Thermochemical Studies of Relevance for Black Liquor Combustion and Gasification - The System Na2CO3-Na2S Mathias Råberg Anders Larsson, Gustav Lindberg, Anders Nordin, Dan Boström, Björn Warnqvist, Erik Rosén, Rainer Backman* Energy and Process Technology, University of Umeå, SE-901 87 Umeå *Åbo Akademi, Process Chemistry Group Contents I. Research program (Black Liquor Gasification) II. Uncertainties in thermochemical data III. Phase diagram studies - Na2CO3-Na2S IV. Conclusions V. Future work -----------On-going projects-----------VI. Uncertainties in thermochemical data VII. Thermochemical equilibrium studies I. Research program Inorganic Inorganicreactions reactions (UmU, (UmU,Åbo) Åbo) Construction Construction materials materials (Åbo) (Åbo) •Gas phase reactions •Smelt formation •Green liquor quality •Corrosion •Smelt layer thickness Design Design verification verificationprogram program (Chemrec) (Chemrec) •Technical design Center Centerof of Black BlackLiquor Liquor Gasification Gasification CFD CFDmodeling modeling (LTU, (LTU,ETC) ETC) •Gasification reactor •Quench •Counter current condensor Gasification Gasification reactions reactions (CTH, (CTH,Åbo) Åbo) •Kinetic models •Evaporation, pyrolysis, char conversion II. Uncertainties in thermochemical data Earlier published data of the binary phase diagram Na2CO3-Na2S The phase diagram Na2CO3 – Na2S according The phase diagram Na2CO3 – Na2S according to Ovechkin (Zh. Neorg. Khim. 16, 1971) to Tegman and Warnqvist (Acta Chem. Scand 26, 1972) III. Phase diagram studies on the system Na2CO3-Na2S • Objectives: - Re-determination of liquidus lines, in the Na2CO3 rich area, and melting points of the pure components - Determination of the extension of the Na2CO3(ss) solid solution in the Na2CO3-Na2S system •Methods: - High Temperature Microscopy, HTM - High Temperature X-Ray Powder Diffraction, HT-XRD • Chemicals - Na2CO3 and Na2S prepared according to Tegman and Warnqvist (Acta Chem. Scand. 26, 1972) Experimental set-up, HTM TS 1500 Hot Stage and the heater assembly Experimental equipment, HT-XRD • BRUKER AXS (Analytical X-ray System), D8 Advance • HTK 16 High Temperature Camera • Pt sample stage HTM results Sample with XNa2S = 0.15 a. Sample at 25 ºC c. Close to melting point, 822 ºC b. Partly melted, 815 ºC d. Crystallized during cooling, 700 ºC Results from the melting point study XNa2S 0.1 First melt appears, mean (ºC) 795 Melting point, mean (ºC) 842 0.15 780 830 0.2 757 817 0 - 858 1 - 1190 HT-XRD results Na2CO3 (25-800 °C) T (ºC) 800 600 550 520 510 500 490 480 470 460 450 440 430 420 400 375 365 355 345 335 200 25 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 2θ-Scale 39 40 41 42 43 44 45 46 47 48 49 50 A series of HT-XRD diffraction patterns of pure Na2CO3 in the temperature interval 25-800 ºC Na2S (25 °C) Lin (Cps) 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 23 30 40 50 2θ-Scale 60 70 Diffraction pattern of pure Na2S at 25 ºC 80 90 XNa2S == 0.15 0.1 0.2 X Na2S Pure Na2CO3 Pure Pure Na2CO3 Na2CO3 Na2CO3 in mixture Na2CO3 in Pure Na2CO3 Na2CO3 in mixture mixture Na2S in mixture mixture Na2S Na2S in in mixture 800 800 700 700 600 600 TTT(C) (C) (C) 500 500 400 400 300 300 200 100 0 23 28 33 33 38 38 2θ-Scale 2θ-Scale 2θ-Scale 43 43 43 48 48 48 Phase Diagram Na2CO3-Na2S 1200 1100 1000 T ( oC) 900 800 700 600 500 400 0 Na2CO3 0.2 0.4 0.6 XNa2S 0.8 1 Na2S Phase Diagram Na2CO3-Na2S HTM data Previous estimated data 1200 1100 1000 T ( oC) 900 800 700 600 500 400 0 Na2CO3 0.2 0.4 0.6 XNa2S 0.8 1 Na2S Phase Diagram Na2CO3-Na2S HTM data HT-XRD data Previous estimated data 1200 1100 1000 T ( oC) 900 800 700 600 500 400 0 Na2CO3 0.2 0.4 0.6 XNa2S 0.8 1 Na2S Phase Diagram Na2CO3-Na2S 1200 1100 Liquid 1000 900 T ( oC) Na2CO3(s) + L Na2S(s) + L 800 700 Na2CO3(ss) 600 Na2CO3(s) + Na2S(s) 500 400 0 Na2CO3 0.2 0.4 0.6 XNa2S 0.8 1 Na2S IV. Conclusions • Phase diagram studies: - HTM: Re-determination of liquidus lines and melting points of the components were made - HT-XRD: The extension of the Na2CO3(ss) solid solution in the Na2CO3-Na2S system was determined V. Future work • Other systems: - K2CO3-K2S - Na2S-K2S - Na2S-NaCl, K2S-KCl VI. Uncertainties in thermochemical data Sensitivity analysis • Objective: - Perform sensitivity analysis for the black liquor combustion/gasification chemistry in order to identify species with the most uncertain data and to compare the effect of these uncertainties with the variation in fuel and process variables • Method: - Systematically performing chemical equilibrium calculations (with H2S, COS, Na-gases, melting temperatures etc. as target/indicator variables) with uncertainties in thermochemical data included according to an extensive factorial design. - A program that handles input/output files and changes in thermochemical data has been developed. The program uses ChemApp for equilibrium calculations. Stability of Na2S relative to Na2CO3 Na2S(s)+CO2+H2O=Na2CO3(s,l)+H2S with different data, pCO2 = 0.15 bar, pH2O = 0.20 bar log[H2S/bar] 0 SGPS-s,l SGTE96-s,l Fact51-s,l HSC5-s,l Rosén-s Backman-s Na2S -1 -2 Na2CO3 -3 400 500 600 700 800 Temperature [°C] 900 1000 VII. Thermochemical equilibrium studies • Objective: - Investigation of the equilibrium between Na2S and Na2CO3 to get more reliable data • Method: - Equilibrium studies in a vertical tube-furnace • Improvements from previous studies (Köszegi, Rosén. Trans Roy Inst. Technol. 1964): - Lower and better controlled gas flow - In-situ production of Na2S - Reducing atmosphere to prevent formation of Na2S2 - Aqueous titration method for the determination of H2S formed Preliminary results Temperature dependence for the equilibrium constant of the reaction Na2S(s) + H2O(g) + CO2(g) ' Na2CO3(s) + H2S(g) (Previous data: Köszegi, Rosén. Trans Roy Inst. Technol. 1964) Acknowledgements • Swedish Energy Agency, STEM
© Copyright 2026 Paperzz