ π₯ < 2
β2π₯ + 2, π₯ > 2
π(β4) =
π(β3) =
π(0) =
Determine if the graph is odd or even. Describe the symmetry based on your result.
34) π(π₯) = β3π₯ 4 β 5π₯ 2 + 7
35) π(π₯) = π₯ 3 β 5π₯
π(2) =
Given the graph of f, describe how to obtain graph g.
1
37) π(π₯) = π₯ 3 ; π(π₯) = 4 π₯ 3 β 5
36) π(π₯) = βπ₯; π(π₯) = β3βπ₯ β 5
Given the function, find
π(π₯+β)βπ(π₯)
β
39) π(π₯) = π₯ 3
38) π(π₯) = 3π₯ β 7
π
For each pair of functions, find (a) (π + π)(π) (b) (ππ)(π) (c) (π)(π) and (d) (π°π)(π).
40) π(π₯) = π₯ 2 β 1; π(π₯) = 5π₯ β 3
41) π(π₯) = β5π₯ β 1; π(π₯) = 2π₯
42) Given the graphs of f and g, find:
a) f(g(2))
b) f(g(-1))
c) g(f(2))
d) g(f(1))
e) f(g(-2))
f) g(f(0))
Find all the zeros of the polynomial function.
43) π(π₯) = π₯ 3 β 12π₯ 2 β 55π₯ + 150
44) π(π₯) = 5π₯ 3 + 36π₯ 2 β 33π₯ β 8
Describe the domain of each function (use interval notation).
45) π(π₯) = π₯ 5 β 3π₯ 2
46) π(π₯) =
5
2π₯ 3
48) π(π₯) =
49) π(π₯) =
5
2π₯β4
47) π(π₯) =
π₯β8
β2π₯β8
4π₯
β2π₯ 2 β8
Give the equations of any vertical, horizontal, or oblique asymptotes for the graph of each rational function.
50) π(π₯) =
5
π₯ 2 βπ₯β6
51) π(π₯) =
π₯+3
π₯β1
52) π(π₯) =
π₯ 2 β9
π₯+3
53) π(π₯) =
π₯ 2 β9
π₯β1
Determine whether the functions are inverses of each other.
3
54) π(π₯) = π₯ 3 β 4; π(π₯) = βπ₯ + 4
1
Solve without a calculator.
56) 2π₯
2 βπ₯β4
=4
58) βπ = π 3π₯
3
1
55) π(π₯) = π₯ 2 β3 ; π(π₯) = βπ₯ + 3
57) π₯ 2β3 = 11
1
59) π₯ = πππ2 4
60) π₯ = πππ2 β32
61) ππππ₯ 64 = 6
62) πππ5 π₯ = 2
63) 9 β 3π₯β3 = 27β2π₯
Write each expression as a sum, difference or production of logarithms. Simplify if possible.
3
π₯ 2π¦5
π§7
65) πππ7 (π₯ + 3)2 (2π₯ β 7)
64) ππππ β
Write as a single logarithm.
1
1
66) 3 ππππ π₯ β 4 ππππ (π¦ + 2)
Solve for all possible solutions.
67) log(π₯ 2 β 9) β log(π₯ + 3) = 1
68) π₯ 2 + 2π₯ β 4 = 0
69) π₯ 3 β 64 = 0
70) 10π₯+7 = 13
71) (π₯ β 2)π βπ₯ = 0
72) β4π₯ 2 + 4 = 2π₯ + 1
73) π₯ 5β3 (6 β π₯)4β3 = 0
74) 2 ln(4π₯) = 16
75) πππ2 (π₯ + 1) + πππ2 (π₯ β 3) = 1
76) π₯+1 = π₯+1 + 2
π₯+3
3
2π₯ 2 β16
π₯+4
π₯
77) π₯+4 + π₯+3 = π₯ 2 +7π₯+12
78) π 2π₯ = 4π π₯
79) βπ₯ β 3 = π₯ β 5
80) ln(π₯ β 4) = 6 β ln(π₯ β 8)
81) 82) sin 2π₯ = sin π₯ , 0 β€ π₯ β€ 2π
82) π 4π₯ = 8
83) cos 2π₯ =
β2
,0
2
84) πππ 2 π₯ = πππ π₯, βπ β€ π₯ β€ π
β€ π₯ β€ 2π
Use a graphing calculator to solve.
86) ln(3 β π π₯ ) = 5
85) π₯ β 4 = ln π₯
Without a calculator, determine the following.
87) sin 0
88) sin
π
2
89) sin
3π
4
90) cos π
π
3
93) tan
7π
4
94) tan
91) cos
7π
6
92) cos
95) tan
2π
3
96) tan 2
π
1
97) cos(π ππβ1 2)
π
6
98) π ππβ1 (sin
7π
)
6
Sketch the following graphs without a calculator. Think about the overall look of the graph and the end behavior.
β1
99) π(π₯) = π₯+2
100) π(π₯) = sin π₯
101) π(π₯) = 2π₯ + 1
102) π(π₯) = β3π₯β2
103) π(π₯) = π βπ₯
104) π(π₯) = ln π₯
105) π(π₯) = cos π₯
© Copyright 2026 Paperzz