Handbook

InstituteofEarthandEnvironmentalSciences
UniversityofFreiburg
Programguidebook
M.Sc.Geology
withfocusareas
GeomaterialsandProcesses
RockMechanicsandGeodynamics
Geohazards
Freiburg,May01,2017
TableofContents
1.GeneralInformation..................................................................................4
1.1UniversityofFreiburgGeosciences:WhyshouldstudentschoosetocompletetheirM.Sc.
degreeinFreiburg?.............................................................................................................................4
1.2ResearchandTeachingattheInstituteofEarthandEnvironmentalSciencesinFreiburg...........4
1.2.1ImpactCraterResearchandPlanetaryGeology.....................................................................5
1.2.2StructuralGeology,SedimentologyandTectonics................................................................5
1.2.3GeologicalModeling..............................................................................................................6
1.2.4PetrologyandGeodynamics..................................................................................................6
1.2.5GeochemistryofWater,CrustalFluidsandWater-RockInteraction.....................................6
1.2.6AppliedandEnvironmentalGeochemistry............................................................................7
1.2.7ClassicalGrowthofSemiconductorCrystals..........................................................................7
1.2.8CrystalGrowthinExternalFields...........................................................................................7
1.3AnalyticalFacilitiesforModernQuantitativeGeosciences...........................................................8
1.4ApplicationtotheM.Sc.ProgramGeology...................................................................................8
1.5StructureoftheM.Sc.ProgramGeology......................................................................................9
1.5.1M.Sc.Geology–FocusareaGeomaterialsandProcesses....................................................10
1.5.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics.........................................11
1.5.3M.Sc.Geology–FocusareaGeohazards..............................................................................12
2.ModuleOverview....................................................................................14
2.1GeneralCompulsoryModules(30ECTS).....................................................................................14
2.2Specializedcompulsorymodules(30ECTS)................................................................................14
2.2.1M.Sc.Geology–FocusareaGeomaterialsandProcesses....................................................14
2.2.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics..........................................15
2.2.3M.Sc.Geology–FocusareaGeohazards..............................................................................16
2.3Electivemodules(30ECTS).........................................................................................................16
3.Moduledescriptions................................................................................20
3.1ComputinginGeosciences..........................................................................................................20
3.2ResearchMethodsinGeosciences..............................................................................................22
3.3SeminarandColloquiumI...........................................................................................................26
3.4FieldTrips....................................................................................................................................29
2
3.5GeologicalProject.......................................................................................................................32
3.6SeminarandColloquiumII..........................................................................................................34
3.7AdvancedGeochemistry.............................................................................................................37
3.8Melts,Magmas,Crystals.............................................................................................................40
3.9Minerals,Transformations,Reactions........................................................................................42
3.10AdvancedAnalyticalMethods...................................................................................................44
3.11Fluid-RockInteraction...............................................................................................................47
3.12IsotopeGeochemistry...............................................................................................................49
3.13Petrophysics..............................................................................................................................52
3.14PlanetaryDynamics...................................................................................................................53
3.15RockMechanics.........................................................................................................................56
3.16EngineeringGeologyandGeotechnics......................................................................................59
3.17Geophysics................................................................................................................................61
3.18Hydrogeology............................................................................................................................63
3.19VolcanicHazards.......................................................................................................................66
3.20EarthquakesandTsunamis.......................................................................................................69
3.21ImpactGeology.........................................................................................................................71
3.22ClimaticGeohazards..................................................................................................................72
3.23MassMovements......................................................................................................................74
3.24Hazard,RiskandPrediction.......................................................................................................76
3.25Rock-FormingProcesses...........................................................................................................78
3.26ThermodynamicsofGeologicalandTechnicalMaterials..........................................................81
3.27QuaternarySediments..............................................................................................................84
3.28GeothermicsandGeothermalEnergy.......................................................................................86
3.29ExternalModules......................................................................................................................88
3.30TechnicalandAppliedMineralogy............................................................................................89
3.31X-RayMethods..........................................................................................................................90
3.32AdvancedCrystallography.........................................................................................................91
3
1.GeneralInformation
This module guide provides information about the M.Sc. program Geology. The master
program is divided into three lines of specialization, e.g. “Focus Areas”: Geomaterials and
Processes,RockMechanicsandGeodynamicsandGeohazards.TheMasterofScience(M.Sc.)
is an internationally recognized degree which can be completed within two years (four
semesters)ofstudy.Thisguidebookaimsatpresentingthevision,structure,andcourseof
themasterprogramandprovidesnecessarydetailsoftheindividualmodulesandcourses.
Together with the M.Sc. program “Sustainable materials / Crystalline Materials” it reflects
the main areas of geoscience research in Freiburg. The official instruction and
communicationlanguageofbothprogramsisEnglish.
1.1UniversityofFreiburgGeosciences:Whyshouldstudentschooseto
completetheirM.Sc.degreeinFreiburg?
TheInstituteofEarthandEnvironmentalSciencesbelongstotheFacultyofEnvironment
andNaturalResourcesaspartofoneofGermany’sleadinguniversities.Inrecentyearsthe
UniversityofFreiburghasbeenplacedatthetoprankinresearchqualityinGermany.The
institute hosts advanced analytical facilities for the research and teaching in geoscience.
Apart from working in close collaboration with the University of Freiburg Division of
Chemistry,theinstitutehascloseconnectionstotheFreiburgCenterforMaterialsResearch
(FMF), the Fraunhofer Institute for High-Speed Dynamics (Ernst-Mach-Institut EMI), the
FraunhoferInstituteforSolarEnergySystems(ISE),theFraunhoferInstituteforAppliedSolid
StatePhysics(IAF),aswellastheFraunhoferInstituteforPhysicalMeasurementTechniques
(IPM).Alltheseinstitutionsandfacilitiescanbeaccessedwithinwalkingdistance.
The Institute of Earth and Environmental Sciences is housed in recently renovated
buildings. The “state of the art” analytical infrastructure has been fully renovated and
substantialofficespaceforgraduatestudentsandamodernandup-to-datelibraryprovide
excellent conditions for individual study and research. Computer rooms and library study
facilitiesareeasilyaccessible.AstudentcafeteriaandtheuniversityITservicesarelocated
within the immediate vicinity of the institute. The institute is conveniently situated only a
fewminutesawayfromthecitycenterandthecentraltrainstation.
1.2ResearchandTeachingattheInstituteofEarthandEnvironmental
SciencesinFreiburg
Theresearchandteachinginterestsoftheinstitutecoverawiderangeofexcitingtopics
in Earth sciences including petrology, sedimentology, structural geology, planetary geology
and impact crater research, aqueous environmental geochemistry, biogeochemistry,
environmentalmineralogy,aswellasstructureofcrystallinematerialsandcrystalsynthesis.
4
ThefollowingpagesprovideadetailedoverviewoftheareasofresearchattheInstituteof
EarthandEnvironmentalSciencesattheUniversityofFreiburg.
1.2.1ImpactCraterResearchandPlanetaryGeology
Thecollisionofsolidbodiesiswithoutdoubtthemostfundamentalgeologicalprocessin
thesolarsystem.Itisnotonlyresponsiblefortheformationofplanetsandsatellites,ithas
alsosteadilyreshapedplanetarysurfaces,formedthestructureofpartsoftheEarth’scrust
and produced economically important deposits. Impact processes have also delivered
organiccompoundstotheearlyEarthandinfluencedtheevolutionoflifeonourplanet.The
currentimpactriskmustnotbeneglected.Weapplyhigh-speedandanalogueexperiments
in addition to micro-structural analysis, field surveying, and remote sensing to understand
split-second geology. Recently, a research unit (Forschungsgruppe) “Experimental impact
cratering” financed by the German Research Foundation DFG was established at the
Institute.AclosecollaborationexiststoFraunhoferErnst-Mach-Institut(EMI).
Impact processes delivered organic compounds to the early Earth and repeatedly
influenced the evolution of life. The current impact risk must not be neglected. We apply
high-speed and analogue experiments in addition to micro-structural analysis, field
surveying,andremotesensingtounderstandsplit-secondgeology.Recently,aresearchunit
(Forschungsgruppe) “Experimental impact cratering” financed by the German Research
FoundationDFGwasestablishedattheInstitute.AclosecollaborationexiststoFraunhofer
Ernst-Mach-Institut(EMI).
Impact crater research is closely linked to planetology. Our knowledge on the solar
system currently increases rapidly due to the technological development of space
explorationtechniquesandallowsfordiscoveringthegeologyofotherplanetarybodiesby
means of remote sensing techniques. Planetology and Planetary Geology are a developing
interdisciplinaryemploymentmarketforgeo-scientistsinthefutureandarethereforepart
oftheMastercurriculum.Theimplementationofimpactandplanetarygeologyisaunique
sellingpointofFreiburg´sMasterGeologyprograminGermany.
1.2.2StructuralGeology,SedimentologyandTectonics
Deciphering the past is the key to understand the present and the future. Structural
Geology, Sedimentology and Tectonics are core subjects in geology that are aimed at
analyzing the evolution of the Earth and to use the Earth´s economic deposits. Applied
techniques range from classical field mapping to quantitative modeling and from remote
sensingtonano-scaleinvestigations,andalsocompriseanumberofinhouseexperimental
set-ups.StructuralGeology,SedimentologyandTectonicscontributetomanyfieldsofactual
socialquestionsandproblems,suchasnaturalresourcerecovery(water,oil,gas,economic
minerals),naturalhazards(earthquakes,landslides,tsunamis,volcaniceruptions),andinthe
managementoftheenvironment(longtermstorageofradioactivematerial,contamination
ofwaterreservoirs).
5
1.2.3GeologicalModeling
Currentresearchinterestsingeologicalmodelingfocuson(i)theanalysisandprediction
of tectonic stresses at the outcrop and regional geological scale, (ii) mountain-building
processesandthedevelopmentoftopographyandreliefinorogenicbeltsliketheAlpsasa
result of uplift, exhumation, and erosion, and (iii) the dynamics of landslides. Quantitative
modelingisconductedbyanalyticalapproachesaswellasdiscretizationmethodslikefinite
elementmodeling.
1.2.4PetrologyandGeodynamics
The mineral assemblages and structures of rocks ultimately result from large-scale
geologicalprocessesreflectingdynamicsofthePlanetEarth.Geodynamicprocessesinclude
thebuildingofmountainrangessuchastheHimalayasandtheAlps,theevolutionofisland
arc systems, and the formation of ocean floor along mid-ocean spreading ridges. The
dynamicbuildingofmountainbeltsandmotionsoflithosphericplatemoverockcomplexes
along specific pressure-temperature-time paths. In numerous geological settings, partial
melting occurs, magmas segregate and migrate, and contribute to the chemical
differentiation of the oceanic and continental crust. The wide range and continually
changing pressure and temperature conditions cause chemical reactions in rocks that
changetheirmineralassociationsandtextures.Decipheringthisrockrecordistheprincipal
tool for reconstructing the past and present processes on our planet. The most important
insightintothedeeperlithospherecomenotonlyfromexhumedmetamorphicandigneous
rocks, but also from modern exploration programs such as oceanic drilling and dredging
onboard marine research vessels. Our research includes a variety of subjects such as melt
generation and migration, kinetics of crystallization, and implications of melt-crystal
interaction for the dynamics of natural magma chambers and growth of the continental
crust.
1.2.5GeochemistryofWater,CrustalFluidsandWater-RockInteraction
Thechemicalinteractionofwaterandrockisoneofthemostuniversal,multifacetedand
fascinating processes in geology. The composition of surface and ground water is largely
controlledbythereactionofwaterwithrocksandminerals.Atelevatedtemperatures,the
intensity and rates of these interactions are even greater and they lead to diverse
economically important products – hydrothermal ore deposits, geothermal fields. These
systemsarenowexploitedforsequestrationanddepositionofgreenhousegases.Volatiles
are also ubiquitous constituents of magmatic systems and significantly affect the physical
and chemical properties of magmas and consequently have substantial impact on the
volcaniceruptionstylesandassociatedrisksaswellaseffectontheEarth’satmosphereand
climate through gaseous species that are released during volcanic activity to the
atmosphere. Understanding water-rock interaction is in addition of great importance to
6
appliedgeologyandgeochemistry,particularlyinareassuchasgeothermalenergy,nuclear
wasterepositories,andappliedhydrogeology.
1.2.6AppliedandEnvironmentalGeochemistry
Mineralogyandgeochemistryplayanessentialroleinestablishingproceduresforsolving
environmentalproblemscausedbyhumanactivity.Theenvironmentatornearthesurface
of the Earth is affected by various processes both natural and anthropogenic. These
processescanbestudiedbyusingmineralogicalandgeochemicalmethods,thusopeningup
abroadresearchfield,whichincludestopics,suchas:(i)therelease,transport,dispersalof
toxicsubstancesfromrepositories,industrialfacilities,miningsites,(ii)characterizationand
trackingofatmosphericdust,(iii)environmentalimpactofenergyrecovery,(iv)weathering
ofbuildingstones,(v)healthimpactofcontaminatedwater,volcanicgases,andaerosolsand
(vi)containmentoftoxicandnuclearwastewithmineralogicalorgeochemicalbarriers.
Oneofthekeyconceptsinappliedandenvironmentalgeochemistryisthatbyproviding
examplesfromthegeologicalhistory,natureteachesushowtoalleviatecurrentproblems
andpredictthefutureofourenvironment.ThisaspectofEarthSciencesisanexcitingarea
of fundamental research, in which material properties and processes are studied with
emphasisonapplicationstopressingproblemsofsocietiesworldwide.
1.2.7ClassicalGrowthofSemiconductorCrystals
Semiconductor materials like silicon, lead iodide, and cadmium telluride are of high
importance in a number of industries like the computer industry. Relevant physical
propertiesofsuchmaterialsareoftenonlyachievediftherequiredsemiconductingbuilding
blocks are cut from large single crystals of the corresponding chemical element or
compound.Weoptimizeconditionsforthegrowthofsuchcrystals,agrowthwhichusually
takes place at high temperatures in special furnaces. Close collaborations exist with the
Fraunhofer Institut für Solare Energiesysteme (ISE), Institut für Angewandte
Festkörperphysik(IAF)andInstitutfürPhysikalischeMesstechnik(IPM).
1.2.8CrystalGrowthinExternalFields
Toimprovethequalityofourapplication-relevantsemiconductorcrystalswithrespectto
purityandposition-independentstructuraluniformity,weinvestigatecrystalgrowthalsoin
external fields. These may be stationary or rotating magnetic fields or “Gravity fields” like
under microgravity. In the latter case experiments are undertaken in space in special
(manned) planes, (unmanned) rockets or (in the future) in the ISS (international space
station).
7
1.3AnalyticalFacilitiesforModernQuantitativeGeosciences
The institute hosts a sample preparation laboratory for crushing, sieving, mineral
separation as well as preparation of high-quality polished thin sections from geological or
syntheticmaterials.Theinstituterunsa3000kNtriaxialloadingframefordeterminationof
the mechanical properties of solid rocks. The deformation behavior of rocks and the
kinematics of gravity-driven mass movements are studied in an analogue laboratory
equippedwithparticleimagevelocimetryandstereocameras.Geophysicaldevicesforfield
surveys(geo-electric,seismic,georadar)areavailable.
Forthestructuralandchemicalcharacterizationofnaturalrocksandsyntheticproducts
two scanning electron microscopes equipped with EDX and an electron backscattered
detector (EBSD), an electron microprobe, a WD-X-ray fluorescence spectrometer, and
several optical microscopes are used. White-light interferometry is applied for the
characterization of surface topographies. Atomic absorption spectroscopy, ion
chromatography,andUV-VISspectrometryareusedfortheanalysisoffluids.
Thestructureofcrystals–fromthemillimeterdowntothepicometerscale–canmost
effectively be investigated using X-ray methods. We use these methods to detect
imperfections or inhomogeneities in a crystal (X-ray topography), to measure with highest
precision the so-called lattice parameters (high-resolution X-ray diffractometry), to
determine accurately the arrangement of the atoms in the crystal (X-ray single crystal
diffractometry),ortoidentifythecomponentsofacrystalpowder,e.g.amineralpowder(Xraypowderdiffractometry).Traceelementconcentrationsinnaturalwaters,soils,andother
materials can be analyzed with our atomic absorption spectrometry (Flame AAS and
GraphiteFurnaceAAS)andotherequipment(UV-VIS,IC,CSH2O-Determinators).
Withourequipmentfordifferentialthermalanalysisanddifferentialscanningcalorimetry
weareabletostudyphasetransitions,forinstancemeltingorsolidification,orthetransition
ofacertainatomicarrangementinthecrystalsofacompoundintoadifferentarrangement
(polymorphic transition) with respect to transition temperatures or transition enthalpies.
Thermogravimetryisusedtomonitorquantitativelyweightchanges,whichare,e.g.,caused
bythermaldecompositionprocessesleadingtonewchemicalcompounds.
1.4ApplicationtotheM.Sc.ProgramGeology
Theapplicationprocedureforthegraduateprogramisavailableonline(http://portal.unifreiburg.de/master-geo/prospectivestudents/application). The application form can be
downloaded. Annual application deadline is May 15. The students can register for the fall
semester only (starting mid of October). The M.Sc. program Geology is accessible to all
students,whohaveacquiredaB.Sc.inGeology,Geosciences,EarthScience,orMineralogy
fromaGermanuniversity,orfromotheruniversitiesandcollegesworldwide(inaccordance
with certain quality control criteria). Students holding a B.Sc. degree in one of the other
8
naturalorphysicalsciences(Chemistry,Physics,Biology,EnvironmentalScience)mayalsobe
grantedadmissiontotheprogram.Inthelattercase,thechoiceofmajorwillbedetermined
fromthestudent'seducationalbackground.TheapplicantmusthaveEnglish-languageskills
that meet or exceed level B2 of the Common European Framework of Reference for
Languages(seetheapplicationformfordetails).
Questions concerning the general application and admission procedure to the M.Sc.
Program Geology should be addressed to the application and admission coordinator Ms.
Kathleen Robinson and/or to the Student Advising Officer, Dr. Heike Ulmer. For
organizational inqueries concerning the course of study the Geoscience program
coordinator,Ms.WibkeKowalskiiscontactperson.
• ApplicationandAdmissionCoordinator
Ms.KathleenRobinson,Albertstr.23-B,1stfloor,room01020
Tel.+49(0)761/203-6398;[email protected]
• StudentAdvisorySupport
Dr.HeikeUlmer,Albertstr.23-B,2ndfloor,room02014
Tel.+49(0)761/203-6480;[email protected]
• GeologyProgramCoordinator
Prof.Dr.StefanHergarten,Albertstr.23-B,1stfloor,room01011
Tel.+49(0)761/203-6471;[email protected]
Fororganisationalquestionsonly:
Ms.WibkeKowalski,Albertstr.23-B,1stfloor,room01020
Tel.+49(0)761/203-6398;[email protected]
QuestionsabouttheregistrationforexaminationsandtheTranscriptsofRecordsshouldbe
addressedtotheExaminationOffice:
• ExaminationOffice
Ms.UrsulaStriegel,Albert-Ludwigs-Universität,PrüfungsamtderFakultätfürUmweltund
NatürlicheRessourcen,D-79085FreiburgimBreisgau,Germany
Tel.+49(0)761203-3605;[email protected]
1.5StructureoftheM.Sc.ProgramGeology
TheM.Sc.programGeology(seeFig.1)includes120ECTSpointsandisofferedinEnglish
language.TheM.Sc.coursecurriculumconsistsofsixcompulsorymodules(30ECTSpoints),
six specialization modules (30 ECTS points), several elective modules (30 ECTS points; a
maximumofthreemodules,thatis,15ECTSpointsmaybetakenfromotherareassuchas
othernaturalsciences,languages),andamasterthesis(30ECTSpoints).
9
Fig.1:StructureoftheM.Sc.ProgramGeology
1.5.1M.Sc.Geology–FocusareaGeomaterialsandProcesses
The focus area Geomaterials and Processes offers education and research training in
geochemistry,petrology,mineralogy,andcrystallography.Thecoursecurriculumandthesis
projects are designed to acquire deeper understanding of analytical and experimental
methods as well as properties of rocks, minerals, and their synthetic analogues. These
approaches, together with phase equilibria and thermodynamic modeling, are used to
interpret various metamorphic, magmatic or hydrothermal processes occurring on the
PlanetEarth.Therespectivespecializationmodulesarehighlightedingreeninthefollowing
chart(Fig.2).Noticethatfor“Seminars”and“ResearchMethodsinGeosciences”onlythe
specific courses from mineralogy and geochemistry qualify for this specialization line. This
specialization line offers a sound education in analyzing, modeling, and understanding of
geologicmaterialsandprocesses,bridgingthegaptowardsmaterialsciences,andopeninga
widefieldofcareeroptionsinresearchandappliedindustries.
10
Fig.2:CompulsorymodulesoffocusareaGeomaterialsandProcesses
1.5.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics
ThefocusareaRockMechanicsandGeodynamicsconsistsofthesixspecializationmodules
highlightedinlighterblueinthefollowingchart(Fig.3).Thespecializationprovidesthestudent
with a sound theoretical as well as practical knowledge in the respective fields and the
gained qualifications offer a wide spectrum of career choices. Practical expertise includes
work in the rock mechanics laboratory that hosts a triaxial loading frame, Split-Hopkinson
PressureBar,AnalogueLaboratory.Geophysicalandpetrophysicalequipmentcompriseofa
He-pycnometer,laser-sizer,whitelight-interferometer,opticalandelectronmicroscopy,and
devices for seismic and geoelectric analyses. Note that the modules Rock Mechanics and
Petrophysics are offered biannually alternating in the winter term. The same holds for the
modulesPlanetaryDynamicsandImpactGeology.
11
Fig.3:CompulsorymodulesoffocusareaRockMechanicsandGeodynamics
1.5.3M.Sc.Geology–FocusareaGeohazards
Quantification and prediction of geohazards has become a major field of both research in
geoscience as well as of professional activity of geoscientists. The geohazards line of the
M.Sc. program Geology provides a quite comprehensive coverage of the most relevant
geohazards including the underlying physical processes, their relationship to geology,
assessment of hazard and risk, as well of concepts of prediction. The specific geohazards
considered in this line comprise those with a close relationship to geology (volcanism,
earthquakes, tsunamis, landslides, meteorite impact) as well as hazards receiving an
increasinginterestduetotheirpotentialrelationshiptoclimatechange(e.g.,storms,floods
andvarioustypesofmassmovements).Asmodelinghasbecomeanessentialpartinhazard
assessment,somenumericalmodelingapproachesarealsodiscussed.ThefocusareaRock
Geohazardsconsistsofthesixspecializationmoduleshighlightedinorangeinthefollowing
chart(Fig.4).
12
Fig.4:CompulsorymodulesoffocusareaGeohazards
13
2.ModuleOverview
2.1GeneralCompulsoryModules(30ECTS)
Type
ECTS
points
Semester
L+P
5
1
L+P
2,5
1
L+P
2,5
1
ComputinginGeosciences
L+P
5
1
ResearchSeminar
(chooseaccordingtofocusarea)
S
3
1+2
GeoscienceColloquium
C
2
1+2
Module
Coordinator
Courses
ResearchMethodsin
Geosciences
MüllerSigmund
LaboratoryMethodsin
Geomaterials
(Geomaterials&Processes)
RemoteSensingandGIS
(RockMechanics&Geodynamics
orGeohazards)
ToolsandApproachesinGeology
(RockMechanics&Geodynamics
orGeohazards)
ResearchMethodsin
Geosciences
ComputinginGeosciences
SeminarandColloquiumI
Preusser
Hergarten
Poelchau
FieldTrips
Ulmer
FieldTripsandVisitstoIndustrial
Facilities
F
5
1to4
GeologicalProject
Preusser
GeologicalProject
P
5
2,3or4
ResearchSeminar
S
3
3+4
GeoscienceColloquium
C
2
3+4
SeminarandColloquiumII
Poelchau
Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4”
indicatescoursescomprisingmorethanonesemester
Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse;
2.2Specializedcompulsorymodules(30ECTS)
2.2.1M.Sc.Geology–FocusareaGeomaterialsandProcesses
Module
AdvancedGeochemistry
Coordinator
Courses
Type
ECTS
points
GeochemicalEvolutionofthe
MantleandtheCrust
L+P
3
Siebel
Semester
1
MarineGeochemistry
L+P
2
Melts,Magmas,Crystals
Dolejš
Melts,Magmas,Crystals
L+P
5
1or3
Minerals,
Transformations,
Reactions
Dolejš
Minerals,Transformations,
Reactions
L+P
5
1or3
MüllerSigmund
AdvancedAnalyticalMethods
L+P
2
2
Fiederle
High-ResolutionSpectroscopy
L+P
3
2
Dolejš
Fluid-RockInteraction
L+P
5
2
IsotopeGeochemistryI
L+P
2,5
2
IsotopeGeochemistryII
L+P
2,5
2
AdvancedAnalytical
Methods
Fluid-RockInteraction
IsotopeGeochemistry
Siebel
Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4”
indicatescoursescomprisingmorethanonesemester
Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse
2.2.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics
Module
Coordinator
Courses
Type
ECTS
points
Semester
PlanetaryDynamics
Kenkmann
PlanetaryDynamics
L+P
5
1or3
StressandStrain
L+P
2,5
1or3
BrittleRockDeformation
L+P
2,5
1or3
AdvancedHydrogeology
L+P
2,5
2
AqueousGeochemistry
exceptionallyinWS2016/17
L+P
2,5
1
RockMechanics
Hydrogeology
Poelchau
MüllerSigmund
Geophysics
Hergarten
Near-SurfaceGeophysics
L+P
5
2
Petrophysics
Kenkmann
Petrophysics
L+P
5
1or3
EngineeringGeologyand
Geotechnics
Preusser
IntroductiontoEngineering
Geology
L+P
2,5
2
15
GeotechnicalProjects
L+S
2,5
2
Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4”
indicatescoursescomprisingmorethanonesemester
Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse
2.2.3M.Sc.Geology–FocusareaGeohazards
Module
VolcanicHazards
Earthquakesand
Tsunamis
ClimaticGeohazards
Courses
Type
ECTS
points
Semester
VolcanologyandVolcanic
Hazards
L
3
1
VolcanicHazardsCaseStudis
S
2
1
SeismologyandSeismicHazard
L+P
4
1or3
Tsunamis
L+P
1
1or3
IntroductiontoClimatic
Geohazards
L+P+
S
2,5
2
ClimaticGeohazardsPractical
Study
P
2,5
2
Coordinator
May,V.
Hergarten
Rambeau
MassMovements
Hergarten
MassMovements
L+P
5
2
ImpactGeology
Kenkmann
ImpactGeology
L+P
5
1or3
Hazard,Riskand
Prediction
Hergarten
Hazard,RiskandPrediction
L+P
5
3
Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4”
indicatescoursescomprisingmorethanonesemester
Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse
2.3Electivemodules(30ECTS)
Studentschooseatotalofsixelectivemodules(30ECTS)accordingtotheirowninterest.
Theelectivemodulescanbeselectedfromthegeosciencecurriculum(anymodule)orupto
three modules (15 ECTS) may be chosen externally from other natural science or
environmental graduate programs, and one of these (5 ECTS) may be a language course
16
offered by the Language Teaching Center of the University (SLI). For details please see
section3.30.
Additionalelectivemodulesofferedbygeosciencesare:
Module
Rock-formingProcesses
Thermodynamicsof
GeologicalandTechnical
Materials
TechnicalandApplied
Mineralogy*
X-RayMethods*
Advanced
Crystallography*
QuaternarySediments
Geothermicsand
GeothermalEnergy
Coordinator
Courses
Type
ECTS
points
Semester
PetrologicalProcesses
L+P
2,5
2
IntroductiontoOre-Forming
Processes
L+P
2,5
2
Thermodynamics
ofTechnicalandGeological
Materials
L+P
5
2
ModernCeramics,Cements,and
Glasses
L+P
TBA
3
ThermalAnalysis
P
TBA
3
StructureAnalysisbyX-Ray
Diffraction
L+P
TBA
3
DefectAnalysisbyDiffraction
L+P
TBA
3
CrystallographicMethodology
L+P
TBA
1
SpaceGroupsandCrystal
Structures
L+P
TBA
1
SedimentaryEnvironments
L+S
3
2
LoggingSediments
P+F
2
2
GeothermicsandGeothermal
Energy
L+P
5
3
Dolejš
Dolejš
NN
Danilewsky
NN
Preusser
Hergarten
Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4”
indicatescoursescomprisingmorethanonesemester
Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse
*IfyouwanttoparticipateatoneofthesemodulespleasecontactDr.H.Müller-Sigmund([email protected])
17
The following table summarizes recommended and optional combinations of elective
modules for each focus area. Empty (white) fields indicate that the course is not
recommendedforthisfocusarea.
Module
FocusareaGeomaterials
andProcesses
Focusarea
RockMechanicsand
Geodynamics
FocusareaGeohazards
AdvancedGeochemistry
compulsory
optional
(semester1)
Melts,Magmas,Crystals
compulsory
recommended
(semester1or3)
optional
(semester1or3)
Minerals,
Transformations,
Reactions
compulsory
optional
(semester1or3)
Fluid-RockInteraction
compulsory
recommended
(semester2)
optional
(semester2)
IsotopeGeochemistry
compulsory
optional
(semester2)
optional
(semester2)
AdvancedAnalytical
Methods
compulsory
recommended
(semester2)(Capacity
dependingifpossible)
optional
(semester2)(Capacity
dependingifpossible)
PlanetaryDynamics
recommendedfora
focusongeodynamics
(semester1)
compulsory
optional
(semester1)
RockMechanics
compulsory
recommended
(semester1)
compulsory
recommended
(semester3)
compulsory
recommended
(semester2)
Petrophysics
Hydrogeology
recommendedfora
focusongeodynamics
(semester3)
recommendedfora
focusongeodynamics
(semester1+2)
Geophysics
compulsory
recommended
(semester2)
EngineeringGeologyand
Geotechnics
optional
(semester2)
compulsory
recommended
(semester2)
VolcanicHazards
recommendedfora
focusongeodynamics
(semester1)
recommended
(semester1)
compulsory
Earthquakesand
Tsunamis
recommended
(semester1)
compulsory
ImpactGeology
optional
(semester3)
recommended
(semester3)
compulsory
18
ClimaticGeohazards
optional
(semester2)
compulsory
MassMovements
recommended
(semester2)
compulsory
Hazard,Riskand
Prediction
optional
(semester3)
compulsory
TechnicalandApplied
Mineralogy*
stronglyrecommended
(semester3)
Advanced
Crystallography*
X-rayMethods*
recommendedforafocus
onmaterialssciences
(semester3)
recommendedforafocus
onmaterialssciences
(semester3)
QuaternarySediments
optional
(semester2)
optional
(semester2)
recommended
(semester2)
Geothermicsand
GeothermalEnergy
recommended
(semester3)
optional
(semester3)
External
ElectiveModuleI
optional
optional
optional
(naturalsciencesor
(semester1,2or3)
(semester1,2or3)
(semester1,2or3)
environmentalor
languagemodule)**
External
ElectiveModuleII
optional
optional
optional
(naturalsciencesor
(semester1,2or3)
(semester1,2or3)
(semester1,2or3)
environmentalor
languagemodule)**
External
ElectiveModuleIII
optional
optional
optional
(naturalsciencesor
(semester1,2or3)
(semester1,2or3)
(semester1,2or3)
environmentalor
languagemodule)**
*IfyouwanttoparticipateatoneofthesemodulespleasecontactDr.H.Müller-Sigmund([email protected])
**IfyouwanttoparticipateatoneofthesemodulespleasecontactDr.H.Ulmer([email protected])
19
3.Moduledescriptions
3.1ComputinginGeosciences
Lecturer(s)
Prof.Dr.S.Hergarten
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
ComputinginGeosciences
3wh/45h
105h
16
CRockMech.
AndGeodyn.
CGeohazards
Abbreviations:C–compulsory,E–elective,wh–weekhours
Learninggoalsandqualifications
Numericaldataanalysis,visualization,andprocessmodelinghavebecomeessentialpartsof
quantitative geosciences. Deepening the knowledge on data analysis and visualization and
introducing methods of process modeling, this course provides the basics of quantitative
methodsusedinseveralothercourses.Goingbeyondtechnicalaspectsofcomputing,data
analysis, and visualization, the students learn how to transfer conceptual models into
equations and implement solutions in a high-level programming language (MATLAB) using
the widespread Finite Difference Methods. As a major qualification, the students shall be
able to assess which method is suitable for a given problem and be aware of potential
pitfalls.
Syllabus
The class starts with an introduction to process modeling using simple population models
basedonordinarydifferentialequationsundtheirimplementationusingexplicitandimplicit
Eulerschemes.Thefollowingmainpartofthemodulecomprisesthebasicequationsbehind
the models widely used for modeling mass and heat transport processes, solid mechanics,
groundwater flow, and landform evolution based on partial differential equations. After
discussing the respective equations, the underlying principles, and their mathematical
properties, the simplest numerical techniques in the field of partial differential equations
20
(finite differences, upstream schemes) are discussed. Theory is accompanied by a step-bystep introduction to the MATLAB programming environment and exercises focusing on
implementatingthemodelsinMATLABandanalyzingtheresults.
Teachingform
Lecturemixedwithpracticalexercisesandhomework.
Examinationform
Achievementoflearninggoals(unmarked):
Activeparticipationindiscussingtheexercises
Examination:
The final marks will be derived by combining the scores reached in the assignments
(homework), active participation in the class, and a short written test at the end of the
semester.Theweightingofthethreecomponentswillbeannouncedinthebeginningofthe
class.
Prerequisitesforattending
Basic knowledge in mathematics and computing, e.g., on the level of "Quantitative
Methoden in der Geologie" or “Modellierung und Datenanalyse” from the B.Sc.
Geowissenschaften
Usageofthemodule
---
Recommendedreading
Gerya, T. (2009): Introduction to Numerical Geodynamic Modelling. Cambridge University
Press,Cambridge,358.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
21
3.2ResearchMethodsinGeosciences
Lecturer(s)
a) Dr.H.Müller-Sigmund;Dr.A.Danilewsky;NN
b) Dr.J.-H,May;Dr.G.Wulf
c) Prof.Dr.F.Preusser;Prof.S.Hergarten;Dr.C.Rambeau
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes(only
a))
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a) LaboratoryMethodsin
Geomaterials
a) 4wh/60h
a) 90h
a) 15
b) RemoteSensingandGIS
b) 2wh/30h
b) 45h
b) 20
c) 2wh/30h
c) 45h
c) 20
CRockMech.
AndGeodyn.
(onlyb)+c))
CGeohazards
(onlyb)+c))
c) ToolsandApproachesin
Geology
Learninggoalsandqualifications
Thismoduleintroducesadvancedscientificworkingskillsandmethods.Bythis,itformsthe
basisoftheentirecurriculum.
a) This interdisciplinary module combines the physical, chemical and crystallographic
methods for the full characterization of any material samples. In relation to the overall
profile this module provides profound knowledge for all analytical working courses:
Aqueous Geochemistry, Advanced Hydrogeology, Isotope Geochemistry, Special
Analytical Procedures in Mineralogy. The student gains key competences concerning
quantitative material analysis by the use of state-of the-art equipment. The individual
qualificationsandskillsofthemodulearespecifiedbelow:
Inthecourseofthispracticalmodulestudentsacquaintthemselveswithawidevarietyof
physicalandchemicalanalyticaltechniquesavailableattheinstitute.Firstly,theyidentify
whichtechniqueistheappropriatetoolforagivengeoscientificproblem.Secondly,they
memorizethetheoreticalbackgroundofthetechnique,identifypossiblesourcesoferror,
22
and prepare the geological material for the subsequent analysis. Thirdly, they measure
the samples, thereby collecting own practical experience. Fourthly, they undertake a
criticaldatainterpretationandevaluation.
b) The fields of application of remote sensing show a strong multidisciplinary character
including Earth Sciences. The increasing quality, resolution and availability of remote
sensing data, especially over the last years, permit unprecedented opportunities for
geological and geomorphological analyses with a high measure of precision.
Consequently,theuseandapplicationofsuchdatahasbecomeindispensableinmodern
geosciences.Thestudentsshouldgainbothatheoreticalandpracticalunderstandingof
remotesensingdataandappropriatesoftwareapplications.
c) Studentswilllearnhowscientificresearchandappliedstudiesareinitiated,fundedand
carriedout.Afterthismoduletheywillunderstandhowscientificarticlesandreportsare
structured. They will know about different publication platforms. Approaches how to
organise and perform own communications will be trained. Key methods will be
presentedandtheirapplicationinpureandappliedresearchwillbediscussed.
Syllabus
a) This course is designed to introduce the theory, applications, and operation of modern
instrumental methods for chemical and physical analyses in environmental, Earth and
materials science. Students are introduced to the spectrum of instrumental techniques,
whicharestandardinresearchaswellasinindustry,andgainanunderstandingofthe
analytical approach to problem solving and data evaluation. To the extent feasible,
students get hands-on experience with the machinery in the course of lab exercises,
concentratingonconcretesmallanalyticalprojects.
b) Students learn the theoretical background and practical experience that is necessary to
understandtheapplicationofgeographicinformationsystem(GIS)andremotelysensed
data in geological sciences. It introduces them to basic principles of remote sensing as
well as key concepts of data acquisition and storage, data visualization and processing,
and data interpretation. In the course of this process, suitable software packages for
quantitativeanalysis,suchasArcGISbyESRI,willbeusedinadditiontopurequalitative
methodswithspecialfocusonvisualimageinterpretation.
c) Whilethefirsthalfofthecourseisdedicatedtothebasicunderstandingofthescientific
worldandcommunication,thesecondhalfwillconcentrateonscientificmethods.
Teachingform
a) Lecture + Practice, multimedia introduction into the basics of the methods, hands-on
experiencewithdifferentmachineryinsmallgroups(3-4students),oralpresentationof
23
dataandcriticaldatadiscussionwithingroups
b) Lectureandpracticalwork
c) Lectureandseminar
Examinationform
Achievementoflearninggoals(unmarked):
a) Participationattheexercises
b) Regularattendance
c) Regularattendance
Examination:
a) Onemarkedwrittenreport
b) +c)Oralpresentation(20%)andwrittenexam(30%)andProjectreport(50%)
Prerequisitesforattending
a) Basicunderstandingofgeologicalmaterials,B.Sc.level“GeochemicalMethods”or
equivalentknowledge
b) None
c) None
Usageofthemodule
a) CompulsoryforstudentsinfocusareasGeomaterialsandProcessesandforstudentsfrom
theM.Sc.programM.Sc.SustainableMaterials–CrystallineMaterials
b) CompulsoryforstudentsinfocusareasGeohazardsandRockMechanics&Geodynamics.
c) CompulsoryforstudentsinfocusareasGeohazardsandRockMechanics&Geodynamics.
Recommendedreading
a) Dinnebier, R.E. & Billinge, S.J.L. (2008): Powder Diffraction: Theory and Practice. RSC
Publishing,RSCe-bookcollection.
Gill, R. (ed.) (1997): Modern Analytical Geochemistry: An Introduction to Quantitative
ChemicalAnalysisforEarth,EnvironmentalandMaterialScientists.Routledge,NewYork,
344.
Reed, S.J.B. (2005): Electron microprobe analysis and scanning electron microscopy in
24
geology.CambridgeUniversityPress,Cambridge,206.
Reimer, L. (2010): Scanning Electron Microscopy. Springer Series in Optical Sciences 45,
511.
b) Lillesand, T.M., R.W. Kiefer., J. Chipman (2015): Remote Sensing and Image
Interpretation.JohnWiley&Sons,Inc.:Toronto.
c) Lowe,J.,Walker,M.(2014).ReconstructingQuaternaryEnvironments,568pages,
Routledge;3edition.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
25
3.3SeminarandColloquiumI
Lecturer(s)
a) OrganizedbyDr.M.PoelchauandDr.H.Müller-Sigmund
b) Invitedexternalspeakers
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS/SS
annual
2terms
Course/CourseName
Presence
Privatestudy
Participants
a) ResearchSeminar
a) 2wh/60h
a) 30h
a) 30
b) GeoscienceColloquium
b) 1wh/30h
b) 0h
b) 30
CRockMech.
AndGeodyn.
CGeohazards
Learninggoalsandqualifications
In-houseseminarsprovideaplatformforfurthergeoscientificconversationandforgaining
insightinup-to-dategeologicresearch.
Theindividualqualificationsandskillsofthemodulearespecifiedbelow:
a) The students participating in the research seminar improve their abilities of presenting
scientifictopics.Theydefendtheirresultsinscientificdiscussions.Theyidentifypossible
flaws, misinterpretations or inconsistencies in their own work and in those of other
lecturers. Students critically dispute scientific topics and use the correct geological
terminology.
b) The geosciences colloquium of the institute is held weakly and is regarded as the
“Windowtotheworldofgeosciences”forstudents.Internationallyrenownedresearchers
covering a wide spectrum of different research and applied geo-topics are invited and
give high-level talks. The participating students identify up-to-date research topics,
improvetheirstateofknowledge,becomeinspiredbyconvincingformsofpresentation
andcontributetoscientificdiscussions.Finally,theyrecognizepossiblefieldsofworkfor
theirfutureprofessionallifeandareabletoestablishcontactstotheresearchers.
Syllabus
a) Theresearchseminarisaplatformforpresentingcurrentin-houseresearchtopics.Itis
expectedthatstudentspresentresultsoftheirB.Sc.thesis,M.Sc.thesisorresultsofother
recentresearchofgeneralinterest.Onaregularbasisdoctoratestudentsreportontheir
26
current state of their Ph.D projects. Likewise staff scientists contribute to the research
seminar by presenting conference talks, etc. The research seminar is aimed at inspiring
scientificdebatesbetweenstudentsandstaffscientists.Afurtherobjectiveistoinform
studentsabouttheresearchtopicsthatareaddressedintheinstitute.
b) Presentations on up-to-date research topics, presented by invited and often
internationallyrenownedspeakers.Thescientificspectrumcomprisesresearchtopicsof
theinstitute(e.g.impact,planetology,structuralgeology,earthhistory,mineral,oreand
oil deposits, geohazards, geothermal energy, environmental mineralogy, hydrology,
geochemistry, crystal growth) and other branches of geosciences. To enhance the
practicalaspectofthecurriculumspeakersfromcompaniesandindustriesarespecifically
welcome.
Teachingform
a) Seminarwithoccasionfordiscussion
b) Seminarwithoccasionfordiscussion
Examinationform
Achievementoflearninggoals(unmarked):
a) Regularattendance,ownpresentations
b) Regularattendance
Examination:
---
Prerequisitesforattending
a) None
b) None
Usageofthemodule
---
Recommendedreading
Pendingonthetopicoftheseminar/colloquium,resp.
Lecturenotes
27
https://ilias.uni-freiburg.de/login.php
28
3.4FieldTrips
Lecturer(s)
Academicstaff(coordinator:Dr.H.Ulmer)
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS/SS
-
4terms
Presence
Privatestudy
Participants
50h
20
CRockMech.
AndGeodyn.
CGeohazards
Course/CourseName
FieldTripsandVisitstoIndustrial 10days/100h
Facilities
Learninggoalsandqualifications
In this module the core expertise of geoscientists – field work – is trained more extensive
than it was possible in the B.Sc. program. Excursions are aimed at testing, applying and
accompanyingthetheoreticalknowledgeacquiredinthelecturesandareidealoccasionsfor
exchangebetweenstudentsandlecturer.
In this module the core expertise of geoscientists – field work – is trained more extensive
than it was possible in the B.Sc. program. Excursions are aimed at testing, applying, and
accompanyingthetheoreticalknowledgeacquiredinthelecturesandareidealoccasionsfor
anexchangebetweenstudentsandlecturer.Fieldtripsaregroupedtogetherwithin-house
seminars,becausethelatterprovideanotherplatformforfurthergeoscientificconversation
andtogainup-to-dateinformations.
Theindividualqualificationsandskillsofthemodulearespecifiedbelow:
Upon participation at field trips the students refine their power of observation. Students
write concise reports. They enhance higher-order cognitive skills, and inquiry skills, and
understandgeologicalprocessesintimeandspace.Studentsimproveingeo-literacyandin
knowledge of the regional geology. Visiting at industrial facilities students gain hands-on
experienceinmanufacturingprocesses,applicationofgeosciencesinenergyandmaterials’
developmentandproduction,workinglife,andcareerprospects.
Syllabus
Field trips to rock outcrops play a fundamental role in understanding geological concepts.
They are an essential part of the geological learning process in complementing classroom
29
and lab teaching of science concepts. They also provide visual images that are needed to
work with more abstract contents of modeling, remote sensing etc. Field trips involve
elementsofbothinstructor-leadexplanationandstudentcenteredexploration/discovery.
Reviewing the trip afterwards is an important activity for cementing observations and
interpretations into a comprehensive sense of conceptual understanding. Field trips range
fromdaytripstofieldcampaignsorresidentialcoursesofupto2weeks.Thematicallythey
cover a wide variety of topics from understanding the regional geology of an area to
studying specific geological phenomena like sedimentation, volcanism, metamorphism or
environmentalaspects.“Classical”geologicalareasarevisitedliketheAlps,Iceland,Aeolian
Islands,Eifel,BohemianMassif,tonameafew.Visitsatindustrialfacilitiesplayanimportant
role linking scientific research and application centered industrial development in
geosciences and material sciences. A wide variety of companies and research institutes is
visited,rangingfromenergygenerationtowastehandlingandfromrawmaterialproduction
tohigh-techmaterialdesign.
Teachingform
Fieldtrip/Visitatindustrialfacility,practicaltraininginthefieldincludingdataacquisition:
(GPS,fabric,samplingstrategies,drilling,etc.)
Examinationform
Achievementoflearninggoals(unmarked):
reports
Examination:
---
Prerequisitesforattending
None
Usageofthemodule
---
Recommendedreading
Pendingonthetopicofthefieldtrip
Lecturenotes
30
https://ilias.uni-freiburg.de/login.php
31
3.5GeologicalProject
Lecturer(s)
Academicstaff(coordinator:Prof.Dr.F.Preusser)
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS
WS/SS
1term
Course/CourseName
Presence
Privatestudy
Participants
GeologicalProject
project-specific
project-specific
projectspecific
CRockMech.
AndGeodyn.
CGeohazards
Learninggoalsandqualifications
Independent geological projects are aimed at bridging the gap between teaching and
research.Studentsdirectlygetinvolvedinresearchspecificmethods.Theydevelopskillsin
design and execution of an independent research project, in project management, report
writingandtimemanagementaretrained.
Syllabus
Thetopicsoffered introducetheoreticalandmethodologicalapproachestotheinvestigation
and interpretation of geological, or geophysical, or sedimentological or mineralogicalpetrological,orgeochemicalresearchbypracticaland/orlaboratory-basedprograms.They
commonly involve the hands-on use of available equipment to conduct a practical field or
laboratory-based investigation of one of the topics named above, allowing you to test the
theories/practicesencounteredduringlectures.
ThesestudiesareundertakenunderthesupervisionofmembersoftheFreiburggeosciences
staff.
Teachingform
Project-specific;initialprojectoutlineandmonitoringofprogressthroughregularmeetings
with the supervisor who also offers suitable advice on library search and review of
appropriateliterature,dataanalysis,interpretationandpresentation;otherwisemainlyfree
timemanagement.
32
Examinationform
Achievementoflearninggoals(unmarked):
project-specific
Examination:
Markedreport
Prerequisitesforattending
project-specific
Usageofthemodule
project-specific
Recommendedreading
project-specific
Lecturenotes
https://ilias.uni-freiburg.de/login.php
33
3.6SeminarandColloquiumII
Lecturer(s)
a) organizedbyDr.M.PoelchauandDr.H.Müller-Sigmund
b) invitedexternalspeakers
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS/SS
annual
2terms
Course/CourseName
Presence
Privatestudy
Participants
a) ResearchSeminar
a) 2wh/60h
a) 30h
a) 30
b) GeoscienceColloquium
b) 1wh/30h(15 b) 0h
heachterm)
CRockMech.
AndGeodyn.
CGeohazards
b) 30
Learninggoalsandqualifications
In-houseseminarsprovideaplatformforfurthergeoscientificconversationandforgaining
insightinup-to-dategeologicresearch.
Theindividualqualificationsandskillsofthemodulearespecifiedbelow:
a) The students participating in the research seminar improve their abilities of presenting
scientifictopics.Theydefendtheirresultsinscientificdiscussions.Theyidentifypossible
flaws, misinterpretations or inconsistencies in their own work and in those of other
lecturers. Students critically dispute scientific topics and use the correct geological
terminology.
b) The geosciences colloquium of the institute is held weakly and is regarded as the
“Windowtotheworldofgeosciences”forstudents.Internationallyrenownedresearchers
covering a wide spectrum of different research and applied geo-topics are invited and
give high-level talks. The participating students identify up-to-date research topics,
improvetheirstateofknowledge,becomeinspiredbyconvincingformsofpresentation
andcontributetoscientificdiscussions.Finally,theyrecognizepossiblefieldsofworkfor
theirfutureprofessionallifeandareabletoestablishcontactstotheresearchers.
Syllabus
a) Theresearchseminarisaplatformforpresentingcurrentin-houseresearchtopics.Itis
34
expectedthatstudentspresentresultsoftheirB.Sc.thesis,M.Sc.thesisorresultsofother
recentresearchofgeneralinterest.Onaregularbasisdoctoratestudentsreportontheir
current state of their Ph.D projects. Likewise staff scientists contribute to the research
seminar by presenting conference talks, etc. The research seminar is aimed at inspiring
scientificdebatesbetweenstudentsandstaffscientists.Afurtherobjectiveistoinform
studentsabouttheresearchtopicsthatareaddressedintheinstitute.
b) Presentations on up-to-date research topics, presented by invited and often
internationallyrenownedspeakers.Thescientificspectrumcomprisesresearchtopicsof
theinstitute(e.g.impact,planetology,structuralgeology,earthhistory,mineral,oreand
oil deposits, geohazards, geothermal energy, environmental mineralogy, hydrology,
geochemistry, crystal growth) and other branches of geosciences. To enhance the
practicalaspectofthecurriculumspeakersfromcompaniesandindustriesarespecifically
welcome.
Teachingform
a) Seminarwithoccasionfordiscussion
b) Seminarwithoccasionfordiscussion
Examinationform
Achievementoflearninggoals(unmarked):
a) Regularattendance,ownpresentations
b) Regularattendance
Examination:
---
Prerequisitesforattending
a) None
b) None
Usageofthemodule
---
Recommendedreading
35
Pendingonthetopicoftheseminar/colloquium,resp.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
36
3.7AdvancedGeochemistry
Lecturer(s)
a) Prof.Dr.W.Siebel
b) Prof.Dr.W.Siebel
Type
Workload
Credits
Term
Cycle
CGeomat.and
Processes
150h
5ECTS
a)WS
2years 1term
cycle
b)WS
Duration
ERockMech.
AndGeodyn.
EGeohazards
Course/CourseName
Presence
Privatestudy
Participants
a) GeochemicalEvolutionofthe
Earth’sMantleandCrust
a) 2,4wh/36h
a) 54h
a) 25
b) 1,6wh/24h
b) 36h
b) 25
b) MarineGeochemistry
Learninggoalsandqualifications
Themodulecontainstwocourses.Coursea)givesinsightintothecompositionandevolution
of the Earth’s mantle and crust. Course b) covers the key aspects of marine geochemistry
and provides the student with the basic oceanographic concepts. The individual
qualificationsandskillsofthemodulearespecifiedbelow:
a) The silicate Earth encompasses the crust and mantle. On successful completion of the
course students should be able to know how these two major reservoirs were created
andmodifiedovergeologicaltimeandaboutthemagmaticprocesseswhichleadtotheir
presentcomposition.Basalticrocksfrommid-oceanridgesandintraplatevolcanoesplace
constraintsonthecompositionoftheunderlyingmantlethepresenceofsmall-orlargescale heterogeneities. Subduction zone volcanism causes the large earthquakes and
volcanichazardbutitalsohelpstounderstandtheprocesseswhichleadtotheformation
andcompositionofthecontinentalcrust.
b) In this course students will develop skills for understanding the basic principles and
theoriesassociatedwiththegeochemicalprocessesoccurringintheoceans.Thestudent
will be familiar with sources and sinks of chemical elements or compounds, their
distributionsandtheirvariabilityintheoceanicsystemandalsogatheranunderstanding
of how marine and coastal environments are impacted by natural climate variability or
humanactivities.
37
Syllabus
a) The course provides essential insight into magmatic processes associated with plate
boundary environments (mid-ocean ridges and subduction zones) and within plate
regions(oceanislandsandvolcanicplateaus).Thegeochemicalandisotopiccomposition
ofthedifferentmantlereservoirswillbediscussedandmagmaticandtectonicprocesses
along subduction zones will be explored. The lecture also focusses on fundamental
processes that gave rise to the characteristic geochemical features of the continental
crust and the different mantle reservoirs. These topics provide the basis for homework
questionsandstudentreports.
b) Thiscourseprovidesanintroductiontotheconcepts,themethodsandtheapplicationsof
marinegeochemistry.Teachingtopicsincludebasicoceanographicprinciplesoperatingin
the marine realm, ocean basin bathymetry, the chemical properties of seawater, trace
elements and isotopes and their distribution in the water column, the marine carbon
cycle, ocean circulation, hydrothermal processes and life on the sea floor, as well as
formation and distribution of marine sediments. Marine mineral resources and
environmentalissueswillalsobecovered.
Teachingform
a) Lecture
b) Lecture
Examinationform
Achievementoflearninggoals(unmarked):
a) Regularattendance
b) Regularattendance
Examination:
Writtenexamination
Prerequisitesforattending
none
Usageofthemodule
ThemodulecoverstopicsrelatedtothemajorgeologicalsystemssuchastheEarth'scrust
38
mantleanditsoceansandtheunderstandingoftheircomposition
Recommendedreading
a) Allègre,J.C.(2008)IsotopeGeology,CambridgeUniversityPress,Cambridge,512.
White,M.W.(2013)Geochemistry,Wiley-Blackwell,NewYork,637.
White,M.W.(2015)IsotopeGeochemistry,Wiley-Blackwell,NewYork,496.
b) Roy-Barman,M.&Jeandel,C.(2016)MarineGeochemistry,OxfordUniversityPress,432.
Chester R. & Jickells (2012) Marine Geochemistry. 3rd Edition. Blackwell Scientific Ltd.,
Oxford,411.
Lecturenotes
https://homepages.uni-tuebingen.de/wolfgang.siebel/
39
3.8Melts,Magmas,Crystals
Thismodulewillbeofferedinthewintersemester2017/18andcontinuebiannually
Lecturer(s)
Prof.Dr.D.Dolejš
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS
2years 1term
cycle*
Course/CourseName
Presence
Privatestudy
Participants
Melts,Magmas,Crystals
4wh/60h
90h
25
ERockMech.
AndGeodyn.
EGeohazards
Learninggoalsandqualifications
Theprincipalobjectivesofthiscoursearequantitativedescriptionofatomisticstructureof
silicate melts, equilibrium and transport properties of silicate melts, use of liquidus phase
diagrams, kinetics of silicate melts related to crystal nucleation and growth, and
interpretationofmainprocessesofmagmadifferentiationbasedonmassbalanceofmajor
andtraceelements.Thestudentslearnhowtoprocessesanalyticalgeochemicaldatafrom
igneousrocksandidentifygeologicalsettingsofmagmaformation,andtheyobtainversatile
knowledgeofmagmaticrock-formingpropertiesintheEarth'scrustandmantle.
Syllabus
1.Magmacompositionandproperties:volatiles,density,viscosity
2.Magmaticcrystallization,texturesandrheologicalthresholds
3.Phasediagrams
4.Phaseequilibriumtoolsandthermobarometry:sessionwithMELTS
5.Magmaticprocesses:flow,mixing,settling,immiscibility,assimilation
6.Magmaticprocesses:eruptivestyles
7.Classificationandsettingsofigneousrocks:norm,series,igneousrockassociations
8.Interpretingsourcesofigneousrocks:traceelementsandisotopes
9.Mantlemeltingandmid-oceanridges
10.Magmaticarcs
11.Crustalmelting
40
12.Continentalcollision:graniticrocks
13.Continentalbreakup:largeigneousprovincesandlayeredintrusions
14.Continentalbreakup:alkalinerocks,kimberlitesandcarbonatites
Teachingform
Lecture(2wh),Practicalsession,individualprojectsandsoftwaremodeling(2wh)
Examinationform
Achievementoflearninggoals(unmarked):homeworkassignmentsandprojects
Examination:writtenexamination
Prerequisitesforattending
none
Usageofthemodule
M.Sc.Geology,M.Sc.SustainableMaterialsCrystallineMaterials
Recommendedreading
WinterJ.D.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition.Prentice
Hall,NewYork,702p.
BestM.G.,2002.IgneousandMetamorphicPetrology.2ndedition.Wiley-Blackwell,752p.
PhilpottsA.,AgueJ.J.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition.
CambridgeUniversityPress,Cambridge,684p.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
41
3.9Minerals,Transformations,Reactions
Thismodulewillbeofferedinthewintersemester2016/17andcontinuebiannually
Lecturer(s)
Prof.Dr.D.Dolejš;Dr.CharlotteRedler
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
WS
2years 1term
cycle*
Course/CourseName
Presence
Privatestudy
Participants
Minerals,Transformations,
Reactions
4wh/60h
90h
25
ERockMech.
AndGeodyn.
EGeohazards
Learninggoalsandqualifications
Thestudentsacquireabilitytoidentifysolid-statereactionsforawidepressure-temperature
rangeofregionalandcontactmetamorphicconditions,andperformchemographicanalysis
ofmineralassemblages.Theylearnprinciplesofmineralthermodynamics,inversemodeling
and geothermobarometry including working knowledge of software packages Thermocalc,
TheriakandPerplex.Attentionwillbepaidtodeformationmechanismsinnaturalrocksand
interpretationofdeformationandrecrystallizationtexturesinthepolarizationmicroscope.
Studentswillbeabletointerpretmetamorphicconditionsassociatedwithdiversetectonic
settingsinthelithosphere.
Syllabus
1.Metamorphicgrades,zonesandfacies
2.Metamorphicprotolithsandtheirchemicalcomposition
3.Graphicalanalysisofmetamorphicassemblages
4.MineralreactionsinvolvingH2OandCO2
5.Mineralthermodynamics,geothermobarometry:sessionwithThermocalc
6.Metamorphicphasediagrams:sessionwithPerplex/Theriak
7.Metamorphictextures
8.Crystaldeformationandrecrystallization
9.Deformationlawsandmicrostructures
42
10.Metamorphicsettings,heattransferincontactaureolesandorogens
11.Ocean-floormetamorphism
12.Subductionandexhumationofmetamorphicrocks
13.Continentaltectonicsandmetamorphism
14.Partialmeltingduringmetamorphism
Teachingform
Lecture(2wh),Practicalsession,individualprojectsandsoftwaremodeling(2wh)
Examinationform
Achievementoflearninggoals(unmarked):homeworkassignmentsandprojects
Examination:writtenexamination
Prerequisitesforattending
none
Usageofthemodule
M.Sc.Geology,M.Sc.SustainableMaterialsCrystallineMaterials
Recommendedreading
WinterJ.D.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition.Prentice
Hall,NewYork,702p.
VernonR.H.,ClarkeG.L.,2009.PrinciplesofMetamorphicPetrology.CambridgeUniversity
Press,Cambridge,446p.
BestM.G.,2002.IgneousandMetamorphicPetrology.2ndedition.Wiley-Blackwell,752p.
PhilpottsA.,AgueJ.J.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition.
CambridgeUniversityPress,Cambridge,684p.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
43
3.10AdvancedAnalyticalMethods
Lecturer(s)
a) Dr.H.Müller-Sigmund,NN
b) PDDr.A.Danilewsky;Prof.Dr.M.Fiederle;Dr.T.Sorgenfrei;Dr.L.Kirste
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
SS
annual
1term
Presence
Privatestudy
ERockMech.
AndGeodyn.
EGeohazards
Course/CourseName
Participants
a) AdvancedAnalyticalMethods
a) 3wh/45h
a) 15h
a) 9
b) High-ResolutionSpectroscopy
b) 2wh/30h
b) 60h
b) 15
Learninggoalsandqualifications
This module provides practical and theoretical skills in advanced analytical methods
importantforgeoscientistsinterestedingeomaterials.Theindividualqualificationsandskills
obtainedwithinthismodulearespecifiedbelow:
a) Studentsareabletopreparerocksandmineralsforspecificanalyticalapplications.They
employ techniques like cathodoluminescence, heating-freezing stage for fluid inclusion
studies, or reflected light microscopy on various sample materials. They amplify their
knowledgeinX-raytechniquesandareabletodeduceonthecompositionandformation
conditionsofthesesamples.
b) For course information please see the current M.Sc. Sustainable Materials – Crystalline
Materialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
Syllabus
a) Theemphasisofthiscourseisonimportantmineralogicaltechniquesusedinoregeology,
petrology, geomaterials, soil science, and environmental science. Students explore
various methods, e.g. cathodoluminescence, fluid inclusions on heating-freezing stage,
reflected light microscopy, clay mineral preparation techniques, confocal laser scanning
microscopy, both in theory and in the laboratory, where hands-on experience is an
essentialpartofthecourse.
44
b) For course information please see the current M.Sc. Sustainable Materials – Crystalline
Materialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
Teachingform
a) Lecture+laboratorysessions(smallgroupsof2-3students)
b) ForcourseinformationpleaseseethecurrentM.Sc.SustainableMaterials–Crystalline
Materialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
Examinationform
Achievementoflearninggoals(unmarked):a)presenceb)Analysisofexperimentaldata
Examination:Markedwrittenreportsona)andwrittentestonb)
Prerequisitesforattending
a) ResearchMethodsinGeosciences–LaboratoryMethodsinGeomaterials
b) none
Usageofthemodule
M.Sc.Geology
Recommendedreading
a)Craig,J.R.&Vaughan,J.R.(1994):Oremicroscopyandorepetrography.Wiley,NewYork,
434.
Moore,D.M.&Reynolds,R.C.(1995):X-raydiffractionandtheidentificationandanalysis
ofclayminerals.OxfordUniversityPress,Oxford,378.
Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (2000): Cathodoluminescence in
geosciences.Springer,Berlin,517.
Shepherd, T.J., Rankin, A.H. & Alllderton, D.H.M. (1985): A practical guide to fluid
inclusionstudies.Blackie,Glasgow,239.
b)ForcourseinformationpleaseseethecurrentM.Sc.SustainableMaterials–Crystalline
Materialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
45
Lecturenotes
https://ilias.uni-freiburg.de/login.php,http://www.krist.uni-freiburg.de/service/edv.php
46
3.11Fluid-RockInteraction
Lecturer(s)
Prof.Dr.D.Dolejš
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
Fluid-RockInteraction
4wh/60h
90h
15
ERockMech.
AndGeodyn.
EGeohazards
Learninggoalsandqualifications
TheprocessesofinteractionofrockswithwaterandaqueousfluidsneartheEarth’ssurface
and under geothermal and hydrothermal conditions are subject of this module. The
individualqualificationsandskillsofthemoduleareasfollows:
On the successful completion of this module part students acquire detailed knowledge of
hydrochemical cycle of water and aqueous fluids in the lithosphere. They learn how to
process geochemical data from natural and hydrothermal waters, calculate and interpret
their speciation at ambient and elevated temperatures and pressures. They are able to
constructandevaluatefundamentalmineralequilibria,whichgovernthefluidcomposition,
and interpret dissolution and precipitation mechanisms. They learn principles of the mass
conservation and fluid transport theory, and are able to construct and calculate simple
models of mineral dissolution, precipitation, and flux estimates. They acquire working
knowledge of mass balancing in altered and metasomatic rocks and can quantitatively
evaluatemasschangesandelementtransportinhydrothermalsystems.
Syllabus
The module content focuses on the quantitative treatment of interactions between water
and rock environments under elevated temperatures and pressures in the Earth’s
lithosphere. Particular attention is paid to the types of water and other fluids in the
lithosphereandtheirchemicalcomposition,phaseequilibriaofH2O,salineandgas-bearing
fluidsunderelevatedtemperaturesandpressures,chemicalequilibriainaqueoussolutions
and interactions with oxide, silicate and carbonate minerals, thermodynamic modeling of
47
H2Oandaqueousspeciesathightemperaturesandpressures,solubilityandprecipitationof
minerals from cooling aqueous fluids, interpretation of rock alteration record in terms of
transport theory and estimation of fluid fluxes, and hydrothermal systems in various
geological settings and their importance for energy and mineral resources (hydrothermal
deposits).
Teachingform
Lecture(2wh),practicalsession(2wh)
Examinationform
Achievementoflearninggoals(unmarked):homeworkassignment
Examination:onemarkedwrittenexam
Prerequisitesforattending
none
Usageofthemodule
The module is recommended to students enrolled in mineralogy, petrology, geochemistry,
hydrology, hydrogeology or engineering geology. It provides a practical approach to
chemistry of natural waters and their interaction with rocks under elevated temperatures
andpressures.
Recommendedreading
DreverT.,1998.TheGeochemistryofNaturalWaters.PrenticeHall,440p.
Anderson G. M., 2005. Thermodynamics of Natural Systems. Cambridge University Press,
648p.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
48
3.12IsotopeGeochemistry
Lecturer(s)
a) Prof.Dr.W.Siebel
b) Prof.Dr.J.Eikenberg
Type
Workload
Credits
Term
Cycle
Duration
CGeomat.and
Processes
150h
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a) IsotopeGeochemistryI
a) 2wh/30h
a) 45h
a) 16
b) IsotopeGeochemistryII
b) fivedays/30h b) 45h
b) 16
ERockMech.
AndGeodyn.
EGeohazards
Learninggoalsandqualifications
Theindividualqualificationsandskillsofthemodulecoursesa)andb)arespecifiedas
follows:
Students learn about the principles of stable and radiogenic isotopes. They realize that
isotopes are indispensable tools for reconstructing various Earth processes, palaeoenvironmental conditions and for radiometric dating. They examine a variety of isotope
systemsanddatingtechniques,andbecomefamiliarwithpossiblesourcesoferror.Several
lectures include classroom exercises on the same topic. At the end of the course the
students will be familiar with the fundamentals of isotope geochemistry and know which
isotopicsystemissuitabletosolveacertaingeologicalproblem.She/hewillalsobeableto
interpretisotopedataandunderstandEarthprocessesthroughisotopegeochemistry.
Syllabus
The focus of both courses a) & b) is on stable and radiogenic isotope systems and their
principles and applications in Geology and Environmental Science. Topics and systems
include:
a) K-ArandAr-Armethods,Sm-Nd,Lu-HfandRe-Ossystems;isotopesastracersofsources
andprocesses;presentationofcasestudies
b) Radionuclides and their measurement techniques, U-Th-Pb, Rb-Sr methods, U-Series
49
Geochemistry, Radiocarbon dating, fractionation of stable isotopes of H, C, N, O and S,
climatechangegeochemistry
Teachingform
a) Lecture
b) Lecture(shortcourseattheendofsummersemester)
Examinationform
Achievementoflearninggoals(unmarked):regularattendance
a)&b)Examination:onemarkedwrittenexamination
Prerequisitesforattending
Recommendedfora)&b):basicknowledgeingeochemistryattheleveltoB.Sc.course
“Geochemistry”
Usageofthemodule
The module is recommended to students enrolled in mineralogy, petrology, geochemistry,
hydrology, hydrogeology or engineering geology. It provides a practical approach to
chemistry of natural waters and their interaction with rocks under elevated temperatures
andpressures.
Recommendedreading
a)+b)
Allègre,J.C.(2008):IsotopeGeology,CambridgeUniversityPress,512.
Attendorn, H.G., Bowen (1997): Radioactive and Stable Isotope Geochemistry, Chapman &
Hall,London,522.
Bourdon, B., Henderson, G.M., Lundstrom, C.C., Turner, S.P. (2003) (Eds) Uranium-series
geochemistry.Vol.52:ReviewinMineralogyandGeochemistry,656.
Faure,G.&Mensing,T.M.(2005):Isotopes:PrinciplesandApplications.ThirdEdition,Wiley,
NewYork,896.
Dickin,A.P.(2005:)Radiogenicisotopegeology,CambridgeUniversityPress,492.
Hoefs,J.(2004):Stableisotopegeochemistry,Springer,Berlin,Heidelberg,NewYork,244.
SharpZ.D.(2006)Principlesofstableisotopegeochemistry,PrenticeHall,360.
50
Lecturenotes
https://homepages.uni-tuebingen.de/wolfgang.siebel/
https://ilias.uni-freiburg.de/login.php
51
3.13Petrophysics
This module will take place for the first time in winter term 2017/2018. The module
descriptionswillbeaddedatthattime.
52
3.14PlanetaryDynamics
Lecturer(s)
Prof.Dr.T.Kenkmann;Dr.G.Wulf
Type
Workload
Credits
Term
Cycle
Duration
EGeomat.and
Processes
150h
5ECTS
WS
2years 1term
cycle
Course/CourseName
Presence
Privatestudy
Participants
PlanetaryDynamics
3wh/45h
105h
25
CRockMech.
AndGeodyn.
EGeohazards
Learninggoalsandqualifications
The rapid technological development in remote sensing and the substantial progress in
spaceexplorationdelivergeoscientistswithavastamountofnewgeologicalinformationson
the great number of planets, moons, dwarf planets, asteroids and comets of our solar
system. The implementation of planetary geology is a unique selling point of Freiburg´s
MasterGeologyprograminGermany.
Theindividualqualificationsandskillsofthemodulearespecifiedbelow:
WhyistheSolarSystemthewayitis?Studentsattendingthecoursesuccessfullyknowwhy.
The students describe the planetary bodies by means of their physical, chemical, and
astronomical boundary conditions. They can interpret surface features and conclude on
dynamic interior and exterior geological processes that are dominant on and within these
bodies.Thestudentsapplyremotesensingtechniquesincombinationwithgeo-information
systems (GIS) to unravel the history of planets. Students understand that the evolution of
the Earth and life to its present state is a consequence of a specific set of planetary
boundary conditions. Students recapitulate the strategies, boundary conditions,
requirementsandmajorfindingsofvariousspacemissions.
Syllabus
Understanding Earth requires a planetological perspective. The course starts with a grand
tourthroughoursolarsystem.Theformation(accretion,differentiation)ofthesolarsystem
andtheplanetologicalboundaryconditionsandphysicalpropertiesofplanetarybodiesare
given. Our knowledge on the solar system is closely linked with the technological
development of space craft and exploration techniques.. The practical course deals with
53
remotesensingmethodsandimagery.Studentsshallinterpretplanetarysurfacesbymeans
ofactivegeologicalprocesses.Volcaniceruptionsandtectonicactivitiesofterrestrialplanets
are linked with the interior structure of these bodies. Planetary surface processes (fluvial,
aeolian, impact) and atmospheres are further topics that are compared between different
planetarybodies.MinorbodiesintheSolarsystemoftheasteroidbelt,theKuiperbeltand
theOortcloudareinvestigatedaswell.Thegiantplanetsoftheoutersolarsystemandtheir
satellitescompletetheintroductiontothesolarsystem.
Teachingform
Lecturewithaudio-visualdemonstrations,numericalsimulationsandhighspeedvideosof
experiments.Practicalpartpartlyatthepolarizingmicroscope.Investigationofimpactite
rocksandmeteorites.Excercises.Eachparticipantpresentsaspacemissioninanoraland
writtencontribution.
Examinationform
Achievementoflearninggoals(unmarked):
completionofexercises,oralpresentationandreport
Examination:
Onemarkedwrittenexam
Prerequisitesforattending
Standardknowledgeincomputationalgeosciences
Usageofthemodule
Note that the module is only offered biannually in the winter term. It is alternating with
Impactgeology.Theparticipationatthelatterisstronglyrecommended.
Recommendedreading
McBride,N.&Gilmour,I.(eds)(2003)Anintroductiontothesolarsystem.OpenUniversity,
CambridgeUniv.Press,412p.
McSween, H.Y. (1999): Meteorites and their parent planets. Cambridge University Press,
Cambridge,309.
Beatty, J.K. & Chaikin, A. (eds) (1990). The new solar system. 326 pp., Cambridge Univ.
Press.
54
Taylor,S.R.(1993)SolarSystemEvolution.Anewperspective.305pp.LPI
Waters, T.R. and Schultz, R.A. (2010) Planetary Tectonics. 518 pp. Cambridge University
Press.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
55
3.15RockMechanics
Lecturer(s)
a) Prof.Dr.T.Kenkmann;Dr.M.Poelchau
b) Dr.M.Poelchau;Prof.Dr.T.Kenkmann
Type
Workload
Credits
Term
Cycle
Duration
EGeomat.and
Processes
150h
5ECTS
WS
2years 1term
cyce
Course/CourseName
Presence
Privatestudy
Participants
a) StressandStrain
a) 2wh/30h
a) 45h
a) 25
b) BrittleRockDeformation
b) 2wh/30h
b) 45h
b) 25
CRockMech.
AndGeodyn.
EGeohazards
Learninggoalsandqualifications
Theindividualqualificationsandskillsofthemodulearespecifiedbelow:
a) Thesuccessfulstudentisgettingacquaintedwithmatrixcalculationstocalculateprincipal
stressandstrainstatesinrocksandtodetermineorientationoftheprincipalaxisofstress
and strain. Students use graphical techniques to determine normal and shear stresses.
Students become familiar with various methods of paleo-stress measurement and the
measurementofrecentstressfieldsinthecrust.Thequantificationofstrainaccumulated
inrocksistrainedaswell.Studentsgetfamiliarwithconnectingstressandstrainislinear
isotropicelasticmaterials.
b) Studentsbecomefamiliarwiththeconceptsofrockdeformationandknowhowtoderive
rock mechanical characteristics such as the tensile strength, uniaxial compressive
strength, Mohr-Coulomb strength, dynamic and static friction, Poisson ratio, Young
Modulus,TangentModulus,andthedynamicincreasefactor.
Syllabus
a) Forceswhichareresponsibleforthedeformationsoftheearth’scrustactinstantaneously
andcannotbestoredinrocksthroughtime.Deformationsofrocksarepersistantandall
the studied deformations are old, but the related stresses are not visible any more.
Furthermoreitisimpossibletomeasurestressdirectlyandonlyveryspecialfabricsallow
to describe state and direction of stresses. Nevertheless, one of the major goals of the
56
lectureistounderstandthedistributionofforcesintheearthandhowthoseforcesactto
produce the different structures. There are lots of practical reasons to do this:
earthquakes, oil well blowouts, motor of plate tectonics, landslides etc. The deals with
stress acting on a plane and stress at a point leading to the concept of principle and
deviatoric stresses, which mathematically are described by stress tensor and 3x3 stress
matrix. Different states of stresses and stress fields are introduced and presented
methodsofmeasurementsincludefault-slipanalysis,stylolithes,wellborebreak-out,etc.
The strain concept is mathematically based on continuous deformation thus strain is a
branch continuum mechanics. In nature deformation is much more complex and far
beyondbeingcontinuous.Inthislecturealldifferentaspectsofadeformingrocksystem
are introduced i.e. homogeneous vs. heterogeneous strain, progressive strain,
infinitesimal vs. finite strain. We introduce to various quantitative strain measurement
techniquesincludingFryandRf-phi.
b) Brittle rock deformation is concerned with evaluating, through controlled laboratory
experiments, the effects of environmental and material factors on the deformational
behaviorofrocks.Thecoursedealswithrockelasticity,friction,variousmodesofbrittle
failure, brittle-to-ductile transition, plastic deformation, and dynamic deformation. The
courseconsistsofatheoreticalpartandapracticalpart.
Teachingform
a) Lecture+Exercises,calculationthestateofstressbymeansoftensorcalculations
b) Lecture,exercisesandlaboratorywork
Examinationform
Achievementoflearninggoals(unmarked):
a) Homework
b) Reportoftheexperimentalanalyses
Examination:
Writtenexam
Prerequisitesforattending
a) ComputinginGeosciences
b) ComputinginGeosciences
57
Usageofthemodule
----
Recommendedreading
a) Bayly,B.(1991):Mechanicsinstructuralgeology.Springer,NewYork,253.
Means,W.D.(1976):StressandStrain.Springer,NewYork,339.
Nelson, R.A. (2001): Geologic analysis of naturally fractured reservoirs. Gulf Publishing
Company,Houston,352.
Pollard, D.D. & Fletcher, R.C. (2005): Fundamentals of Structural Geology. Cambridge
UniversityPress,Cambridge,512.
Fossen,H.(2010).StructuralGeology.Cambridge.Univ.Press.463p.
Ramsay, J.G. & Huber, M.I. (1983): The techniques of modern structural geology Vol 1:
StrainAnalysis.AcademicPress,London,307.
Ramsay, J.G. & Lisle, R.J. (2000): The techniques of modern structural geology Vol 3:
Applicationsofcontinuummechanicsinstructuralgeology.AcademicPress,London,360.
b) Patterson,M.S.andWong,T.F.(2005)ExperimentalRockDeformation-TheBrittleField.
Springer.
Jaeger,J.C.,Cook,N.G.W.,Zimmerman,R.(2007)FundamentalsofRockMechanics.4th
edition.488p.Wiley&Sons.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
58
3.16EngineeringGeologyandGeotechnics
Lecturer(s)
Prof.Dr.F.Preusser,J.Miocic
Type
Workload
Credits
Term
Cycle
Duration
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a) IntroductiontoEngineering
Geology
a) 2wh/30h
a) 45h
a) 16
b) 2wh/30h
b) 45h
b) 16
CRockMech.
andGeodyn.
150h
EGeohazards
EGeomat.and
Processes
b) GeotechnicalProjects
Abbreviations:C–compulsory,E–elective,wh–weekhours
Learninggoalsandqualifications
Many student will find work in the field of engineering and environmental geology. This
courseaimatprovidingthenecessarybasicbackgroundinthisfield.Scholarswillbefamiliar
withthebasicconcepts,nomenclatureandproblemsofappliedgeologyandhenceshould
beabletocommunicateaboutandapproachappliedaspectsingeosciences.
Syllabus
a) Thecoursewillintroducebasicconcepts,nomenclatureandproblemsofappliedgeology
with a focus on physical properties of unconsolidated sediments (soils). This will be
combinedwithsomepracticalworkonbasicmethodsandapproaches.
b) Students will put together an oral presentation on a selected geotechnical projects and
willpresentanddiscusthisinclass.
Teachingform
a) Lecturemixedwithpracticalexercises
b) Seminar
Examinationform
Achievementoflearninggoals(unmarked):
59
a) Activeparticipationintheexercises
b) Attendanceoftheseminar
Examination:
a) Writtenororalexamination(60%),labreport(10%)
b) Oralpresentation(30%)
Prerequisitesforattending
BasicknowledgeinEarthSciences
Usageofthemodule
CompulsoryinfocusareaRockmechanicsandgeodynamics,Electiveinfocusareas
Geomaterialsandprocesses,Geohazards
Recommendedreading
Bell:EngineeringGeology,Butterworth-Heinemann;2nded.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
60
3.17Geophysics
Lecturer(s)
Prof.Dr.S.Hergarten,T.Krüger
Type
Workload
Credits
Term
Cycle
Duration
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
Near-SurfaceGeophysics
3sppw/45h
105h
25
CRockMech.
andGeodyn.
150h
Abbreviations:C–compulsory,E–elective,wh–weekhours
Learninggoalsandqualifications
Geophysical methods of subsurface exploration have received a growing interest in many
fields of geosciences during the previous decades. The module provides a basic
understandingofthegeophysicalmethodsmostrelevantfortheexplorationoftheshallow
subsurface. The students learn which of the techniques is most appropriate under given
conditions,toanalyzetherespectivefielddata,andhowtousetheavailableinstruments.
Syllabus
The module focuses on the methods most relevent for the exploration of the shallow
subsurface:
• seismics
• resistivitymethods
• geomagnetics
• ground-penetratingradar
Both the theory behind the methods and the respective techniques of data analysis are
considered. Understanding is deepened by exercises in the class, homework, and
experimentsinfield.
Teachingform
Lectureaccompaniedbyhomeworkandfieldexperiments.
Examinationform
Themarkswillbederivedbycombiningthescoresreachedintheassignments(homework),
reportsofthefieldwork,andashortwrittentestattheendofthesemester.Theweighting
61
ofthethreecomponentswillbeannouncedinthebeginningoftheclass.
Prerequisitesforattending
Basic knowledge in programming (MATLAB) on the level of the module 3.1 “Computing in
Geosciences”.
Usageofthemodule
CompulsoryinfocusareaRockmechanicsandgeodynamics
Recommendedreading
Telford,W.M.,Geldard,L.P.&Sheriff,R.E.(1991):AppliedGeophysics.Cambridge
UniversityPress,792.
Burger, H. R., Sheehan, A. F. & Jones, C. H. (2006): Introduction to Applied Geophysics:
ExploringtheShallowSubsurface.W.W.Norton&Company,554.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
62
3.18Hydrogeology
Lecturer(s)
a)Prof.Dr.IngridStober
b)Dr.R.Martinez
Type
Workload
Credits
Term
Cycle
Duration
EGeomat.and
Processes
150h
5ECTS
a) SS
annual
2terms
b) WS
CRockMech.
AndGeodyn.
EGeohazards
Course/CourseName
Presence
Privatestudy
Participants
a) Hydrogeology
a) 2wh/30h
a) 60h
a) 25
b) AqueousGeochemistry
exceptionallyinWS2016/17
b) 2wh/30h
b) 60h
b) 25
Learninggoalsandqualifications
TheprocessesofinteractionofrockswithwaterandaqueousfluidsneartheEarth’ssurface
and under geothermal and hydrothermal conditions are subject of this module. The
individualqualificationsandskillsofthemoduleareasfollows:
On the successful completion of this module part students acquire detailed knowledge of
hydrochemical cycle of water and aqueous fluids in the lithosphere. They learn how to
process geochemical data from natural and hydrothermal waters, calculate and interpret
their speciation at ambient and elevated temperatures and pressures. They are able to
constructandevaluatefundamentalmineralequilibria,whichgovernthefluidcomposition,
and interpret dissolution and precipitation mechanisms. They learn principles of the mass
conservation and fluid transport theory, and are able to construct and calculate simple
models of mineral dissolution, precipitation, and flux estimates. They acquire working
knowledge of mass balancing in altered and metasomatic rocks and can quantitatively
evaluatemasschangesandelementtransportinhydrothermalsystems.
Syllabus
a) This advanced course deepens the basic fundamentals from the introductory course of
the B.Sc. program. Its focus is on parameters that determine the properties of
groundwater reservoirs and the consequences of the reservoir properties for
groundwater flow. Groundwater in low-permeability rocks and in fractured hardrock
63
aquifers builds the bridge to the fields “Geothermal Energy” and “Environmental
Geochemistry”.
b) Themodulecontentfocusesonthequantitativetreatmentofinteractionsbetweenwater
androckenvironments.Particularattentionispaidtothetypesofwaterandotherfluids
in the lithosphere and their chemical composition, chemical equilibria in aqueous
solutions and interactions with oxide, silicate and carbonate minerals, thermodynamic
modelingofH2Oandaqueousspeciesathightemperaturesandpressures,solubilityand
precipitationofmineralsfromcoolingaqueousfluids.
Teachingform
a) Lecture+Seminar,discussionofresults
b) lecture(2wh),practicalsession(2wh)
Examinationform
Achievementoflearninggoals(unmarked):homeworkassignments
Examination:markedwrittenexamcoveringthecontentsof(a)and(b)
Prerequisitesforattending
none
Usageofthemodule
The module is recommended to students enrolled in mineralogy, petrology, geochemistry,
hydrology, hydrogeology or engineering geology. It provides a practical approach to
chemistry of natural waters and their interaction with rocks under elevated temperatures
andpressures.
Recommendedreading
a) Bear,J.(1979):HydraulicsofGroundwater.McGraw-Hill,NewYork,567.
b) DreverT.,1998.TheGeochemistryofNaturalWaters.PrenticeHall,440p.
AndersonG.M.,2005.ThermodynamicsofNaturalSystems.CambridgeUniversityPress,
648p.
Lecturenotes
64
https://ilias.uni-freiburg.de/login.php
65
3.19VolcanicHazards
Lecturer(s)
a) Dr.V.May
b) Dr.V.May
Type
Workload
Credits
Term
Cycle
Duration
EGeomat.and
Processes
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a) VolcanologyandVolcanic
Hazards
a) 2wh/30h
a) 60h
a) 25
b) 2wh/30h
b) 30h
b) 25
ERockMech.
AndGeodyn.
CGeohazards
b) VolcanicHazardsCaseStudies
Learninggoalsandqualifications
Thesubjectisdividedintotwomainblocksoneconcentratingonvolcanologyandvolcanic
hazards(theoreticalbackground)andthesecondfocusingonthecurrentstateofresearch
onvolcanichazards(seminarseries).
a) This part of the module is designed in a source to surface structure; from the essential
processesoccurringinthemagmaticchambertohowmagmaeruptsandthediversityof
volcanic structures on the Earth’s surface. During the first half of the semester the
students will learn; basic concepts in volcanology, magmatic chamber zonation, lava
rheology and its relationship with gases and chemical composition, as well as different
typesofvolcaniceruptions,depositsandstructures.
The second half of the semester links, the volcanic aspects learned during the first half,
with the effects of volcanic products on the civilization. During this part, direct and
indirect volcanic hazards, as well as the implications of large volcanic eruptions will be
learn.Inaddition,keyconceptsininvolcanomonitoringandvolcanoriskassessmentwill
bediscussed.
Thestudentsshoulddevelopagoodunderstandingofvolcanicprocesses,forms,deposits
andhazards.Also,theywilldevelopposterpresentationskills.
b) The volcanic hazards seminar series, aims to provide a solid overview of the current
researchonvolcanichazardsaswellastoaidindevelopingcriticalthinking.Inaddition,
66
thevolcanichazardscasestudiesseminarprovidesthestudentswiththeopportunityto
conducttheirownresearchproject.Thestudentsshoulddevelopin-depthknowledgeof
anaspectofvolcanichazardsresearch.
Syllabus
a) Thefirstpartofthesemesterfocusedonbasicconceptsinvolcanologyfrommeltingto
volcanic edifices and sediments. During the second half several aspects of volcanic
hazardswillbelearn.
b) Duringtheseminar,opendiscussiononanaspectofvolcanichazardswillbeconducted.
At the end of the semester each student will have the opportunity to research on the
hazardsofaparticularvolcano.
Teachingform
a) Lectureandpresentation
b) Seminarandpresentation
Examinationform
Achievementoflearninggoals(unmarked):
Regularattendanceofbothcourses
Submissionofpapersummarythedaybeforetheseminarseries
Examination(marked):
a) Posterpresentation(20%)andwrittenexam(30%)
b) Petvolcanopresentation(20%),finalreport(30%)
Prerequisitesforattending
None
Usageofthemodule
CompulsoryforstudentsinfocusareaGeohazards.
Recommendedreading
a) Parfitt,L.,&Wilson,L.(2009).Fundamentalsofphysicalvolcanology.JohnWiley&Sons.
b) Lockwood, J. P., & Hazlett, R. W. (2013). Volcanoes: global perspectives. John Wiley &
67
Sons.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
68
3.20EarthquakesandTsunamis
Lecturer(s)
Prof.Dr.S.Hergarten
Type
Workload
Credits
Term
Cycle
Duration
EGeomat.and
Processes
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a) SeismologyandSeismic
Hazard
a) 2wh/30h
a) 90h
a) 25
b) 1wh/15h
b) 15h
b) 25
ERockMech.
AndGeodyn.
CGeohazards
b) Tsunamis
Learninggoalsandqualifications
Earthquakes and tsunamis are among the most important natural hazards on Earth.
However, the respective theory is extensive and rather complicated, and information on
earthquakesandtsunamispropagatedinthemediaisoftenincorrect.Themoduleattempts
to provide an understanding of those parts of the theory with particular relevance for
understanding earthquakes and tsunamis as geohazards. The successful students shall be
abletounderstandundinterpretscientificresultsonhistoricalandrecenteventsaswellas
hazardassessmentsprovidedintheliteratureinarealisticway.
Syllabus
a) Theclasscombinestheclassicaltheoryofseismology(wavepropagation)withgeological
andstatisticalaspectscomprisingthefollowingtopics:
• Typesofelasticwavesandtheoryofwavepropagation
• Focalmechanisms;seismicmomenttensor
• Localizationofearthquakes
• Earthquakeintensityandmagnitude;differentdefinitionsofmagnitudeandtheir
relevance
Thepresentedtheoryisaccompaniedbyexercises.
b) The lecture covers the basic princples of tsunami generation and propagation in the
ocean:
• Typesofwavesinwaterandtheirfundamentalproperties
69
•
•
•
Seismicandnonseismictsunamisources
Velocityofpropagation;waveheight;interactionwiththecoast
Registrationandwarningsystems
Teachingform
a) Lecture with additional assignments deepening the understanding of the theoretical
concepts.
b) Lecture
Examinationform
Achievementoflearninggoals(unmarked):
a) ---
b) ---
Examination:
Themarksarederivedbycombiningthescoresachievedintheexercises(a)andawritten
testoftheendofthesemestercoveringallpartsofthemodule.
Prerequisitesforattending
---
Usageofthemodule
---
Recommendedreading
a) Lay,T.&Wallace,T.C.(1995):ModernGlobalSeismology.AcademicPress,521.
Shearer,P.M.(2009):IntroductiontoSeismology.CambridgeUniversityPress,412.
b) Levin,B.&Nosov,M.(2016):PhysicsofTsunamis.Springer,388.
Kusky,T.M.(2008):Tsunamis-GiantWavesfromtheSea.InfobasePublishing,157.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
70
3.21ImpactGeology
This module will take place for the first time in winter term 2017/2018. The module
descriptionswillbeaddedatthattime.
71
3.22ClimaticGeohazards
Lecturer(s)
Dr.C.Rambeau
Type
Workload
Credits
Term
Cycle
Duration
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a) IntroductiontoClimatic
a) 2wh/10h
a) 50h
a) 24
b) 1week/40h b) 50h
b) 24
ERockMech.and 150h
Geodyn.
CGeohazards
Geohazards
b) ClimaticGeohazardspractical
study
Learninggoalsandqualifications
Thiscourseisdividedintotwomainparts:thefirstblock(a)providestheparticipantswith
an introduction to the Earth’s climate system and to climate-induced environmental
changes,providingatheoreticalbackgroundtothetopic;thesecondblock(b)representsa
casestudyaimingtogivetheparticipantstheopportunitytolearnhowspecificgeohazards
canbereconstructedfromenvironmentalarchives.
a) Thispartofthemoduleaimsto1)presentbrieflytheEarth’sclimatesystem,2)present
examplesofpastenvironmentalchangesconnectedtoclimatevariationsand3)focuson
natural hazards which can be linked with a changing climate (e.g., fire frequencies,
erosionalprocesses,changesinriverdynamicsetc.).Thisblockiscomposedofaseriesof
lectures giving the participants background information into the topic, and of a critical
analysis of current research papers presenting case studies related to various climatic
geohazards, in which the students will take an active part (group presentations / 3-4
studentsperreview).Thispartwillprovidetheparticipantswiththebasestounderstand
how climate change can induce geohazards, and how such hazards can be assessed by
examining environmental archives. The participants will also develop their skills in
criticallyevaluatingscientificpublications,synthetizingdata,andpresentinginfrontofan
audience.
b) ThepracticalstudyoftheClimaticGeohazardscourseaimsatprovidingstudentswitha
completestart-to-finishcasestudy,showinghowgeohazardscanbereconstructedfrom
fluviatil/lacustrine environmental archives. It comprises fieldwork (upper Rhine Valley),
examination of cores in the lab, the reconstruction, using one specific proxy, of past
72
environmentalconditionsinlinkwithclimatevariations,andtheredactionofareport.
Syllabus
a) Introduction to Climatic Geohazards: basic concepts of Earth’s climate, environmental
changes in link with climate variation, and associated geohazards. Introduction to the
currentstateofresearch,includingacriticalreviewoftheliterature;grouppresentation
(3-4studentspertopic)ofachosentopic.
b) Casestudy:reconstructinggeohazardsfromenvironmentalarchives.Including:collection
of sediments in the field, lab study of one proxy of environmental change, critical
assessmentoftheresultsandevaluationofpastclimatechange,andtheredactionofa
report.
Teachingform
a) Lecturesandpresentations
b) Fieldwork,labwork,dataassessment
Examinationform
Regularattendancetocoursesiscompulsory
Examination(marked):
a) Criticalreviewofliteratureandgrouppresentation(50%)
b) Reportoncasestudy(50%)
Prerequisitesforattending
AttendancetoWSCourse“ResearchMethodsinGeosciences”
Usageofthemodule
CompulsoryforstudentsinfocusareaGeohazards.
Recommendedreading
Ruddiman,W.F.2013.Earth’sclimate:PastandFuture.W.H.Freeman
Roberts,N.2014.TheHolocene:AnEnvironmentalHistory.Wiley-Blackwell
Lecturenotes
https://ilias.uni-freiburg.de/login.php
73
3.23MassMovements
Lecturer(s)
Prof.Dr.S.Hergarten
Type
Workload
Credits
Term
Cycle
Duration
CGeohazards
150h
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
MassMovements
3sppw/45h
105h
16
Learninggoalsandqualifications
Mass movements are the most important type of geohazards in mountainous regions.
Assessing hazard and risk related to the various types of mass movements (shallow and
deep-seated landslides, rockslides, rockfalls, rock avalanches, debris flows, and snow
avalanches)isoneofthebiggestfieldsofprofessionalactivityinthecontextofgeohazards.
Themoduleprovidesabasicunderstandingoftherespectiveprocesses,theirrepresentation
bydifferentialequationsandtheirimplementationinnumericalmodels.Thestudentslearn
howtoimplementthesimplestversionsofthemodelsinowncomputercodes(MATLAB),to
assess which type of model is suitable for a given situation, and where the limitations in
applicationtoreal-worldscenariosare.
Syllabus
Theclassstartswithanoverviewoverthevariousprocessesofmassmovementsandtheir
characteristic properties. Afterwards the basic models of slope stability are discussed
(method of slices, Bishop's method). The main part of the module concerns the different
types of rapid mass movements (sliding, falling, avalanching) and their quantitative
description. Understanding is deepened by exercises covering the range from
implementationofsimplemodelstohazardassessment.
Teachingform
Lecturemixedwithpracticalexercisesandhomework.
Examinationform
Themarkswillbederivedfromthescoresreachedintheassignments(homework).
Prerequisitesforattending
74
Basicknowledgeinprogramming(MATLAB)onthelevelofthemodule3.1“Computingin
Geosciences”.
Usageofthemodule
CompulsoryforstudentsinfocusareaGeohazards.
Recommendedreading
Bromhead,E.(1992):TheStabilityofSlopes.Taylor&Francis,London,411.
deBlasio,F.V.(2011):IntroductiontothePhysicsofLandslides.Springer,408.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
75
3.24Hazard,RiskandPrediction
Lecturer(s)
Prof.Dr.S.Hergarten
Type
Workload
Credits
Term
Cycle
Duration
CGeohazards
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
Hazard,RiskandPrediction
3sppw/45h
105h
16
Learninggoalsandqualifications
Assessing hazard and risk is one of the major fields of professional work in the context of
geohazards. This module provides a synthesis of the specific modules of the focus area
“Geohazards”.Thestudentslearnabouttheconceptoffrequency-magnituderelations,how
to derive hazard maps and how to transfer hazard to risk. Beyond this, the students learn
aboutconceptsofpredictionandcontemporarytheoreticalconceptsunifyingdifferenttypes
ofgeohazards.
Syllabus
Themaintopicsofthemoduleare:
•
Frequency magnitude relations; general concepts and distributions for different
geohazards
•
Hazardmaps
•
Risk
•
Quantificationoftemporalcorrelationsandtheirpotentialforprediction
•
Self-organizedcriticality
Teachingform
Lecturemixedwithpracticalexercisesandhomework.
Examinationform
Themarksarederivedbycombiningthescoresachievedintheexercisesandawrittentest
oftheendofthesemester.
76
Prerequisitesforattending
Basicknowledgeinprogramming(MATLAB)onthelevelofthemodule3.1“Computingin
Geosciences”isrequired.Beyondthis,itisrecommendedtohavefinishedthemajorityof
theothermodulesofthefocusareaGeohazards(3.19--3.23).
Usageofthemodule
CompulsoryforstudentsinfocusareaGeohazards.
Recommendedreading
---
Lecturenotes
https://ilias.uni-freiburg.de/login.php
77
3.25Rock-FormingProcesses
Lecturer(s)
a)Dr.C.Redler
b)Dr.M.Junge
Type
Workload
Credits
Term
Cycle
Duration
E
150h
5ECTS
a)SS
annual
1term
b)SS
Course/CourseName
Presence
Privatestudy
Participants
a)PetrologicalProcesses
a)2wh/30h
a)45h
a)15
b)IntroductiontoOre-Forming
Processes
b)2wh/30h
b)45h
b)15
Learninggoalsandqualifications
Thismoduleconsistsoftwocourses:(a)Petrologicalprocessesconcentrateonthegeneral
processes leading to the formation and being recorded in igneous, metamorphic and
sedimentary rocks, and (b) Introduction to ore-forming processes provides an overview of
thegenesisofmineraldeposits.Themoduleisdesignedformasterstudentsinmineralogy,
petrology and geochemistry, and the attendees will acquire state-of-the-art knowledge of
petrogeneticandmineral-formingprocessesandwillbeabletoevaluateandinterpretorigin
ofigneousandmetamorphicrocksandoremineralizationusingmicroanalyticalmethods.
a)Theunderstandingofhowandwhyigneous,metamorphicandsedimentaryrocksformin
theEarthandatitssurfaceisakeyprerequisiteforgeologicalworkandresearch.Inthis
course students will learn about the processes that are essential for the formation of
igneousrockssuchasliquidimmiscibility,fractionalcrystallization,magmamixingaswell
as generation of magmas in general. In this context the formation and evolution of
granitesfrompartiallymoltenrockswillbeconsidered.Themechanismsofmetamorphic
rocksandtheirbehaviorinopen-andclosedsystemswillbementioned,withonefocus
onprocessesoccurringduringmetasomatism.Inordertocompletetheentirerockcycle
petrologyofsedimentaryrockswillbeashortcomponentofthiscourse.Thefocusofall
topics will preferably emphasize chemical rather than the physical and mathematical
aspects.Afterattendingthecourse,thestudentsshouldbeabletocharacterizedifferent
processeswithinthefield,usinghandspecimensandinthinsections.
b)Theunderstandingoftheprocessesoforegenesisareessentialfortheexplorationofraw
materials and the formation of mineral deposits in general. In this course students will
learnboththeoreticallyaboutthedifferentoredeposittypesandtheirgenesisaswellas
78
practicallyusinghandspecimenobservationsandoremicroscopy.Therangeofdifferent
processes that are responsible for the formation of ore deposits found on Earth will be
treatedduringthiscourseonvariousscales.
Syllabus
a)1.Igneousrocks:magmadifferentiation,mixing,meltsandvolatiles,commonand
uncommonmagmatypes(e.g.adakites,carbonatites)
2.Metamorphicrocks:meltsegregationandmigrationtoformgraniticmagmas,open-
andclosedsystems,mechanismsofmineralreactions
3.Metasomatism:typesofmetasomatism,chemical-exchangeprocesses
4.Sedimentaryrocks:petrologyandoriginofrepresentativerocktypes
b)1.Introductionandprinciples
2.Magmaticore-formingenvironments
3.Sedimentaryore-formingenvironments
4.Metamorphicore-formingenvironments
5.Base-metaloredeposits(Pb,Zn,Cu,Sn,Ge,Inetc.)
6.Precious-metaloredeposits(Au,Pt,Pd)
7.Ferrousoredeposits(Fe,Mn,Cr,V,Ti,Mo,Wetc.)
8.Casestudiesandapplications
Teachingform
a)Lectureandpracticalsession
b)Lectureandpracticalsession
Examinationform
Achievementoflearninggoals(unmarked):regularattendance
Examination(marked):writtenexamination
Prerequisitesforattending
a)none
b)none
Usageofthemodule
Elective for students in the focus area Geomaterials and Processes, Rock Mechanics and
Geodynamics or another discipline with focus on the processes in the Earth’s interior and
79
formationofmineralresources.
Recommendedreading
a) Blatt, H., Tracy, R. J. and Owens, B. E. (2006). Petrology: igneous, sedimentary and
metamorphic.Freeman,NewYork.
Nichols,G.(2010).SedimentologyandStratigraphy.2ndedition.Wiley-Blackwell.
Philpotts,A.andAgue,J.J.(2009).PrinciplesofIgneousandMetamorphicPetrology.2nd
edition.CambridgeUniversityPress,Cambridge,684p.
Winter, J. D. (2009). Principles of Igneous and Metamorphic Petrology. 2nd edition.
PrenticeHall,NewYork,702p.
b) Evans,A.M.(1993)OreGeologyandIndustrialMinerals.Blackwell,Oxford.
Guilbert,J.M.,Park,C.F.(1986)TheGeologyofOreDeposits.Freeman,NewYork.
Robb,L.(2005)IntroductiontoOre-FormingProcesses.Blackwell,Oxford.
Sawkins,F.K.(1990)MetalDepositsinRelationtoPlateTectonics.Springer,Berlin.
Pohl,W.L.(2005)EconomicGeology–PrinciplesandPractice.Wiley-Blackwell.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
80
3.26ThermodynamicsofGeologicalandTechnicalMaterials
Lecturer(s)
Prof.Dr.D.Dolejš
Type
Workload
Credits
Term
Cycle
Duration
E
150h
5ECTS
SS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
ThermodynamicsofGeological
andTechnicalMaterials
2wh/30h
120h
25
Learninggoalsandqualifications
This module concentrates on physico-chemical principles that underlie structure-property
relations of inorganic matter. These relations include feedback between occurrence and
stability of minerals, silicate melts, aqueous fluids, their synthetic analogues including
inorganic materials and atomic structure and its changes with temperature and pressure.
Thermodynamic modeling of phase equilibria, construction of phase diagrams and
predictionofelementpartitioningisabackboneofinterpretationofpressure-temperature
paths of metamorphic rocks, differentiation mechanisms of magmas as well as design and
optimization of numerous technological processes such as crystallization, smelting,
combustion, fluid extraction etc. Syntheses of inorganic materials and inovative material
properties are increasingly predicted and designed with the aid of thermodynamic and
phaseequilibriumcalculations.
The students are expected to develop a solid understanding of geological and materials
thermodynamics,tobecomefamiliarwithstructureanduseofthermodynamicdatasetsand
are able to design solutions to phase equilibrium problems in petrology, crystallography,
materialsscienceorinorganicandphysicalchemistry.
Syllabus
The course builds on basic physical chemistry, introduces equations of state for solid and
liquidmaterials,proceedsfromsimplephasestomulticomponentmixtures,andcloseswith
a review of predictive methods: atomistic simulations of thermodynamic properties and
numericalalgorithmsforcomputationofphasediagrams.
1.Thermodynamicstatefunctionsandstabilitycriteriaofsubstances
2.Equationsofstateforsolidandliquidsubstances
3.Equationsofstateforfluids
4.Thermodynamicsofmixing,partialpropertiesofsolutions
81
5.Propertiesofdilute,criticalandconcentratedmixtures
6.Thermodynamicconventionsanddatasets
7.Interpretationofexperimentaldata(phaseequilibria,solubility,elementpartitioning)
8.Linkbetweenthermodynamicpropertiesandphasediagrams
9.Phaseequilibriumcalculationsinmulticomponentnaturalandsyntheticsystems
10.Softwareforcalculationandconstructionofphasediagrams
11.Atomisticmodelingofthermodynamicproperties
Teachingform
Lecture(2hr),homeworkassignmentsandindividualproject
Examinationform
Achievementoflearninggoals(unmarked):attendanceoflectures,preparationof
homeworkassignments
Examination(marked):writtenexam(20%),homeworkassignments(20%),writtenproject
report(35%),oralpresentationoftheproject(25%)
Prerequisitesforattending
None
Usageofthemodule
RecommendedforstudentsenrolledinthefocusareasGeomaterialsandProcessesorRock
mechanics and Geodynamics and in the master program Sustainable Materials or other
programsininorganicchemistryormaterialsscience.
Recommendedreading
Stølen S., Grande T. (2003). Chemical Thermodynamics of Materials: Macroscopic and
MicroscopicAspects.Wiley,408p.
GangulyJ.(2008).ThermodynamicsintheEarthandPlanetarySciences.Springer,501p.
FegleyB.(2013).PracticalChemicalThermodynamicsforGeoscientists.AcademicPress,674
p.
PatiñoDouceA.E.(2011).ThermodynamicsoftheEarthandPlanets.CambridgeUniversity
Press,722p.
82
Lecturenotes
https://ilias.uni-freiburg.de/login.php
83
3.27QuaternarySediments
Lecturer(s)
Prof.Dr.F.Preusser;Dr.C.Rambeau,Dr.N.Gribenski,Dr.J.-H.May
Type
Workload
Credits
Term
Cycle
Duration
Elective
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
a)Sedimentaryenvironments
a) 2wh/30h
a) 45h
a) 16
b)Loggingsediments
b) 4days
b) 15h
b) 16
Learninggoalsandqualifications
Studentswhosuccessfullycompletethismodulewillhavedevelopedanunderstandingof
modernsedimentology.Themoduleissubdividedintotwocourses,onefocusingonthe
theoreticalbackgroundandtheotheronpracticalissuesofdescribingsediments.
Syllabus
a) This course concentrates on the sedimentary dynamics and archives found such as in
glacialandfluvialsettings.Afterthiscoursestudentswillunderstandthesesedimentary
systemsindetail,willbeabletodescribeandinterpretsedimentarysequences,andput
theseobservationsintoalocal,regionalandglobalcontext.
b) Studentwilllearnhowtodescribe(log)sedimentsinoutcropsandcores.
Teachingform
a) Lecture
b) Practicalwork
Examinationform
Achievementoflearninggoals(unmarked):
a) Regularattendance
b) Regularattendance
Examination:
a)Writtenexam(50%)
84
b)Projectreport(50%)
Prerequisitesforattending
a) Basicunderstandingofgeologyandsedimentology
b) Regularattendanceofa)
Usageofthemodule
ElectiveinallfocusareasintheMScprogramGeology
Recommendedreading
a) BennandEvans:Glaciers&Glaciation,2ndedition,Hodder.
Charlton:Fundamentaloffluvialgeomorphology,Routledge.
b) EvansandBenn:Apracticalguidetothestudyofglacialsediments.Hodder.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
85
3.28GeothermicsandGeothermalEnergy
Lecturer(s)
Prof.Dr.S.Hergarten
Type
Workload
Credits
Term
Cycle
Duration
ERockMech.
AndGeodyn.
150h
5ECTS
WS
annual
1term
Course/CourseName
Presence
Privatestudy
Participants
GeothermicsandGeothermal
Energy
3sppw/45h
105h
16
EGeohazards
Learninggoalsandqualifications
Despiteitsgreatpotential,geothermalenergyisslowlygrowingcomparedtoothersources
ofrenewableenergyandstillposeschallengesconcerninggeologyandengineering.Inthis
modulethestudentsmainlylearnhowto
•
assessthegeothermalpotentialatagivenlocationandto
•
designgeothermalsystemsfordifferentpurposes(electricity,heating)withfocuson
feasibility,economicefficiencyandsustainability. Syllabus
Themodulecoversthefollowingtopics:
•
Basicsofheattransport(conduction,advection)
•
Globalandlocalgeothermalpotential
•
Shallowgeothermalsystems(downholeheatexchangers,heatcollectors)
•
Seasonalheatstorage
•
Closeddeepgeothermalsystemsandtheirpotentialfordirectheating
•
Hydrothermalsystems
•
Petrothermalsystems
The understanding of the theoretical concepts is deepened by exercises and homework
whereconceptsforthedifferenttypesofgeothermalsystemsaredesignedandcalculated.
86
Teachingform
Lecture mixed with practical exercises and homework and a visit of a geothermal power
plant.
Examinationform
Themarksarederivedbycombiningthescoresachievedintheexercisesandawrittentest
oftheendofthesemester.
Prerequisitesforattending
Basic knowledge in programming (MATLAB) on the level of the module 3.1 “Computing in
Geosciences”.
Usageofthemodule
EectiveinfocusareasGeomaterialsandprocessesandGeohazards
Recommendedreading
Clauser, C. (2006): Geothermal Energy. In: K. Heinloth (Ed), Landolt-Börnstein, Group VIII,
Vol.3C:EnergyTechnologies--RenewableEnergy,493--595,Springer
Stober,I.&Bucher,K.(2013):GeothermalEnergy--FromTheoreticalModelstoExploration
andDevelopment.Springer,291.
Lecturenotes
https://ilias.uni-freiburg.de/login.php
87
3.29ExternalModules
Lecturer(s)
VariousLecturers
Type
Workload
Credits
EGeomat.and
Processes
150h/300h
/450h
5,10or15ECTS WS/SS variable 1term
ERockMech.
AndGeodyn.
Term
Cycle
Duration
EGeohazards
Course/CourseName
Presence
Electivemodulesupto15credits variable
may be chosen from other
natural sciences or environmental graduate programs. A maximum of 5 credits may be taken
fromlanguagecoursesofferedby
theLanguageTeachingCenterof
theUniversity(SLI).
Privatestudy
Participants
variable
variable
Note:
Modulesarerestrictedtoasizeof5credits.Ifanexternalmoduleaccountsformorecredits
only5willbecredited.Ifanexternalmoduleaccountsforlessthan5creditsseveralmodules
have to be bundled. In this latter case the student has to consult the student advisor (Dr.
HeikeUlmer:[email protected])inadvanceandstrictregulationsapply.
88
3.30TechnicalandAppliedMineralogy
This module combines two courses from the M.Sc. Sustainable Materials – Crystalline
Materials curriculum: “Modern Ceramics, Cements, and Glasses” and “Thermal Analysis”.
For further course information please see the current M.Sc. Sustainable Materials –
CrystallineMaterialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
IfyouareinterestedtoparticipateatthismodulepleasecontactDr.HiltrudMüller-Sigmund
([email protected])
89
3.31X-RayMethods
This module combines two courses from the M.Sc. Sustainable Materials – Crystalline
Materials curriculum: “Structure Analysis by Diffraction” and “Defect Analysis by
Diffraction”. For further course information please see the current M.Sc. Sustainable
Materials–CrystallineMaterialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
IfyouareinterestedtoparticipateatthismodulepleasecontactDr.HiltrudMüller-Sigmund
([email protected]
90
3.32AdvancedCrystallography
This module combines two courses from the M.Sc. Sustainable Materials – Crystalline
Materials curriculum: “Crystallographic Methodology” and “Space Groups and Crystal
Structures”. For further course information please see the current M.Sc. Sustainable
Materials–CrystallineMaterialsguidebookat:
http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium
IfyouareinterestedtoparticipateatthismodulepleasecontactDr.HiltrudMüller-Sigmund
([email protected])
91