201-103-RE - Calculus 1 WORKSHEET: LIMITS 1. Use the graph of the function f (x) to answer each question. Use ∞, −∞ or DN E where appropriate. (a) f (0) = (b) f (2) = (c) f (3) = (d) (e) (f) (g) (h) lim f (x) = x→0− lim f (x) = x→0 lim f (x) = x→3+ lim f (x) = x→3 lim f (x) = x→−∞ 2. Use the graph of the function f (x) to answer each question. Use ∞, −∞ or DN E where appropriate. (a) f (0) = (b) f (2) = (c) f (3) = (d) (e) (f) (g) lim f (x) = x→−1 lim f (x) = x→0 lim f (x) = x→2+ lim f (x) = x→∞ 3. Evaluate each limit using algebraic techniques. Use ∞, −∞ or DN E where appropriate. (a) (b) lim x2 − 25 x2 − 4x − 5 (q) lim x2 − 25 x2 − 4x − 5 (r) x→0 x→5 2 (c) (d) (e) 7x − 4x − 3 3x2 − 4x + 1 lim x→1 x4 + 5x3 + 6x2 lim 2 x→−2 x (x + 1) − 4(x + 1) lim |x + 1| + x→−3 √ (f) lim x→3 √ (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (s) lim x→3 3 x (u) x+1−2 x2 − 9 (v) x2 + 7 − 3 x+3 (w) x2 + 2x − 8 x→2 x2 + 5 − (x + 1) 2 1/3 2y + 2y + 4 lim y→5 6y − 3 p lim 4 2 cos(x) − 5 lim √ x→0 1 1 − lim 3 + x 3 − x x→0 x 1 2x + 8 − 2 lim x − 12 x x→−6 x+6 √ √ lim x2 − 2 − x2 + 1 x→∞ √ lim x→−∞ lim √ 6 x→7 lim− x→1 (t) x−2− √ (x) (y) (z) (A) (B) (C) (D) x 2x − 14 3 − 3x lim x→∞ 3x3 + x2 − 2 x2 + x − 2x3 + 1 x+5 x→∞ 2x2 + 1 x5 + 1 lim cos x→−∞ x6 + x5 + 100 lim lim x→2 2x −4 x2 lim x→−1 x2 3x + 2x + 1 x2 − 25 x→−1 x2 − 4x − 5 √ x2 − 5 + 2 lim x→3 x−3 lim 2x + sin(x) x→0 x4 1 2 lim− + ex x→1 x − 1 lim lim 2x2 − 3x x→∞ √ (E) √ x4 − 10 x→∞ 4x3 + x r x−3 lim 3 x→−∞ 5−x lim (F) √ x+2− 2−x lim x→0 x ex lim+ x→0 1 + ln(x) √ lim x2 + 1 − 2x x→∞ √ 3 x−1 lim √ x→1 x−1 4. Find the following limits involving absolute values. x2 − 1 (a) lim x→1 |x − 1| x2 |x − 3| (c) lim− x→3 x−3 1 (b) lim + x2 x→−2 |x + 2| 5. Find the value of the parameter k to make the following limit exist and be finite. What is then the value of the limit? x2 + kx − 20 lim x→5 x−5 6. Answer the following questions for the piecewise defined function f (x) described on the right hand side. (a) f (1) = (b) lim f (x) = (c) x→0 ( sin(πx) f (x) = lim f (x) = 2x 2 for x < 1, for x > 1. x→1 7. Answer the following questions for the piecewise defined function f (t) described on the right hand side. (a) f (−3/2) = (b) f (2) = (c) f (3/2) = (d) lim f (t) = (e) t→−2 lim f (t) = t→−1+ (f) lim f (t) = (g) lim f (t) = t→2 t→0 t2 t+6 f (t) = t2 − t 3t − 2 for t < −2 for − 1 < t < 2 for t ≥ 2 ANSWERS: (b) 0 (c) 3 (d) −∞ (b) DNE (c) 0 (d) DNE 1. (a) DNE 2. (a) 0 (e) DNE (f) 2 (f) −∞ (e) 0 (g) DNE (h) 1 (g) 1 3. (a) 5 (b) (l) 5 3 1 36 (w) −∞ (m) 0 (x) DNE (c) 5 (n) DNE (d) 1 (o) DNE (e) 1 (p) 0 (f) (g) 1 24 1 6 (B) ∞ (s) (j) DNE (u) 1 − 29 (C) − 32 (t) 0 4. (a) DNE (A) −∞ (r) −1 4 3 (k) (z) ∞ (q) ∞ (h) −18 (i) (y) DNE (D) 0 (E) −∞ (F) (v) DNE (b) ∞ (c) −9 5. k = −1, limit is then equal to 9 6. (a) DNE (b) 0 (c) DNE 7. (a) DNE (b) 4 (c) 10 8. (a) 0 (b) 0 (c) 5 3 (d) DNE √1 2 (e) 5 2 (f) 4 (g) DNE 2 3
© Copyright 2026 Paperzz