Jan 3 to Jan 19 2017

Algebra 2 Pre-AP
January 3 to Jan 19, 2017
Date
Topics
Homework
Tuesday
Graph Cubic functions
Worksheet below # 1-8 (Graphs must be
1/3
drawn on a graph sheet)
Wednesday Graph Cubic functions
Worksheet below (graphs must be drawn on
1/4
a graph sheet)
Thursday Write the cubic function from the
Textbook Page 422-423: # 25-39
1/5
graph
Friday
Inverse of a cubic function (Find inverse
graphically, review one-to one correspondence.
1/6
Complete the worksheet started in class
Spiral Quad, and sq. roots)
Quiz: Graph cubic functions
Monday
1/9
Tuesday
1/10
Wednesday
1/11
Find Inverse function algebraically
Inverse of cubic functions – use
composition to verify inverses
Simplify cube root expressions with
and without variables
Quiz: Inverse of cubic/cube root functions
Thursday
1/12
Friday
1/13
Solve Cube Root Equations
Monday
1/18
Tuesday
1/17
Holiday M L K Day
Solve Cube Root Equations
graphically
Applications of cube root equations
Test: Graphing Cubic functions,
Inverse of cubic and cube root
functions, and simplifying radical
expressions and expressions with
rational coefficients
Wednesday Review for Dist. check point
1/18
Assessment
Thursday
1/19
District check point assessment
Textbook page 427: # 9-12 and worksheet
below
Textbook Page 428: # 15-18, 20, 22, 23, 24,
25, 26
Pages 391-392: #1-4, 9-12, 14, 22, 25, 33,
and 34
Pages 396-397: # 2, 3, 6, 7, and 8
Page 439: # 1-9
Pages 439-440: # 10-12, 21-26, 28-30
Review for dist. check point assessment
Review for dist. check point assessment
Tuesday, Jan 3
Graph each function on a graph sheet. Then state the domain, range and y-intercept
2) y     x  1 
3) y  2x3  3
6) y   x  3  3
7) y     x  4    2
3
1) y  x 3  1
5) y  2    x  2    2
3
3
4) y 
1
3
 x  3  2
2
8) y    x  4  2
3
3
Wednesday, Jan 4:
Graph the following functions on a graph sheet and state the domain and range of each.
1)
1
𝑦 = (4𝑥)3
2) 𝑦 = (− 4 𝑥)
3
1
3
3)
1
3
𝑦 = 2 (3 (𝑥 − 3)) + 1
6) y  2 x  3  2
7) y    x  4  2
4) 𝑦 = − (2 (𝑥 + 3)) − 2
5) 3 y  4x  24
8) y  x  22  4
9) 𝑦 = 2 (𝑥 − 4)3 . Find its max and min value in [2, 6]
1
1
3
10) 𝑦 = ( (𝑥 + 1)) − 2. Find its max and min value in [-7, 2]
3
Monday, Jan 9
Find the inverse of the following functions algebraically (work on a separate sheet. Show all work)
I. Textbook page 427: # 9-12
II. Do # 1-10 below
1
3
3
1) 𝑓(𝑥) = √𝑥 + 2
2) 𝑦 = √𝑥 − 2 + 3
3) 𝑓(𝑥) = 2 𝑥 3 − 5
4) 𝑦 = 2(𝑥 − 2)3 − 2
1
5) 𝑦 = 5 (𝑥 + 1)3
2
9) 𝑓(𝑥) = 3 (𝑥 + 3)3 − 7
6) 𝑦 = 2(𝑥 − 1)3 + 1
3 𝑥
7) 𝑔(𝑥) = √6 − 2
10) 𝑦 = 3√𝑥 + 𝑎 − 𝑏 , 𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 ∈ 𝑅
3
1
8) ℎ(𝑥) = √5 (𝑥 + 6) + 3