Forward Divided Difference Topic: Differentiation Major: General Engineering Authors: Autar Kaw, Sri Harsha Garapati 5/21/2008 http://numericalmethods.eng.usf.edu 1 Definition lim f ( x + Δx ) − f ( x ) f ′( x ) = Δx → 0 Δx . Slope at xi y f(x) xi 2 x http://numericalmethods.eng.usf.edu Forward Divided Difference f (x + Δx ) − f (x ) f ′( x ) ≅ Δx f (x) x 3 x + Δx f (x i + Δ x ) − f (x i ) f ′( x i ) ≅ Δx x http://numericalmethods.eng.usf.edu Example Example: The velocity of a rocket is given by ν (t ) = 2000 where ν ⎡ ⎤ 14 × 10 4 ln ⎢ ⎥ − 9 . 8 t , 0 ≤ t ≤ 30 4 × − t 14 10 2100 ⎣ ⎦ given in m/s and the first derivative of Δt = 2s. t is given in seconds. Use forward difference approximation of ν(t ) to calculate the acceleration at t = 16s. Use a step size of Solution: ν(ti +1 ) − ν(ti ) a (ti ) ≅ Δt ti = 16 4 http://numericalmethods.eng.usf.edu Example (contd.) Δt = 2 t i +1 = t i + Δt = 16 + 2 = 18 a (16 ) = ν (18) − ν (16 ) 2 ⎡ ⎤ 14 × 10 4 ν (18) = 2000 ln ⎢ ⎥ − 9.8(18) = 453.02m / s 4 ( ) 14 × 10 − 2100 18 ⎣ ⎦ ⎡ ⎤ 14 ×10 4 = 392.07m / s ν (16) = 2000 ln ⎢ ⎥ − 9.8(16) 4 ⎣14 ×10 − 2100(16) ⎦ 5 http://numericalmethods.eng.usf.edu Example (contd.) Hence a(16) = ν (18) −ν (16) 2 The exact value of = 453.02 − 392.07 = 30.475m / s 2 a(16) can be calculated by differentiating ⎡ ⎤ 14 × 10 4 ν (t ) = 2000 ln ⎢ ⎥ − 9.8t 4 ⎣14 × 10 − 2100t ⎦ as d [ν (t )] = − 4040 − 29.4t dt − 200 + 3t a(16) = 29.674m / s 2 a(t ) = 6 http://numericalmethods.eng.usf.edu Example (contd.) The absolute relative true error is εt = TrueValue − ApproximateValue ×100 TrueValue 29.674 − 30.475 ×100 29.674 = 2.6993% = 7 http://numericalmethods.eng.usf.edu Effect Of Step Size f ( x ) = 9e Value of h 0.05 0.025 0.0125 0.00625 0.003125 0.001563 0.000781 0.000391 0.000195 9.77E-05 4.88E-05 8 4x f ' (0.2) Using forward difference method. f ' (0.2) 88.69336 84.26239 82.15626 81.12937 80.62231 80.37037 80.24479 80.18210 80.15078 80.13512 80.12730 Ea -4.430976 -2.106121 -1.0269 -0.507052 -0.251944 -0.125579 -0.062691 -0.031321 -0.015654 -0.007826 εa % 5.258546 2.563555 1.265756 0.628923 0.313479 0.156494 0.078186 0.039078 0.019535 0.009767 Significant digits 0 1 1 1 2 2 2 3 3 3 Et εt % -8.57389 -4.14291 -2.03679 -1.00989 -0.50284 -0.25090 -0.12532 -0.06263 -0.03130 -0.01565 -0.00782 10.70138 5.170918 2.542193 1.260482 0.627612 0.313152 0.156413 0.078166 0.039073 0.019534 0.009766 http://numericalmethods.eng.usf.edu Effect of Step Size in Forward Divided Difference Method Initial step size=0.05 92 f'(0.2) 88 84 80 76 0 1 2 3 4 5 6 7 8 9 10 11 12 Num ber of tim es step size halved, n 9 http://numericalmethods.eng.usf.edu Effect of Step Size on Approximate Error Number of times step size halved, n 0 0 2 4 6 8 10 12 -1 Ea -2 -3 -4 Initial step size=0.05 -5 10 http://numericalmethods.eng.usf.edu Effect of Step Size on Absolute Relative Approximate Error 6 5 Initial step size=0.05 |Ea| % 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Num ber of tim es step size halved, n 11 http://numericalmethods.eng.usf.edu Effect of Step Size on Least Number of Significant Digits Correct Least number of significant digits correct 4 Initial step size=0.05 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 Num ber of tim es step size halved, n 12 http://numericalmethods.eng.usf.edu Effect of Step Size on True Error Num ber of tim es step size halved, n 0 0 2 4 6 8 10 12 Et -3 -6 -9 Initial step size=0.05 Initial step size=0.05 13 http://numericalmethods.eng.usf.edu Effect of Step Size on Absolute Relative True Error Initial step size=0.05 12 10 |Et| % 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 Number of times step size halved, n 14 http://numericalmethods.eng.usf.edu
© Copyright 2026 Paperzz