InstituteofEarthandEnvironmentalSciences UniversityofFreiburg Programguidebook M.Sc.Geology withfocusareas GeomaterialsandProcesses RockMechanicsandGeodynamics Geohazards Freiburg,May01,2017 TableofContents 1.GeneralInformation..................................................................................4 1.1UniversityofFreiburgGeosciences:WhyshouldstudentschoosetocompletetheirM.Sc. degreeinFreiburg?.............................................................................................................................4 1.2ResearchandTeachingattheInstituteofEarthandEnvironmentalSciencesinFreiburg...........4 1.2.1ImpactCraterResearchandPlanetaryGeology.....................................................................5 1.2.2StructuralGeology,SedimentologyandTectonics................................................................5 1.2.3GeologicalModeling..............................................................................................................6 1.2.4PetrologyandGeodynamics..................................................................................................6 1.2.5GeochemistryofWater,CrustalFluidsandWater-RockInteraction.....................................6 1.2.6AppliedandEnvironmentalGeochemistry............................................................................7 1.2.7ClassicalGrowthofSemiconductorCrystals..........................................................................7 1.2.8CrystalGrowthinExternalFields...........................................................................................7 1.3AnalyticalFacilitiesforModernQuantitativeGeosciences...........................................................8 1.4ApplicationtotheM.Sc.ProgramGeology...................................................................................8 1.5StructureoftheM.Sc.ProgramGeology......................................................................................9 1.5.1M.Sc.Geology–FocusareaGeomaterialsandProcesses....................................................10 1.5.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics.........................................11 1.5.3M.Sc.Geology–FocusareaGeohazards..............................................................................12 2.ModuleOverview....................................................................................14 2.1GeneralCompulsoryModules(30ECTS).....................................................................................14 2.2Specializedcompulsorymodules(30ECTS)................................................................................14 2.2.1M.Sc.Geology–FocusareaGeomaterialsandProcesses....................................................14 2.2.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics..........................................15 2.2.3M.Sc.Geology–FocusareaGeohazards..............................................................................16 2.3Electivemodules(30ECTS).........................................................................................................16 3.Moduledescriptions................................................................................20 3.1ComputinginGeosciences..........................................................................................................20 3.2ResearchMethodsinGeosciences..............................................................................................22 3.3SeminarandColloquiumI...........................................................................................................26 3.4FieldTrips....................................................................................................................................29 2 3.5GeologicalProject.......................................................................................................................32 3.6SeminarandColloquiumII..........................................................................................................34 3.7AdvancedGeochemistry.............................................................................................................37 3.8Melts,Magmas,Crystals.............................................................................................................40 3.9Minerals,Transformations,Reactions........................................................................................42 3.10AdvancedAnalyticalMethods...................................................................................................44 3.11Fluid-RockInteraction...............................................................................................................47 3.12IsotopeGeochemistry...............................................................................................................49 3.13Petrophysics..............................................................................................................................52 3.14PlanetaryDynamics...................................................................................................................53 3.15RockMechanics.........................................................................................................................56 3.16EngineeringGeologyandGeotechnics......................................................................................59 3.17Geophysics................................................................................................................................61 3.18Hydrogeology............................................................................................................................63 3.19VolcanicHazards.......................................................................................................................66 3.20EarthquakesandTsunamis.......................................................................................................69 3.21ImpactGeology.........................................................................................................................71 3.22ClimaticGeohazards..................................................................................................................72 3.23MassMovements......................................................................................................................74 3.24Hazard,RiskandPrediction.......................................................................................................76 3.25Rock-FormingProcesses...........................................................................................................78 3.26ThermodynamicsofGeologicalandTechnicalMaterials..........................................................81 3.27QuaternarySediments..............................................................................................................84 3.28GeothermicsandGeothermalEnergy.......................................................................................86 3.29ExternalModules......................................................................................................................88 3.30TechnicalandAppliedMineralogy............................................................................................89 3.31X-RayMethods..........................................................................................................................90 3.32AdvancedCrystallography.........................................................................................................91 3 1.GeneralInformation This module guide provides information about the M.Sc. program Geology. The master program is divided into three lines of specialization, e.g. “Focus Areas”: Geomaterials and Processes,RockMechanicsandGeodynamicsandGeohazards.TheMasterofScience(M.Sc.) is an internationally recognized degree which can be completed within two years (four semesters)ofstudy.Thisguidebookaimsatpresentingthevision,structure,andcourseof themasterprogramandprovidesnecessarydetailsoftheindividualmodulesandcourses. Together with the M.Sc. program “Sustainable materials / Crystalline Materials” it reflects the main areas of geoscience research in Freiburg. The official instruction and communicationlanguageofbothprogramsisEnglish. 1.1UniversityofFreiburgGeosciences:Whyshouldstudentschooseto completetheirM.Sc.degreeinFreiburg? TheInstituteofEarthandEnvironmentalSciencesbelongstotheFacultyofEnvironment andNaturalResourcesaspartofoneofGermany’sleadinguniversities.Inrecentyearsthe UniversityofFreiburghasbeenplacedatthetoprankinresearchqualityinGermany.The institute hosts advanced analytical facilities for the research and teaching in geoscience. Apart from working in close collaboration with the University of Freiburg Division of Chemistry,theinstitutehascloseconnectionstotheFreiburgCenterforMaterialsResearch (FMF), the Fraunhofer Institute for High-Speed Dynamics (Ernst-Mach-Institut EMI), the FraunhoferInstituteforSolarEnergySystems(ISE),theFraunhoferInstituteforAppliedSolid StatePhysics(IAF),aswellastheFraunhoferInstituteforPhysicalMeasurementTechniques (IPM).Alltheseinstitutionsandfacilitiescanbeaccessedwithinwalkingdistance. The Institute of Earth and Environmental Sciences is housed in recently renovated buildings. The “state of the art” analytical infrastructure has been fully renovated and substantialofficespaceforgraduatestudentsandamodernandup-to-datelibraryprovide excellent conditions for individual study and research. Computer rooms and library study facilitiesareeasilyaccessible.AstudentcafeteriaandtheuniversityITservicesarelocated within the immediate vicinity of the institute. The institute is conveniently situated only a fewminutesawayfromthecitycenterandthecentraltrainstation. 1.2ResearchandTeachingattheInstituteofEarthandEnvironmental SciencesinFreiburg Theresearchandteachinginterestsoftheinstitutecoverawiderangeofexcitingtopics in Earth sciences including petrology, sedimentology, structural geology, planetary geology and impact crater research, aqueous environmental geochemistry, biogeochemistry, environmentalmineralogy,aswellasstructureofcrystallinematerialsandcrystalsynthesis. 4 ThefollowingpagesprovideadetailedoverviewoftheareasofresearchattheInstituteof EarthandEnvironmentalSciencesattheUniversityofFreiburg. 1.2.1ImpactCraterResearchandPlanetaryGeology Thecollisionofsolidbodiesiswithoutdoubtthemostfundamentalgeologicalprocessin thesolarsystem.Itisnotonlyresponsiblefortheformationofplanetsandsatellites,ithas alsosteadilyreshapedplanetarysurfaces,formedthestructureofpartsoftheEarth’scrust and produced economically important deposits. Impact processes have also delivered organiccompoundstotheearlyEarthandinfluencedtheevolutionoflifeonourplanet.The currentimpactriskmustnotbeneglected.Weapplyhigh-speedandanalogueexperiments in addition to micro-structural analysis, field surveying, and remote sensing to understand split-second geology. Recently, a research unit (Forschungsgruppe) “Experimental impact cratering” financed by the German Research Foundation DFG was established at the Institute.AclosecollaborationexiststoFraunhoferErnst-Mach-Institut(EMI). Impact processes delivered organic compounds to the early Earth and repeatedly influenced the evolution of life. The current impact risk must not be neglected. We apply high-speed and analogue experiments in addition to micro-structural analysis, field surveying,andremotesensingtounderstandsplit-secondgeology.Recently,aresearchunit (Forschungsgruppe) “Experimental impact cratering” financed by the German Research FoundationDFGwasestablishedattheInstitute.AclosecollaborationexiststoFraunhofer Ernst-Mach-Institut(EMI). Impact crater research is closely linked to planetology. Our knowledge on the solar system currently increases rapidly due to the technological development of space explorationtechniquesandallowsfordiscoveringthegeologyofotherplanetarybodiesby means of remote sensing techniques. Planetology and Planetary Geology are a developing interdisciplinaryemploymentmarketforgeo-scientistsinthefutureandarethereforepart oftheMastercurriculum.Theimplementationofimpactandplanetarygeologyisaunique sellingpointofFreiburg´sMasterGeologyprograminGermany. 1.2.2StructuralGeology,SedimentologyandTectonics Deciphering the past is the key to understand the present and the future. Structural Geology, Sedimentology and Tectonics are core subjects in geology that are aimed at analyzing the evolution of the Earth and to use the Earth´s economic deposits. Applied techniques range from classical field mapping to quantitative modeling and from remote sensingtonano-scaleinvestigations,andalsocompriseanumberofinhouseexperimental set-ups.StructuralGeology,SedimentologyandTectonicscontributetomanyfieldsofactual socialquestionsandproblems,suchasnaturalresourcerecovery(water,oil,gas,economic minerals),naturalhazards(earthquakes,landslides,tsunamis,volcaniceruptions),andinthe managementoftheenvironment(longtermstorageofradioactivematerial,contamination ofwaterreservoirs). 5 1.2.3GeologicalModeling Currentresearchinterestsingeologicalmodelingfocuson(i)theanalysisandprediction of tectonic stresses at the outcrop and regional geological scale, (ii) mountain-building processesandthedevelopmentoftopographyandreliefinorogenicbeltsliketheAlpsasa result of uplift, exhumation, and erosion, and (iii) the dynamics of landslides. Quantitative modelingisconductedbyanalyticalapproachesaswellasdiscretizationmethodslikefinite elementmodeling. 1.2.4PetrologyandGeodynamics The mineral assemblages and structures of rocks ultimately result from large-scale geologicalprocessesreflectingdynamicsofthePlanetEarth.Geodynamicprocessesinclude thebuildingofmountainrangessuchastheHimalayasandtheAlps,theevolutionofisland arc systems, and the formation of ocean floor along mid-ocean spreading ridges. The dynamicbuildingofmountainbeltsandmotionsoflithosphericplatemoverockcomplexes along specific pressure-temperature-time paths. In numerous geological settings, partial melting occurs, magmas segregate and migrate, and contribute to the chemical differentiation of the oceanic and continental crust. The wide range and continually changing pressure and temperature conditions cause chemical reactions in rocks that changetheirmineralassociationsandtextures.Decipheringthisrockrecordistheprincipal tool for reconstructing the past and present processes on our planet. The most important insightintothedeeperlithospherecomenotonlyfromexhumedmetamorphicandigneous rocks, but also from modern exploration programs such as oceanic drilling and dredging onboard marine research vessels. Our research includes a variety of subjects such as melt generation and migration, kinetics of crystallization, and implications of melt-crystal interaction for the dynamics of natural magma chambers and growth of the continental crust. 1.2.5GeochemistryofWater,CrustalFluidsandWater-RockInteraction Thechemicalinteractionofwaterandrockisoneofthemostuniversal,multifacetedand fascinating processes in geology. The composition of surface and ground water is largely controlledbythereactionofwaterwithrocksandminerals.Atelevatedtemperatures,the intensity and rates of these interactions are even greater and they lead to diverse economically important products – hydrothermal ore deposits, geothermal fields. These systemsarenowexploitedforsequestrationanddepositionofgreenhousegases.Volatiles are also ubiquitous constituents of magmatic systems and significantly affect the physical and chemical properties of magmas and consequently have substantial impact on the volcaniceruptionstylesandassociatedrisksaswellaseffectontheEarth’satmosphereand climate through gaseous species that are released during volcanic activity to the atmosphere. Understanding water-rock interaction is in addition of great importance to 6 appliedgeologyandgeochemistry,particularlyinareassuchasgeothermalenergy,nuclear wasterepositories,andappliedhydrogeology. 1.2.6AppliedandEnvironmentalGeochemistry Mineralogyandgeochemistryplayanessentialroleinestablishingproceduresforsolving environmentalproblemscausedbyhumanactivity.Theenvironmentatornearthesurface of the Earth is affected by various processes both natural and anthropogenic. These processescanbestudiedbyusingmineralogicalandgeochemicalmethods,thusopeningup abroadresearchfield,whichincludestopics,suchas:(i)therelease,transport,dispersalof toxicsubstancesfromrepositories,industrialfacilities,miningsites,(ii)characterizationand trackingofatmosphericdust,(iii)environmentalimpactofenergyrecovery,(iv)weathering ofbuildingstones,(v)healthimpactofcontaminatedwater,volcanicgases,andaerosolsand (vi)containmentoftoxicandnuclearwastewithmineralogicalorgeochemicalbarriers. Oneofthekeyconceptsinappliedandenvironmentalgeochemistryisthatbyproviding examplesfromthegeologicalhistory,natureteachesushowtoalleviatecurrentproblems andpredictthefutureofourenvironment.ThisaspectofEarthSciencesisanexcitingarea of fundamental research, in which material properties and processes are studied with emphasisonapplicationstopressingproblemsofsocietiesworldwide. 1.2.7ClassicalGrowthofSemiconductorCrystals Semiconductor materials like silicon, lead iodide, and cadmium telluride are of high importance in a number of industries like the computer industry. Relevant physical propertiesofsuchmaterialsareoftenonlyachievediftherequiredsemiconductingbuilding blocks are cut from large single crystals of the corresponding chemical element or compound.Weoptimizeconditionsforthegrowthofsuchcrystals,agrowthwhichusually takes place at high temperatures in special furnaces. Close collaborations exist with the Fraunhofer Institut für Solare Energiesysteme (ISE), Institut für Angewandte Festkörperphysik(IAF)andInstitutfürPhysikalischeMesstechnik(IPM). 1.2.8CrystalGrowthinExternalFields Toimprovethequalityofourapplication-relevantsemiconductorcrystalswithrespectto purityandposition-independentstructuraluniformity,weinvestigatecrystalgrowthalsoin external fields. These may be stationary or rotating magnetic fields or “Gravity fields” like under microgravity. In the latter case experiments are undertaken in space in special (manned) planes, (unmanned) rockets or (in the future) in the ISS (international space station). 7 1.3AnalyticalFacilitiesforModernQuantitativeGeosciences The institute hosts a sample preparation laboratory for crushing, sieving, mineral separation as well as preparation of high-quality polished thin sections from geological or syntheticmaterials.Theinstituterunsa3000kNtriaxialloadingframefordeterminationof the mechanical properties of solid rocks. The deformation behavior of rocks and the kinematics of gravity-driven mass movements are studied in an analogue laboratory equippedwithparticleimagevelocimetryandstereocameras.Geophysicaldevicesforfield surveys(geo-electric,seismic,georadar)areavailable. Forthestructuralandchemicalcharacterizationofnaturalrocksandsyntheticproducts two scanning electron microscopes equipped with EDX and an electron backscattered detector (EBSD), an electron microprobe, a WD-X-ray fluorescence spectrometer, and several optical microscopes are used. White-light interferometry is applied for the characterization of surface topographies. Atomic absorption spectroscopy, ion chromatography,andUV-VISspectrometryareusedfortheanalysisoffluids. Thestructureofcrystals–fromthemillimeterdowntothepicometerscale–canmost effectively be investigated using X-ray methods. We use these methods to detect imperfections or inhomogeneities in a crystal (X-ray topography), to measure with highest precision the so-called lattice parameters (high-resolution X-ray diffractometry), to determine accurately the arrangement of the atoms in the crystal (X-ray single crystal diffractometry),ortoidentifythecomponentsofacrystalpowder,e.g.amineralpowder(Xraypowderdiffractometry).Traceelementconcentrationsinnaturalwaters,soils,andother materials can be analyzed with our atomic absorption spectrometry (Flame AAS and GraphiteFurnaceAAS)andotherequipment(UV-VIS,IC,CSH2O-Determinators). Withourequipmentfordifferentialthermalanalysisanddifferentialscanningcalorimetry weareabletostudyphasetransitions,forinstancemeltingorsolidification,orthetransition ofacertainatomicarrangementinthecrystalsofacompoundintoadifferentarrangement (polymorphic transition) with respect to transition temperatures or transition enthalpies. Thermogravimetryisusedtomonitorquantitativelyweightchanges,whichare,e.g.,caused bythermaldecompositionprocessesleadingtonewchemicalcompounds. 1.4ApplicationtotheM.Sc.ProgramGeology Theapplicationprocedureforthegraduateprogramisavailableonline(http://portal.unifreiburg.de/master-geo/prospectivestudents/application). The application form can be downloaded. Annual application deadline is May 15. The students can register for the fall semester only (starting mid of October). The M.Sc. program Geology is accessible to all students,whohaveacquiredaB.Sc.inGeology,Geosciences,EarthScience,orMineralogy fromaGermanuniversity,orfromotheruniversitiesandcollegesworldwide(inaccordance with certain quality control criteria). Students holding a B.Sc. degree in one of the other 8 naturalorphysicalsciences(Chemistry,Physics,Biology,EnvironmentalScience)mayalsobe grantedadmissiontotheprogram.Inthelattercase,thechoiceofmajorwillbedetermined fromthestudent'seducationalbackground.TheapplicantmusthaveEnglish-languageskills that meet or exceed level B2 of the Common European Framework of Reference for Languages(seetheapplicationformfordetails). Questions concerning the general application and admission procedure to the M.Sc. Program Geology should be addressed to the application and admission coordinator Ms. Kathleen Robinson and/or to the Student Advising Officer, Dr. Heike Ulmer. For organizational inqueries concerning the course of study the Geoscience program coordinator,Ms.WibkeKowalskiiscontactperson. • ApplicationandAdmissionCoordinator Ms.KathleenRobinson,Albertstr.23-B,1stfloor,room01020 Tel.+49(0)761/203-6398;[email protected] • StudentAdvisorySupport Dr.HeikeUlmer,Albertstr.23-B,2ndfloor,room02014 Tel.+49(0)761/203-6480;[email protected] • GeologyProgramCoordinator Prof.Dr.StefanHergarten,Albertstr.23-B,1stfloor,room01011 Tel.+49(0)761/203-6471;[email protected] Fororganisationalquestionsonly: Ms.WibkeKowalski,Albertstr.23-B,1stfloor,room01020 Tel.+49(0)761/203-6398;[email protected] QuestionsabouttheregistrationforexaminationsandtheTranscriptsofRecordsshouldbe addressedtotheExaminationOffice: • ExaminationOffice Ms.UrsulaStriegel,Albert-Ludwigs-Universität,PrüfungsamtderFakultätfürUmweltund NatürlicheRessourcen,D-79085FreiburgimBreisgau,Germany Tel.+49(0)761203-3605;[email protected] 1.5StructureoftheM.Sc.ProgramGeology TheM.Sc.programGeology(seeFig.1)includes120ECTSpointsandisofferedinEnglish language.TheM.Sc.coursecurriculumconsistsofsixcompulsorymodules(30ECTSpoints), six specialization modules (30 ECTS points), several elective modules (30 ECTS points; a maximumofthreemodules,thatis,15ECTSpointsmaybetakenfromotherareassuchas othernaturalsciences,languages),andamasterthesis(30ECTSpoints). 9 Fig.1:StructureoftheM.Sc.ProgramGeology 1.5.1M.Sc.Geology–FocusareaGeomaterialsandProcesses The focus area Geomaterials and Processes offers education and research training in geochemistry,petrology,mineralogy,andcrystallography.Thecoursecurriculumandthesis projects are designed to acquire deeper understanding of analytical and experimental methods as well as properties of rocks, minerals, and their synthetic analogues. These approaches, together with phase equilibria and thermodynamic modeling, are used to interpret various metamorphic, magmatic or hydrothermal processes occurring on the PlanetEarth.Therespectivespecializationmodulesarehighlightedingreeninthefollowing chart(Fig.2).Noticethatfor“Seminars”and“ResearchMethodsinGeosciences”onlythe specific courses from mineralogy and geochemistry qualify for this specialization line. This specialization line offers a sound education in analyzing, modeling, and understanding of geologicmaterialsandprocesses,bridgingthegaptowardsmaterialsciences,andopeninga widefieldofcareeroptionsinresearchandappliedindustries. 10 Fig.2:CompulsorymodulesoffocusareaGeomaterialsandProcesses 1.5.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics ThefocusareaRockMechanicsandGeodynamicsconsistsofthesixspecializationmodules highlightedinlighterblueinthefollowingchart(Fig.3).Thespecializationprovidesthestudent with a sound theoretical as well as practical knowledge in the respective fields and the gained qualifications offer a wide spectrum of career choices. Practical expertise includes work in the rock mechanics laboratory that hosts a triaxial loading frame, Split-Hopkinson PressureBar,AnalogueLaboratory.Geophysicalandpetrophysicalequipmentcompriseofa He-pycnometer,laser-sizer,whitelight-interferometer,opticalandelectronmicroscopy,and devices for seismic and geoelectric analyses. Note that the modules Rock Mechanics and Petrophysics are offered biannually alternating in the winter term. The same holds for the modulesPlanetaryDynamicsandImpactGeology. 11 Fig.3:CompulsorymodulesoffocusareaRockMechanicsandGeodynamics 1.5.3M.Sc.Geology–FocusareaGeohazards Quantification and prediction of geohazards has become a major field of both research in geoscience as well as of professional activity of geoscientists. The geohazards line of the M.Sc. program Geology provides a quite comprehensive coverage of the most relevant geohazards including the underlying physical processes, their relationship to geology, assessment of hazard and risk, as well of concepts of prediction. The specific geohazards considered in this line comprise those with a close relationship to geology (volcanism, earthquakes, tsunamis, landslides, meteorite impact) as well as hazards receiving an increasinginterestduetotheirpotentialrelationshiptoclimatechange(e.g.,storms,floods andvarioustypesofmassmovements).Asmodelinghasbecomeanessentialpartinhazard assessment,somenumericalmodelingapproachesarealsodiscussed.ThefocusareaRock Geohazardsconsistsofthesixspecializationmoduleshighlightedinorangeinthefollowing chart(Fig.4). 12 Fig.4:CompulsorymodulesoffocusareaGeohazards 13 2.ModuleOverview 2.1GeneralCompulsoryModules(30ECTS) Type ECTS points Semester L+P 5 1 L+P 2,5 1 L+P 2,5 1 ComputinginGeosciences L+P 5 1 ResearchSeminar (chooseaccordingtofocusarea) S 3 1+2 GeoscienceColloquium C 2 1+2 Module Coordinator Courses ResearchMethodsin Geosciences MüllerSigmund LaboratoryMethodsin Geomaterials (Geomaterials&Processes) RemoteSensingandGIS (RockMechanics&Geodynamics orGeohazards) ToolsandApproachesinGeology (RockMechanics&Geodynamics orGeohazards) ResearchMethodsin Geosciences ComputinginGeosciences SeminarandColloquiumI Preusser Hergarten Poelchau FieldTrips Ulmer FieldTripsandVisitstoIndustrial Facilities F 5 1to4 GeologicalProject Preusser GeologicalProject P 5 2,3or4 ResearchSeminar S 3 3+4 GeoscienceColloquium C 2 3+4 SeminarandColloquiumII Poelchau Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4” indicatescoursescomprisingmorethanonesemester Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse; 2.2Specializedcompulsorymodules(30ECTS) 2.2.1M.Sc.Geology–FocusareaGeomaterialsandProcesses Module AdvancedGeochemistry Coordinator Courses Type ECTS points GeochemicalEvolutionofthe MantleandtheCrust L+P 3 Siebel Semester 1 MarineGeochemistry L+P 2 Melts,Magmas,Crystals Dolejš Melts,Magmas,Crystals L+P 5 1or3 Minerals, Transformations, Reactions Dolejš Minerals,Transformations, Reactions L+P 5 1or3 MüllerSigmund AdvancedAnalyticalMethods L+P 2 2 Fiederle High-ResolutionSpectroscopy L+P 3 2 Dolejš Fluid-RockInteraction L+P 5 2 IsotopeGeochemistryI L+P 2,5 2 IsotopeGeochemistryII L+P 2,5 2 AdvancedAnalytical Methods Fluid-RockInteraction IsotopeGeochemistry Siebel Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4” indicatescoursescomprisingmorethanonesemester Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse 2.2.2M.Sc.Geology–FocusareaRockMechanicsandGeodynamics Module Coordinator Courses Type ECTS points Semester PlanetaryDynamics Kenkmann PlanetaryDynamics L+P 5 1or3 StressandStrain L+P 2,5 1or3 BrittleRockDeformation L+P 2,5 1or3 AdvancedHydrogeology L+P 2,5 2 AqueousGeochemistry exceptionallyinWS2016/17 L+P 2,5 1 RockMechanics Hydrogeology Poelchau MüllerSigmund Geophysics Hergarten Near-SurfaceGeophysics L+P 5 2 Petrophysics Kenkmann Petrophysics L+P 5 1or3 EngineeringGeologyand Geotechnics Preusser IntroductiontoEngineering Geology L+P 2,5 2 15 GeotechnicalProjects L+S 2,5 2 Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4” indicatescoursescomprisingmorethanonesemester Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse 2.2.3M.Sc.Geology–FocusareaGeohazards Module VolcanicHazards Earthquakesand Tsunamis ClimaticGeohazards Courses Type ECTS points Semester VolcanologyandVolcanic Hazards L 3 1 VolcanicHazardsCaseStudis S 2 1 SeismologyandSeismicHazard L+P 4 1or3 Tsunamis L+P 1 1or3 IntroductiontoClimatic Geohazards L+P+ S 2,5 2 ClimaticGeohazardsPractical Study P 2,5 2 Coordinator May,V. Hergarten Rambeau MassMovements Hergarten MassMovements L+P 5 2 ImpactGeology Kenkmann ImpactGeology L+P 5 1or3 Hazard,Riskand Prediction Hergarten Hazard,RiskandPrediction L+P 5 3 Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4” indicatescoursescomprisingmorethanonesemester Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse 2.3Electivemodules(30ECTS) Studentschooseatotalofsixelectivemodules(30ECTS)accordingtotheirowninterest. Theelectivemodulescanbeselectedfromthegeosciencecurriculum(anymodule)orupto three modules (15 ECTS) may be chosen externally from other natural science or environmental graduate programs, and one of these (5 ECTS) may be a language course 16 offered by the Language Teaching Center of the University (SLI). For details please see section3.30. Additionalelectivemodulesofferedbygeosciencesare: Module Rock-formingProcesses Thermodynamicsof GeologicalandTechnical Materials TechnicalandApplied Mineralogy* X-RayMethods* Advanced Crystallography* QuaternarySediments Geothermicsand GeothermalEnergy Coordinator Courses Type ECTS points Semester PetrologicalProcesses L+P 2,5 2 IntroductiontoOre-Forming Processes L+P 2,5 2 Thermodynamics ofTechnicalandGeological Materials L+P 5 2 ModernCeramics,Cements,and Glasses L+P TBA 3 ThermalAnalysis P TBA 3 StructureAnalysisbyX-Ray Diffraction L+P TBA 3 DefectAnalysisbyDiffraction L+P TBA 3 CrystallographicMethodology L+P TBA 1 SpaceGroupsandCrystal Structures L+P TBA 1 SedimentaryEnvironments L+S 3 2 LoggingSediments P+F 2 2 GeothermicsandGeothermal Energy L+P 5 3 Dolejš Dolejš NN Danilewsky NN Preusser Hergarten Semesternumbersindicaterecommendedsemester,“1or3”indicatesabiannuallyofferedcourse,“3+4” indicatescoursescomprisingmorethanonesemester Abbreviations:L=Lecture,S=Seminar,C=Colloquium,P=PracticalCourse,F=FieldCourse *IfyouwanttoparticipateatoneofthesemodulespleasecontactDr.H.Müller-Sigmund([email protected]) 17 The following table summarizes recommended and optional combinations of elective modules for each focus area. Empty (white) fields indicate that the course is not recommendedforthisfocusarea. Module FocusareaGeomaterials andProcesses Focusarea RockMechanicsand Geodynamics FocusareaGeohazards AdvancedGeochemistry compulsory optional (semester1) Melts,Magmas,Crystals compulsory recommended (semester1or3) optional (semester1or3) Minerals, Transformations, Reactions compulsory optional (semester1or3) Fluid-RockInteraction compulsory recommended (semester2) optional (semester2) IsotopeGeochemistry compulsory optional (semester2) optional (semester2) AdvancedAnalytical Methods compulsory recommended (semester2)(Capacity dependingifpossible) optional (semester2)(Capacity dependingifpossible) PlanetaryDynamics recommendedfora focusongeodynamics (semester1) compulsory optional (semester1) RockMechanics compulsory recommended (semester1) compulsory recommended (semester3) compulsory recommended (semester2) Petrophysics Hydrogeology recommendedfora focusongeodynamics (semester3) recommendedfora focusongeodynamics (semester1+2) Geophysics compulsory recommended (semester2) EngineeringGeologyand Geotechnics optional (semester2) compulsory recommended (semester2) VolcanicHazards recommendedfora focusongeodynamics (semester1) recommended (semester1) compulsory Earthquakesand Tsunamis recommended (semester1) compulsory ImpactGeology optional (semester3) recommended (semester3) compulsory 18 ClimaticGeohazards optional (semester2) compulsory MassMovements recommended (semester2) compulsory Hazard,Riskand Prediction optional (semester3) compulsory TechnicalandApplied Mineralogy* stronglyrecommended (semester3) Advanced Crystallography* X-rayMethods* recommendedforafocus onmaterialssciences (semester3) recommendedforafocus onmaterialssciences (semester3) QuaternarySediments optional (semester2) optional (semester2) recommended (semester2) Geothermicsand GeothermalEnergy recommended (semester3) optional (semester3) External ElectiveModuleI optional optional optional (naturalsciencesor (semester1,2or3) (semester1,2or3) (semester1,2or3) environmentalor languagemodule)** External ElectiveModuleII optional optional optional (naturalsciencesor (semester1,2or3) (semester1,2or3) (semester1,2or3) environmentalor languagemodule)** External ElectiveModuleIII optional optional optional (naturalsciencesor (semester1,2or3) (semester1,2or3) (semester1,2or3) environmentalor languagemodule)** *IfyouwanttoparticipateatoneofthesemodulespleasecontactDr.H.Müller-Sigmund([email protected]) **IfyouwanttoparticipateatoneofthesemodulespleasecontactDr.H.Ulmer([email protected]) 19 3.Moduledescriptions 3.1ComputinginGeosciences Lecturer(s) Prof.Dr.S.Hergarten Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants ComputinginGeosciences 3wh/45h 105h 16 CRockMech. AndGeodyn. CGeohazards Abbreviations:C–compulsory,E–elective,wh–weekhours Learninggoalsandqualifications Numericaldataanalysis,visualization,andprocessmodelinghavebecomeessentialpartsof quantitative geosciences. Deepening the knowledge on data analysis and visualization and introducing methods of process modeling, this course provides the basics of quantitative methodsusedinseveralothercourses.Goingbeyondtechnicalaspectsofcomputing,data analysis, and visualization, the students learn how to transfer conceptual models into equations and implement solutions in a high-level programming language (MATLAB) using the widespread Finite Difference Methods. As a major qualification, the students shall be able to assess which method is suitable for a given problem and be aware of potential pitfalls. Syllabus The class starts with an introduction to process modeling using simple population models basedonordinarydifferentialequationsundtheirimplementationusingexplicitandimplicit Eulerschemes.Thefollowingmainpartofthemodulecomprisesthebasicequationsbehind the models widely used for modeling mass and heat transport processes, solid mechanics, groundwater flow, and landform evolution based on partial differential equations. After discussing the respective equations, the underlying principles, and their mathematical properties, the simplest numerical techniques in the field of partial differential equations 20 (finite differences, upstream schemes) are discussed. Theory is accompanied by a step-bystep introduction to the MATLAB programming environment and exercises focusing on implementatingthemodelsinMATLABandanalyzingtheresults. Teachingform Lecturemixedwithpracticalexercisesandhomework. Examinationform Achievementoflearninggoals(unmarked): Activeparticipationindiscussingtheexercises Examination: The final marks will be derived by combining the scores reached in the assignments (homework), active participation in the class, and a short written test at the end of the semester.Theweightingofthethreecomponentswillbeannouncedinthebeginningofthe class. Prerequisitesforattending Basic knowledge in mathematics and computing, e.g., on the level of "Quantitative Methoden in der Geologie" or “Modellierung und Datenanalyse” from the B.Sc. Geowissenschaften Usageofthemodule --- Recommendedreading Gerya, T. (2009): Introduction to Numerical Geodynamic Modelling. Cambridge University Press,Cambridge,358. Lecturenotes https://ilias.uni-freiburg.de/login.php 21 3.2ResearchMethodsinGeosciences Lecturer(s) a) Dr.H.Müller-Sigmund;Dr.A.Danilewsky;NN b) Dr.J.-H,May;Dr.G.Wulf c) Prof.Dr.F.Preusser;Prof.S.Hergarten;Dr.C.Rambeau Type Workload Credits Term Cycle Duration CGeomat.and Processes(only a)) 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants a) LaboratoryMethodsin Geomaterials a) 4wh/60h a) 90h a) 15 b) RemoteSensingandGIS b) 2wh/30h b) 45h b) 20 c) 2wh/30h c) 45h c) 20 CRockMech. AndGeodyn. (onlyb)+c)) CGeohazards (onlyb)+c)) c) ToolsandApproachesin Geology Learninggoalsandqualifications Thismoduleintroducesadvancedscientificworkingskillsandmethods.Bythis,itformsthe basisoftheentirecurriculum. a) This interdisciplinary module combines the physical, chemical and crystallographic methods for the full characterization of any material samples. In relation to the overall profile this module provides profound knowledge for all analytical working courses: Aqueous Geochemistry, Advanced Hydrogeology, Isotope Geochemistry, Special Analytical Procedures in Mineralogy. The student gains key competences concerning quantitative material analysis by the use of state-of the-art equipment. The individual qualificationsandskillsofthemodulearespecifiedbelow: Inthecourseofthispracticalmodulestudentsacquaintthemselveswithawidevarietyof physicalandchemicalanalyticaltechniquesavailableattheinstitute.Firstly,theyidentify whichtechniqueistheappropriatetoolforagivengeoscientificproblem.Secondly,they memorizethetheoreticalbackgroundofthetechnique,identifypossiblesourcesoferror, 22 and prepare the geological material for the subsequent analysis. Thirdly, they measure the samples, thereby collecting own practical experience. Fourthly, they undertake a criticaldatainterpretationandevaluation. b) The fields of application of remote sensing show a strong multidisciplinary character including Earth Sciences. The increasing quality, resolution and availability of remote sensing data, especially over the last years, permit unprecedented opportunities for geological and geomorphological analyses with a high measure of precision. Consequently,theuseandapplicationofsuchdatahasbecomeindispensableinmodern geosciences.Thestudentsshouldgainbothatheoreticalandpracticalunderstandingof remotesensingdataandappropriatesoftwareapplications. c) Studentswilllearnhowscientificresearchandappliedstudiesareinitiated,fundedand carriedout.Afterthismoduletheywillunderstandhowscientificarticlesandreportsare structured. They will know about different publication platforms. Approaches how to organise and perform own communications will be trained. Key methods will be presentedandtheirapplicationinpureandappliedresearchwillbediscussed. Syllabus a) This course is designed to introduce the theory, applications, and operation of modern instrumental methods for chemical and physical analyses in environmental, Earth and materials science. Students are introduced to the spectrum of instrumental techniques, whicharestandardinresearchaswellasinindustry,andgainanunderstandingofthe analytical approach to problem solving and data evaluation. To the extent feasible, students get hands-on experience with the machinery in the course of lab exercises, concentratingonconcretesmallanalyticalprojects. b) Students learn the theoretical background and practical experience that is necessary to understandtheapplicationofgeographicinformationsystem(GIS)andremotelysensed data in geological sciences. It introduces them to basic principles of remote sensing as well as key concepts of data acquisition and storage, data visualization and processing, and data interpretation. In the course of this process, suitable software packages for quantitativeanalysis,suchasArcGISbyESRI,willbeusedinadditiontopurequalitative methodswithspecialfocusonvisualimageinterpretation. c) Whilethefirsthalfofthecourseisdedicatedtothebasicunderstandingofthescientific worldandcommunication,thesecondhalfwillconcentrateonscientificmethods. Teachingform a) Lecture + Practice, multimedia introduction into the basics of the methods, hands-on experiencewithdifferentmachineryinsmallgroups(3-4students),oralpresentationof 23 dataandcriticaldatadiscussionwithingroups b) Lectureandpracticalwork c) Lectureandseminar Examinationform Achievementoflearninggoals(unmarked): a) Participationattheexercises b) Regularattendance c) Regularattendance Examination: a) Onemarkedwrittenreport b) +c)Oralpresentation(20%)andwrittenexam(30%)andProjectreport(50%) Prerequisitesforattending a) Basicunderstandingofgeologicalmaterials,B.Sc.level“GeochemicalMethods”or equivalentknowledge b) None c) None Usageofthemodule a) CompulsoryforstudentsinfocusareasGeomaterialsandProcessesandforstudentsfrom theM.Sc.programM.Sc.SustainableMaterials–CrystallineMaterials b) CompulsoryforstudentsinfocusareasGeohazardsandRockMechanics&Geodynamics. c) CompulsoryforstudentsinfocusareasGeohazardsandRockMechanics&Geodynamics. Recommendedreading a) Dinnebier, R.E. & Billinge, S.J.L. (2008): Powder Diffraction: Theory and Practice. RSC Publishing,RSCe-bookcollection. Gill, R. (ed.) (1997): Modern Analytical Geochemistry: An Introduction to Quantitative ChemicalAnalysisforEarth,EnvironmentalandMaterialScientists.Routledge,NewYork, 344. Reed, S.J.B. (2005): Electron microprobe analysis and scanning electron microscopy in 24 geology.CambridgeUniversityPress,Cambridge,206. Reimer, L. (2010): Scanning Electron Microscopy. Springer Series in Optical Sciences 45, 511. b) Lillesand, T.M., R.W. Kiefer., J. Chipman (2015): Remote Sensing and Image Interpretation.JohnWiley&Sons,Inc.:Toronto. c) Lowe,J.,Walker,M.(2014).ReconstructingQuaternaryEnvironments,568pages, Routledge;3edition. Lecturenotes https://ilias.uni-freiburg.de/login.php 25 3.3SeminarandColloquiumI Lecturer(s) a) OrganizedbyDr.M.PoelchauandDr.H.Müller-Sigmund b) Invitedexternalspeakers Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS/SS annual 2terms Course/CourseName Presence Privatestudy Participants a) ResearchSeminar a) 2wh/60h a) 30h a) 30 b) GeoscienceColloquium b) 1wh/30h b) 0h b) 30 CRockMech. AndGeodyn. CGeohazards Learninggoalsandqualifications In-houseseminarsprovideaplatformforfurthergeoscientificconversationandforgaining insightinup-to-dategeologicresearch. Theindividualqualificationsandskillsofthemodulearespecifiedbelow: a) The students participating in the research seminar improve their abilities of presenting scientifictopics.Theydefendtheirresultsinscientificdiscussions.Theyidentifypossible flaws, misinterpretations or inconsistencies in their own work and in those of other lecturers. Students critically dispute scientific topics and use the correct geological terminology. b) The geosciences colloquium of the institute is held weakly and is regarded as the “Windowtotheworldofgeosciences”forstudents.Internationallyrenownedresearchers covering a wide spectrum of different research and applied geo-topics are invited and give high-level talks. The participating students identify up-to-date research topics, improvetheirstateofknowledge,becomeinspiredbyconvincingformsofpresentation andcontributetoscientificdiscussions.Finally,theyrecognizepossiblefieldsofworkfor theirfutureprofessionallifeandareabletoestablishcontactstotheresearchers. Syllabus a) Theresearchseminarisaplatformforpresentingcurrentin-houseresearchtopics.Itis expectedthatstudentspresentresultsoftheirB.Sc.thesis,M.Sc.thesisorresultsofother recentresearchofgeneralinterest.Onaregularbasisdoctoratestudentsreportontheir 26 current state of their Ph.D projects. Likewise staff scientists contribute to the research seminar by presenting conference talks, etc. The research seminar is aimed at inspiring scientificdebatesbetweenstudentsandstaffscientists.Afurtherobjectiveistoinform studentsabouttheresearchtopicsthatareaddressedintheinstitute. b) Presentations on up-to-date research topics, presented by invited and often internationallyrenownedspeakers.Thescientificspectrumcomprisesresearchtopicsof theinstitute(e.g.impact,planetology,structuralgeology,earthhistory,mineral,oreand oil deposits, geohazards, geothermal energy, environmental mineralogy, hydrology, geochemistry, crystal growth) and other branches of geosciences. To enhance the practicalaspectofthecurriculumspeakersfromcompaniesandindustriesarespecifically welcome. Teachingform a) Seminarwithoccasionfordiscussion b) Seminarwithoccasionfordiscussion Examinationform Achievementoflearninggoals(unmarked): a) Regularattendance,ownpresentations b) Regularattendance Examination: --- Prerequisitesforattending a) None b) None Usageofthemodule --- Recommendedreading Pendingonthetopicoftheseminar/colloquium,resp. Lecturenotes 27 https://ilias.uni-freiburg.de/login.php 28 3.4FieldTrips Lecturer(s) Academicstaff(coordinator:Dr.H.Ulmer) Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS/SS - 4terms Presence Privatestudy Participants 50h 20 CRockMech. AndGeodyn. CGeohazards Course/CourseName FieldTripsandVisitstoIndustrial 10days/100h Facilities Learninggoalsandqualifications In this module the core expertise of geoscientists – field work – is trained more extensive than it was possible in the B.Sc. program. Excursions are aimed at testing, applying and accompanyingthetheoreticalknowledgeacquiredinthelecturesandareidealoccasionsfor exchangebetweenstudentsandlecturer. In this module the core expertise of geoscientists – field work – is trained more extensive than it was possible in the B.Sc. program. Excursions are aimed at testing, applying, and accompanyingthetheoreticalknowledgeacquiredinthelecturesandareidealoccasionsfor anexchangebetweenstudentsandlecturer.Fieldtripsaregroupedtogetherwithin-house seminars,becausethelatterprovideanotherplatformforfurthergeoscientificconversation andtogainup-to-dateinformations. Theindividualqualificationsandskillsofthemodulearespecifiedbelow: Upon participation at field trips the students refine their power of observation. Students write concise reports. They enhance higher-order cognitive skills, and inquiry skills, and understandgeologicalprocessesintimeandspace.Studentsimproveingeo-literacyandin knowledge of the regional geology. Visiting at industrial facilities students gain hands-on experienceinmanufacturingprocesses,applicationofgeosciencesinenergyandmaterials’ developmentandproduction,workinglife,andcareerprospects. Syllabus Field trips to rock outcrops play a fundamental role in understanding geological concepts. They are an essential part of the geological learning process in complementing classroom 29 and lab teaching of science concepts. They also provide visual images that are needed to work with more abstract contents of modeling, remote sensing etc. Field trips involve elementsofbothinstructor-leadexplanationandstudentcenteredexploration/discovery. Reviewing the trip afterwards is an important activity for cementing observations and interpretations into a comprehensive sense of conceptual understanding. Field trips range fromdaytripstofieldcampaignsorresidentialcoursesofupto2weeks.Thematicallythey cover a wide variety of topics from understanding the regional geology of an area to studying specific geological phenomena like sedimentation, volcanism, metamorphism or environmentalaspects.“Classical”geologicalareasarevisitedliketheAlps,Iceland,Aeolian Islands,Eifel,BohemianMassif,tonameafew.Visitsatindustrialfacilitiesplayanimportant role linking scientific research and application centered industrial development in geosciences and material sciences. A wide variety of companies and research institutes is visited,rangingfromenergygenerationtowastehandlingandfromrawmaterialproduction tohigh-techmaterialdesign. Teachingform Fieldtrip/Visitatindustrialfacility,practicaltraininginthefieldincludingdataacquisition: (GPS,fabric,samplingstrategies,drilling,etc.) Examinationform Achievementoflearninggoals(unmarked): reports Examination: --- Prerequisitesforattending None Usageofthemodule --- Recommendedreading Pendingonthetopicofthefieldtrip Lecturenotes 30 https://ilias.uni-freiburg.de/login.php 31 3.5GeologicalProject Lecturer(s) Academicstaff(coordinator:Prof.Dr.F.Preusser) Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS WS/SS 1term Course/CourseName Presence Privatestudy Participants GeologicalProject project-specific project-specific projectspecific CRockMech. AndGeodyn. CGeohazards Learninggoalsandqualifications Independent geological projects are aimed at bridging the gap between teaching and research.Studentsdirectlygetinvolvedinresearchspecificmethods.Theydevelopskillsin design and execution of an independent research project, in project management, report writingandtimemanagementaretrained. Syllabus Thetopicsoffered introducetheoreticalandmethodologicalapproachestotheinvestigation and interpretation of geological, or geophysical, or sedimentological or mineralogicalpetrological,orgeochemicalresearchbypracticaland/orlaboratory-basedprograms.They commonly involve the hands-on use of available equipment to conduct a practical field or laboratory-based investigation of one of the topics named above, allowing you to test the theories/practicesencounteredduringlectures. ThesestudiesareundertakenunderthesupervisionofmembersoftheFreiburggeosciences staff. Teachingform Project-specific;initialprojectoutlineandmonitoringofprogressthroughregularmeetings with the supervisor who also offers suitable advice on library search and review of appropriateliterature,dataanalysis,interpretationandpresentation;otherwisemainlyfree timemanagement. 32 Examinationform Achievementoflearninggoals(unmarked): project-specific Examination: Markedreport Prerequisitesforattending project-specific Usageofthemodule project-specific Recommendedreading project-specific Lecturenotes https://ilias.uni-freiburg.de/login.php 33 3.6SeminarandColloquiumII Lecturer(s) a) organizedbyDr.M.PoelchauandDr.H.Müller-Sigmund b) invitedexternalspeakers Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS/SS annual 2terms Course/CourseName Presence Privatestudy Participants a) ResearchSeminar a) 2wh/60h a) 30h a) 30 b) GeoscienceColloquium b) 1wh/30h(15 b) 0h heachterm) CRockMech. AndGeodyn. CGeohazards b) 30 Learninggoalsandqualifications In-houseseminarsprovideaplatformforfurthergeoscientificconversationandforgaining insightinup-to-dategeologicresearch. Theindividualqualificationsandskillsofthemodulearespecifiedbelow: a) The students participating in the research seminar improve their abilities of presenting scientifictopics.Theydefendtheirresultsinscientificdiscussions.Theyidentifypossible flaws, misinterpretations or inconsistencies in their own work and in those of other lecturers. Students critically dispute scientific topics and use the correct geological terminology. b) The geosciences colloquium of the institute is held weakly and is regarded as the “Windowtotheworldofgeosciences”forstudents.Internationallyrenownedresearchers covering a wide spectrum of different research and applied geo-topics are invited and give high-level talks. The participating students identify up-to-date research topics, improvetheirstateofknowledge,becomeinspiredbyconvincingformsofpresentation andcontributetoscientificdiscussions.Finally,theyrecognizepossiblefieldsofworkfor theirfutureprofessionallifeandareabletoestablishcontactstotheresearchers. Syllabus a) Theresearchseminarisaplatformforpresentingcurrentin-houseresearchtopics.Itis 34 expectedthatstudentspresentresultsoftheirB.Sc.thesis,M.Sc.thesisorresultsofother recentresearchofgeneralinterest.Onaregularbasisdoctoratestudentsreportontheir current state of their Ph.D projects. Likewise staff scientists contribute to the research seminar by presenting conference talks, etc. The research seminar is aimed at inspiring scientificdebatesbetweenstudentsandstaffscientists.Afurtherobjectiveistoinform studentsabouttheresearchtopicsthatareaddressedintheinstitute. b) Presentations on up-to-date research topics, presented by invited and often internationallyrenownedspeakers.Thescientificspectrumcomprisesresearchtopicsof theinstitute(e.g.impact,planetology,structuralgeology,earthhistory,mineral,oreand oil deposits, geohazards, geothermal energy, environmental mineralogy, hydrology, geochemistry, crystal growth) and other branches of geosciences. To enhance the practicalaspectofthecurriculumspeakersfromcompaniesandindustriesarespecifically welcome. Teachingform a) Seminarwithoccasionfordiscussion b) Seminarwithoccasionfordiscussion Examinationform Achievementoflearninggoals(unmarked): a) Regularattendance,ownpresentations b) Regularattendance Examination: --- Prerequisitesforattending a) None b) None Usageofthemodule --- Recommendedreading 35 Pendingonthetopicoftheseminar/colloquium,resp. Lecturenotes https://ilias.uni-freiburg.de/login.php 36 3.7AdvancedGeochemistry Lecturer(s) a) Prof.Dr.W.Siebel b) Prof.Dr.W.Siebel Type Workload Credits Term Cycle CGeomat.and Processes 150h 5ECTS a)WS 2years 1term cycle b)WS Duration ERockMech. AndGeodyn. EGeohazards Course/CourseName Presence Privatestudy Participants a) GeochemicalEvolutionofthe Earth’sMantleandCrust a) 2,4wh/36h a) 54h a) 25 b) 1,6wh/24h b) 36h b) 25 b) MarineGeochemistry Learninggoalsandqualifications Themodulecontainstwocourses.Coursea)givesinsightintothecompositionandevolution of the Earth’s mantle and crust. Course b) covers the key aspects of marine geochemistry and provides the student with the basic oceanographic concepts. The individual qualificationsandskillsofthemodulearespecifiedbelow: a) The silicate Earth encompasses the crust and mantle. On successful completion of the course students should be able to know how these two major reservoirs were created andmodifiedovergeologicaltimeandaboutthemagmaticprocesseswhichleadtotheir presentcomposition.Basalticrocksfrommid-oceanridgesandintraplatevolcanoesplace constraintsonthecompositionoftheunderlyingmantlethepresenceofsmall-orlargescale heterogeneities. Subduction zone volcanism causes the large earthquakes and volcanichazardbutitalsohelpstounderstandtheprocesseswhichleadtotheformation andcompositionofthecontinentalcrust. b) In this course students will develop skills for understanding the basic principles and theoriesassociatedwiththegeochemicalprocessesoccurringintheoceans.Thestudent will be familiar with sources and sinks of chemical elements or compounds, their distributionsandtheirvariabilityintheoceanicsystemandalsogatheranunderstanding of how marine and coastal environments are impacted by natural climate variability or humanactivities. 37 Syllabus a) The course provides essential insight into magmatic processes associated with plate boundary environments (mid-ocean ridges and subduction zones) and within plate regions(oceanislandsandvolcanicplateaus).Thegeochemicalandisotopiccomposition ofthedifferentmantlereservoirswillbediscussedandmagmaticandtectonicprocesses along subduction zones will be explored. The lecture also focusses on fundamental processes that gave rise to the characteristic geochemical features of the continental crust and the different mantle reservoirs. These topics provide the basis for homework questionsandstudentreports. b) Thiscourseprovidesanintroductiontotheconcepts,themethodsandtheapplicationsof marinegeochemistry.Teachingtopicsincludebasicoceanographicprinciplesoperatingin the marine realm, ocean basin bathymetry, the chemical properties of seawater, trace elements and isotopes and their distribution in the water column, the marine carbon cycle, ocean circulation, hydrothermal processes and life on the sea floor, as well as formation and distribution of marine sediments. Marine mineral resources and environmentalissueswillalsobecovered. Teachingform a) Lecture b) Lecture Examinationform Achievementoflearninggoals(unmarked): a) Regularattendance b) Regularattendance Examination: Writtenexamination Prerequisitesforattending none Usageofthemodule ThemodulecoverstopicsrelatedtothemajorgeologicalsystemssuchastheEarth'scrust 38 mantleanditsoceansandtheunderstandingoftheircomposition Recommendedreading a) Allègre,J.C.(2008)IsotopeGeology,CambridgeUniversityPress,Cambridge,512. White,M.W.(2013)Geochemistry,Wiley-Blackwell,NewYork,637. White,M.W.(2015)IsotopeGeochemistry,Wiley-Blackwell,NewYork,496. b) Roy-Barman,M.&Jeandel,C.(2016)MarineGeochemistry,OxfordUniversityPress,432. Chester R. & Jickells (2012) Marine Geochemistry. 3rd Edition. Blackwell Scientific Ltd., Oxford,411. Lecturenotes https://homepages.uni-tuebingen.de/wolfgang.siebel/ 39 3.8Melts,Magmas,Crystals Thismodulewillbeofferedinthewintersemester2017/18andcontinuebiannually Lecturer(s) Prof.Dr.D.Dolejš Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS 2years 1term cycle* Course/CourseName Presence Privatestudy Participants Melts,Magmas,Crystals 4wh/60h 90h 25 ERockMech. AndGeodyn. EGeohazards Learninggoalsandqualifications Theprincipalobjectivesofthiscoursearequantitativedescriptionofatomisticstructureof silicate melts, equilibrium and transport properties of silicate melts, use of liquidus phase diagrams, kinetics of silicate melts related to crystal nucleation and growth, and interpretationofmainprocessesofmagmadifferentiationbasedonmassbalanceofmajor andtraceelements.Thestudentslearnhowtoprocessesanalyticalgeochemicaldatafrom igneousrocksandidentifygeologicalsettingsofmagmaformation,andtheyobtainversatile knowledgeofmagmaticrock-formingpropertiesintheEarth'scrustandmantle. Syllabus 1.Magmacompositionandproperties:volatiles,density,viscosity 2.Magmaticcrystallization,texturesandrheologicalthresholds 3.Phasediagrams 4.Phaseequilibriumtoolsandthermobarometry:sessionwithMELTS 5.Magmaticprocesses:flow,mixing,settling,immiscibility,assimilation 6.Magmaticprocesses:eruptivestyles 7.Classificationandsettingsofigneousrocks:norm,series,igneousrockassociations 8.Interpretingsourcesofigneousrocks:traceelementsandisotopes 9.Mantlemeltingandmid-oceanridges 10.Magmaticarcs 11.Crustalmelting 40 12.Continentalcollision:graniticrocks 13.Continentalbreakup:largeigneousprovincesandlayeredintrusions 14.Continentalbreakup:alkalinerocks,kimberlitesandcarbonatites Teachingform Lecture(2wh),Practicalsession,individualprojectsandsoftwaremodeling(2wh) Examinationform Achievementoflearninggoals(unmarked):homeworkassignmentsandprojects Examination:writtenexamination Prerequisitesforattending none Usageofthemodule M.Sc.Geology,M.Sc.SustainableMaterialsCrystallineMaterials Recommendedreading WinterJ.D.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition.Prentice Hall,NewYork,702p. BestM.G.,2002.IgneousandMetamorphicPetrology.2ndedition.Wiley-Blackwell,752p. PhilpottsA.,AgueJ.J.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition. CambridgeUniversityPress,Cambridge,684p. Lecturenotes https://ilias.uni-freiburg.de/login.php 41 3.9Minerals,Transformations,Reactions Thismodulewillbeofferedinthewintersemester2016/17andcontinuebiannually Lecturer(s) Prof.Dr.D.Dolejš;Dr.CharlotteRedler Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS WS 2years 1term cycle* Course/CourseName Presence Privatestudy Participants Minerals,Transformations, Reactions 4wh/60h 90h 25 ERockMech. AndGeodyn. EGeohazards Learninggoalsandqualifications Thestudentsacquireabilitytoidentifysolid-statereactionsforawidepressure-temperature rangeofregionalandcontactmetamorphicconditions,andperformchemographicanalysis ofmineralassemblages.Theylearnprinciplesofmineralthermodynamics,inversemodeling and geothermobarometry including working knowledge of software packages Thermocalc, TheriakandPerplex.Attentionwillbepaidtodeformationmechanismsinnaturalrocksand interpretationofdeformationandrecrystallizationtexturesinthepolarizationmicroscope. Studentswillbeabletointerpretmetamorphicconditionsassociatedwithdiversetectonic settingsinthelithosphere. Syllabus 1.Metamorphicgrades,zonesandfacies 2.Metamorphicprotolithsandtheirchemicalcomposition 3.Graphicalanalysisofmetamorphicassemblages 4.MineralreactionsinvolvingH2OandCO2 5.Mineralthermodynamics,geothermobarometry:sessionwithThermocalc 6.Metamorphicphasediagrams:sessionwithPerplex/Theriak 7.Metamorphictextures 8.Crystaldeformationandrecrystallization 9.Deformationlawsandmicrostructures 42 10.Metamorphicsettings,heattransferincontactaureolesandorogens 11.Ocean-floormetamorphism 12.Subductionandexhumationofmetamorphicrocks 13.Continentaltectonicsandmetamorphism 14.Partialmeltingduringmetamorphism Teachingform Lecture(2wh),Practicalsession,individualprojectsandsoftwaremodeling(2wh) Examinationform Achievementoflearninggoals(unmarked):homeworkassignmentsandprojects Examination:writtenexamination Prerequisitesforattending none Usageofthemodule M.Sc.Geology,M.Sc.SustainableMaterialsCrystallineMaterials Recommendedreading WinterJ.D.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition.Prentice Hall,NewYork,702p. VernonR.H.,ClarkeG.L.,2009.PrinciplesofMetamorphicPetrology.CambridgeUniversity Press,Cambridge,446p. BestM.G.,2002.IgneousandMetamorphicPetrology.2ndedition.Wiley-Blackwell,752p. PhilpottsA.,AgueJ.J.,2009.PrinciplesofIgneousandMetamorphicPetrology.2ndedition. CambridgeUniversityPress,Cambridge,684p. Lecturenotes https://ilias.uni-freiburg.de/login.php 43 3.10AdvancedAnalyticalMethods Lecturer(s) a) Dr.H.Müller-Sigmund,NN b) PDDr.A.Danilewsky;Prof.Dr.M.Fiederle;Dr.T.Sorgenfrei;Dr.L.Kirste Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS SS annual 1term Presence Privatestudy ERockMech. AndGeodyn. EGeohazards Course/CourseName Participants a) AdvancedAnalyticalMethods a) 3wh/45h a) 15h a) 9 b) High-ResolutionSpectroscopy b) 2wh/30h b) 60h b) 15 Learninggoalsandqualifications This module provides practical and theoretical skills in advanced analytical methods importantforgeoscientistsinterestedingeomaterials.Theindividualqualificationsandskills obtainedwithinthismodulearespecifiedbelow: a) Studentsareabletopreparerocksandmineralsforspecificanalyticalapplications.They employ techniques like cathodoluminescence, heating-freezing stage for fluid inclusion studies, or reflected light microscopy on various sample materials. They amplify their knowledgeinX-raytechniquesandareabletodeduceonthecompositionandformation conditionsofthesesamples. b) For course information please see the current M.Sc. Sustainable Materials – Crystalline Materialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium Syllabus a) Theemphasisofthiscourseisonimportantmineralogicaltechniquesusedinoregeology, petrology, geomaterials, soil science, and environmental science. Students explore various methods, e.g. cathodoluminescence, fluid inclusions on heating-freezing stage, reflected light microscopy, clay mineral preparation techniques, confocal laser scanning microscopy, both in theory and in the laboratory, where hands-on experience is an essentialpartofthecourse. 44 b) For course information please see the current M.Sc. Sustainable Materials – Crystalline Materialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium Teachingform a) Lecture+laboratorysessions(smallgroupsof2-3students) b) ForcourseinformationpleaseseethecurrentM.Sc.SustainableMaterials–Crystalline Materialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium Examinationform Achievementoflearninggoals(unmarked):a)presenceb)Analysisofexperimentaldata Examination:Markedwrittenreportsona)andwrittentestonb) Prerequisitesforattending a) ResearchMethodsinGeosciences–LaboratoryMethodsinGeomaterials b) none Usageofthemodule M.Sc.Geology Recommendedreading a)Craig,J.R.&Vaughan,J.R.(1994):Oremicroscopyandorepetrography.Wiley,NewYork, 434. Moore,D.M.&Reynolds,R.C.(1995):X-raydiffractionandtheidentificationandanalysis ofclayminerals.OxfordUniversityPress,Oxford,378. Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (2000): Cathodoluminescence in geosciences.Springer,Berlin,517. Shepherd, T.J., Rankin, A.H. & Alllderton, D.H.M. (1985): A practical guide to fluid inclusionstudies.Blackie,Glasgow,239. b)ForcourseinformationpleaseseethecurrentM.Sc.SustainableMaterials–Crystalline Materialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium 45 Lecturenotes https://ilias.uni-freiburg.de/login.php,http://www.krist.uni-freiburg.de/service/edv.php 46 3.11Fluid-RockInteraction Lecturer(s) Prof.Dr.D.Dolejš Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants Fluid-RockInteraction 4wh/60h 90h 15 ERockMech. AndGeodyn. EGeohazards Learninggoalsandqualifications TheprocessesofinteractionofrockswithwaterandaqueousfluidsneartheEarth’ssurface and under geothermal and hydrothermal conditions are subject of this module. The individualqualificationsandskillsofthemoduleareasfollows: On the successful completion of this module part students acquire detailed knowledge of hydrochemical cycle of water and aqueous fluids in the lithosphere. They learn how to process geochemical data from natural and hydrothermal waters, calculate and interpret their speciation at ambient and elevated temperatures and pressures. They are able to constructandevaluatefundamentalmineralequilibria,whichgovernthefluidcomposition, and interpret dissolution and precipitation mechanisms. They learn principles of the mass conservation and fluid transport theory, and are able to construct and calculate simple models of mineral dissolution, precipitation, and flux estimates. They acquire working knowledge of mass balancing in altered and metasomatic rocks and can quantitatively evaluatemasschangesandelementtransportinhydrothermalsystems. Syllabus The module content focuses on the quantitative treatment of interactions between water and rock environments under elevated temperatures and pressures in the Earth’s lithosphere. Particular attention is paid to the types of water and other fluids in the lithosphereandtheirchemicalcomposition,phaseequilibriaofH2O,salineandgas-bearing fluidsunderelevatedtemperaturesandpressures,chemicalequilibriainaqueoussolutions and interactions with oxide, silicate and carbonate minerals, thermodynamic modeling of 47 H2Oandaqueousspeciesathightemperaturesandpressures,solubilityandprecipitationof minerals from cooling aqueous fluids, interpretation of rock alteration record in terms of transport theory and estimation of fluid fluxes, and hydrothermal systems in various geological settings and their importance for energy and mineral resources (hydrothermal deposits). Teachingform Lecture(2wh),practicalsession(2wh) Examinationform Achievementoflearninggoals(unmarked):homeworkassignment Examination:onemarkedwrittenexam Prerequisitesforattending none Usageofthemodule The module is recommended to students enrolled in mineralogy, petrology, geochemistry, hydrology, hydrogeology or engineering geology. It provides a practical approach to chemistry of natural waters and their interaction with rocks under elevated temperatures andpressures. Recommendedreading DreverT.,1998.TheGeochemistryofNaturalWaters.PrenticeHall,440p. Anderson G. M., 2005. Thermodynamics of Natural Systems. Cambridge University Press, 648p. Lecturenotes https://ilias.uni-freiburg.de/login.php 48 3.12IsotopeGeochemistry Lecturer(s) a) Prof.Dr.W.Siebel b) Prof.Dr.J.Eikenberg Type Workload Credits Term Cycle Duration CGeomat.and Processes 150h 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants a) IsotopeGeochemistryI a) 2wh/30h a) 45h a) 16 b) IsotopeGeochemistryII b) fivedays/30h b) 45h b) 16 ERockMech. AndGeodyn. EGeohazards Learninggoalsandqualifications Theindividualqualificationsandskillsofthemodulecoursesa)andb)arespecifiedas follows: Students learn about the principles of stable and radiogenic isotopes. They realize that isotopes are indispensable tools for reconstructing various Earth processes, palaeoenvironmental conditions and for radiometric dating. They examine a variety of isotope systemsanddatingtechniques,andbecomefamiliarwithpossiblesourcesoferror.Several lectures include classroom exercises on the same topic. At the end of the course the students will be familiar with the fundamentals of isotope geochemistry and know which isotopicsystemissuitabletosolveacertaingeologicalproblem.She/hewillalsobeableto interpretisotopedataandunderstandEarthprocessesthroughisotopegeochemistry. Syllabus The focus of both courses a) & b) is on stable and radiogenic isotope systems and their principles and applications in Geology and Environmental Science. Topics and systems include: a) K-ArandAr-Armethods,Sm-Nd,Lu-HfandRe-Ossystems;isotopesastracersofsources andprocesses;presentationofcasestudies b) Radionuclides and their measurement techniques, U-Th-Pb, Rb-Sr methods, U-Series 49 Geochemistry, Radiocarbon dating, fractionation of stable isotopes of H, C, N, O and S, climatechangegeochemistry Teachingform a) Lecture b) Lecture(shortcourseattheendofsummersemester) Examinationform Achievementoflearninggoals(unmarked):regularattendance a)&b)Examination:onemarkedwrittenexamination Prerequisitesforattending Recommendedfora)&b):basicknowledgeingeochemistryattheleveltoB.Sc.course “Geochemistry” Usageofthemodule The module is recommended to students enrolled in mineralogy, petrology, geochemistry, hydrology, hydrogeology or engineering geology. It provides a practical approach to chemistry of natural waters and their interaction with rocks under elevated temperatures andpressures. Recommendedreading a)+b) Allègre,J.C.(2008):IsotopeGeology,CambridgeUniversityPress,512. Attendorn, H.G., Bowen (1997): Radioactive and Stable Isotope Geochemistry, Chapman & Hall,London,522. Bourdon, B., Henderson, G.M., Lundstrom, C.C., Turner, S.P. (2003) (Eds) Uranium-series geochemistry.Vol.52:ReviewinMineralogyandGeochemistry,656. Faure,G.&Mensing,T.M.(2005):Isotopes:PrinciplesandApplications.ThirdEdition,Wiley, NewYork,896. Dickin,A.P.(2005:)Radiogenicisotopegeology,CambridgeUniversityPress,492. Hoefs,J.(2004):Stableisotopegeochemistry,Springer,Berlin,Heidelberg,NewYork,244. SharpZ.D.(2006)Principlesofstableisotopegeochemistry,PrenticeHall,360. 50 Lecturenotes https://homepages.uni-tuebingen.de/wolfgang.siebel/ https://ilias.uni-freiburg.de/login.php 51 3.13Petrophysics This module will take place for the first time in winter term 2017/2018. The module descriptionswillbeaddedatthattime. 52 3.14PlanetaryDynamics Lecturer(s) Prof.Dr.T.Kenkmann;Dr.G.Wulf Type Workload Credits Term Cycle Duration EGeomat.and Processes 150h 5ECTS WS 2years 1term cycle Course/CourseName Presence Privatestudy Participants PlanetaryDynamics 3wh/45h 105h 25 CRockMech. AndGeodyn. EGeohazards Learninggoalsandqualifications The rapid technological development in remote sensing and the substantial progress in spaceexplorationdelivergeoscientistswithavastamountofnewgeologicalinformationson the great number of planets, moons, dwarf planets, asteroids and comets of our solar system. The implementation of planetary geology is a unique selling point of Freiburg´s MasterGeologyprograminGermany. Theindividualqualificationsandskillsofthemodulearespecifiedbelow: WhyistheSolarSystemthewayitis?Studentsattendingthecoursesuccessfullyknowwhy. The students describe the planetary bodies by means of their physical, chemical, and astronomical boundary conditions. They can interpret surface features and conclude on dynamic interior and exterior geological processes that are dominant on and within these bodies.Thestudentsapplyremotesensingtechniquesincombinationwithgeo-information systems (GIS) to unravel the history of planets. Students understand that the evolution of the Earth and life to its present state is a consequence of a specific set of planetary boundary conditions. Students recapitulate the strategies, boundary conditions, requirementsandmajorfindingsofvariousspacemissions. Syllabus Understanding Earth requires a planetological perspective. The course starts with a grand tourthroughoursolarsystem.Theformation(accretion,differentiation)ofthesolarsystem andtheplanetologicalboundaryconditionsandphysicalpropertiesofplanetarybodiesare given. Our knowledge on the solar system is closely linked with the technological development of space craft and exploration techniques.. The practical course deals with 53 remotesensingmethodsandimagery.Studentsshallinterpretplanetarysurfacesbymeans ofactivegeologicalprocesses.Volcaniceruptionsandtectonicactivitiesofterrestrialplanets are linked with the interior structure of these bodies. Planetary surface processes (fluvial, aeolian, impact) and atmospheres are further topics that are compared between different planetarybodies.MinorbodiesintheSolarsystemoftheasteroidbelt,theKuiperbeltand theOortcloudareinvestigatedaswell.Thegiantplanetsoftheoutersolarsystemandtheir satellitescompletetheintroductiontothesolarsystem. Teachingform Lecturewithaudio-visualdemonstrations,numericalsimulationsandhighspeedvideosof experiments.Practicalpartpartlyatthepolarizingmicroscope.Investigationofimpactite rocksandmeteorites.Excercises.Eachparticipantpresentsaspacemissioninanoraland writtencontribution. Examinationform Achievementoflearninggoals(unmarked): completionofexercises,oralpresentationandreport Examination: Onemarkedwrittenexam Prerequisitesforattending Standardknowledgeincomputationalgeosciences Usageofthemodule Note that the module is only offered biannually in the winter term. It is alternating with Impactgeology.Theparticipationatthelatterisstronglyrecommended. Recommendedreading McBride,N.&Gilmour,I.(eds)(2003)Anintroductiontothesolarsystem.OpenUniversity, CambridgeUniv.Press,412p. McSween, H.Y. (1999): Meteorites and their parent planets. Cambridge University Press, Cambridge,309. Beatty, J.K. & Chaikin, A. (eds) (1990). The new solar system. 326 pp., Cambridge Univ. Press. 54 Taylor,S.R.(1993)SolarSystemEvolution.Anewperspective.305pp.LPI Waters, T.R. and Schultz, R.A. (2010) Planetary Tectonics. 518 pp. Cambridge University Press. Lecturenotes https://ilias.uni-freiburg.de/login.php 55 3.15RockMechanics Lecturer(s) a) Prof.Dr.T.Kenkmann;Dr.M.Poelchau b) Dr.M.Poelchau;Prof.Dr.T.Kenkmann Type Workload Credits Term Cycle Duration EGeomat.and Processes 150h 5ECTS WS 2years 1term cyce Course/CourseName Presence Privatestudy Participants a) StressandStrain a) 2wh/30h a) 45h a) 25 b) BrittleRockDeformation b) 2wh/30h b) 45h b) 25 CRockMech. AndGeodyn. EGeohazards Learninggoalsandqualifications Theindividualqualificationsandskillsofthemodulearespecifiedbelow: a) Thesuccessfulstudentisgettingacquaintedwithmatrixcalculationstocalculateprincipal stressandstrainstatesinrocksandtodetermineorientationoftheprincipalaxisofstress and strain. Students use graphical techniques to determine normal and shear stresses. Students become familiar with various methods of paleo-stress measurement and the measurementofrecentstressfieldsinthecrust.Thequantificationofstrainaccumulated inrocksistrainedaswell.Studentsgetfamiliarwithconnectingstressandstrainislinear isotropicelasticmaterials. b) Studentsbecomefamiliarwiththeconceptsofrockdeformationandknowhowtoderive rock mechanical characteristics such as the tensile strength, uniaxial compressive strength, Mohr-Coulomb strength, dynamic and static friction, Poisson ratio, Young Modulus,TangentModulus,andthedynamicincreasefactor. Syllabus a) Forceswhichareresponsibleforthedeformationsoftheearth’scrustactinstantaneously andcannotbestoredinrocksthroughtime.Deformationsofrocksarepersistantandall the studied deformations are old, but the related stresses are not visible any more. Furthermoreitisimpossibletomeasurestressdirectlyandonlyveryspecialfabricsallow to describe state and direction of stresses. Nevertheless, one of the major goals of the 56 lectureistounderstandthedistributionofforcesintheearthandhowthoseforcesactto produce the different structures. There are lots of practical reasons to do this: earthquakes, oil well blowouts, motor of plate tectonics, landslides etc. The deals with stress acting on a plane and stress at a point leading to the concept of principle and deviatoric stresses, which mathematically are described by stress tensor and 3x3 stress matrix. Different states of stresses and stress fields are introduced and presented methodsofmeasurementsincludefault-slipanalysis,stylolithes,wellborebreak-out,etc. The strain concept is mathematically based on continuous deformation thus strain is a branch continuum mechanics. In nature deformation is much more complex and far beyondbeingcontinuous.Inthislecturealldifferentaspectsofadeformingrocksystem are introduced i.e. homogeneous vs. heterogeneous strain, progressive strain, infinitesimal vs. finite strain. We introduce to various quantitative strain measurement techniquesincludingFryandRf-phi. b) Brittle rock deformation is concerned with evaluating, through controlled laboratory experiments, the effects of environmental and material factors on the deformational behaviorofrocks.Thecoursedealswithrockelasticity,friction,variousmodesofbrittle failure, brittle-to-ductile transition, plastic deformation, and dynamic deformation. The courseconsistsofatheoreticalpartandapracticalpart. Teachingform a) Lecture+Exercises,calculationthestateofstressbymeansoftensorcalculations b) Lecture,exercisesandlaboratorywork Examinationform Achievementoflearninggoals(unmarked): a) Homework b) Reportoftheexperimentalanalyses Examination: Writtenexam Prerequisitesforattending a) ComputinginGeosciences b) ComputinginGeosciences 57 Usageofthemodule ---- Recommendedreading a) Bayly,B.(1991):Mechanicsinstructuralgeology.Springer,NewYork,253. Means,W.D.(1976):StressandStrain.Springer,NewYork,339. Nelson, R.A. (2001): Geologic analysis of naturally fractured reservoirs. Gulf Publishing Company,Houston,352. Pollard, D.D. & Fletcher, R.C. (2005): Fundamentals of Structural Geology. Cambridge UniversityPress,Cambridge,512. Fossen,H.(2010).StructuralGeology.Cambridge.Univ.Press.463p. Ramsay, J.G. & Huber, M.I. (1983): The techniques of modern structural geology Vol 1: StrainAnalysis.AcademicPress,London,307. Ramsay, J.G. & Lisle, R.J. (2000): The techniques of modern structural geology Vol 3: Applicationsofcontinuummechanicsinstructuralgeology.AcademicPress,London,360. b) Patterson,M.S.andWong,T.F.(2005)ExperimentalRockDeformation-TheBrittleField. Springer. Jaeger,J.C.,Cook,N.G.W.,Zimmerman,R.(2007)FundamentalsofRockMechanics.4th edition.488p.Wiley&Sons. Lecturenotes https://ilias.uni-freiburg.de/login.php 58 3.16EngineeringGeologyandGeotechnics Lecturer(s) Prof.Dr.F.Preusser,J.Miocic Type Workload Credits Term Cycle Duration 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants a) IntroductiontoEngineering Geology a) 2wh/30h a) 45h a) 16 b) 2wh/30h b) 45h b) 16 CRockMech. andGeodyn. 150h EGeohazards EGeomat.and Processes b) GeotechnicalProjects Abbreviations:C–compulsory,E–elective,wh–weekhours Learninggoalsandqualifications Many student will find work in the field of engineering and environmental geology. This courseaimatprovidingthenecessarybasicbackgroundinthisfield.Scholarswillbefamiliar withthebasicconcepts,nomenclatureandproblemsofappliedgeologyandhenceshould beabletocommunicateaboutandapproachappliedaspectsingeosciences. Syllabus a) Thecoursewillintroducebasicconcepts,nomenclatureandproblemsofappliedgeology with a focus on physical properties of unconsolidated sediments (soils). This will be combinedwithsomepracticalworkonbasicmethodsandapproaches. b) Students will put together an oral presentation on a selected geotechnical projects and willpresentanddiscusthisinclass. Teachingform a) Lecturemixedwithpracticalexercises b) Seminar Examinationform Achievementoflearninggoals(unmarked): 59 a) Activeparticipationintheexercises b) Attendanceoftheseminar Examination: a) Writtenororalexamination(60%),labreport(10%) b) Oralpresentation(30%) Prerequisitesforattending BasicknowledgeinEarthSciences Usageofthemodule CompulsoryinfocusareaRockmechanicsandgeodynamics,Electiveinfocusareas Geomaterialsandprocesses,Geohazards Recommendedreading Bell:EngineeringGeology,Butterworth-Heinemann;2nded. Lecturenotes https://ilias.uni-freiburg.de/login.php 60 3.17Geophysics Lecturer(s) Prof.Dr.S.Hergarten,T.Krüger Type Workload Credits Term Cycle Duration 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants Near-SurfaceGeophysics 3sppw/45h 105h 25 CRockMech. andGeodyn. 150h Abbreviations:C–compulsory,E–elective,wh–weekhours Learninggoalsandqualifications Geophysical methods of subsurface exploration have received a growing interest in many fields of geosciences during the previous decades. The module provides a basic understandingofthegeophysicalmethodsmostrelevantfortheexplorationoftheshallow subsurface. The students learn which of the techniques is most appropriate under given conditions,toanalyzetherespectivefielddata,andhowtousetheavailableinstruments. Syllabus The module focuses on the methods most relevent for the exploration of the shallow subsurface: • seismics • resistivitymethods • geomagnetics • ground-penetratingradar Both the theory behind the methods and the respective techniques of data analysis are considered. Understanding is deepened by exercises in the class, homework, and experimentsinfield. Teachingform Lectureaccompaniedbyhomeworkandfieldexperiments. Examinationform Themarkswillbederivedbycombiningthescoresreachedintheassignments(homework), reportsofthefieldwork,andashortwrittentestattheendofthesemester.Theweighting 61 ofthethreecomponentswillbeannouncedinthebeginningoftheclass. Prerequisitesforattending Basic knowledge in programming (MATLAB) on the level of the module 3.1 “Computing in Geosciences”. Usageofthemodule CompulsoryinfocusareaRockmechanicsandgeodynamics Recommendedreading Telford,W.M.,Geldard,L.P.&Sheriff,R.E.(1991):AppliedGeophysics.Cambridge UniversityPress,792. Burger, H. R., Sheehan, A. F. & Jones, C. H. (2006): Introduction to Applied Geophysics: ExploringtheShallowSubsurface.W.W.Norton&Company,554. Lecturenotes https://ilias.uni-freiburg.de/login.php 62 3.18Hydrogeology Lecturer(s) a)Prof.Dr.IngridStober b)Dr.R.Martinez Type Workload Credits Term Cycle Duration EGeomat.and Processes 150h 5ECTS a) SS annual 2terms b) WS CRockMech. AndGeodyn. EGeohazards Course/CourseName Presence Privatestudy Participants a) Hydrogeology a) 2wh/30h a) 60h a) 25 b) AqueousGeochemistry exceptionallyinWS2016/17 b) 2wh/30h b) 60h b) 25 Learninggoalsandqualifications TheprocessesofinteractionofrockswithwaterandaqueousfluidsneartheEarth’ssurface and under geothermal and hydrothermal conditions are subject of this module. The individualqualificationsandskillsofthemoduleareasfollows: On the successful completion of this module part students acquire detailed knowledge of hydrochemical cycle of water and aqueous fluids in the lithosphere. They learn how to process geochemical data from natural and hydrothermal waters, calculate and interpret their speciation at ambient and elevated temperatures and pressures. They are able to constructandevaluatefundamentalmineralequilibria,whichgovernthefluidcomposition, and interpret dissolution and precipitation mechanisms. They learn principles of the mass conservation and fluid transport theory, and are able to construct and calculate simple models of mineral dissolution, precipitation, and flux estimates. They acquire working knowledge of mass balancing in altered and metasomatic rocks and can quantitatively evaluatemasschangesandelementtransportinhydrothermalsystems. Syllabus a) This advanced course deepens the basic fundamentals from the introductory course of the B.Sc. program. Its focus is on parameters that determine the properties of groundwater reservoirs and the consequences of the reservoir properties for groundwater flow. Groundwater in low-permeability rocks and in fractured hardrock 63 aquifers builds the bridge to the fields “Geothermal Energy” and “Environmental Geochemistry”. b) Themodulecontentfocusesonthequantitativetreatmentofinteractionsbetweenwater androckenvironments.Particularattentionispaidtothetypesofwaterandotherfluids in the lithosphere and their chemical composition, chemical equilibria in aqueous solutions and interactions with oxide, silicate and carbonate minerals, thermodynamic modelingofH2Oandaqueousspeciesathightemperaturesandpressures,solubilityand precipitationofmineralsfromcoolingaqueousfluids. Teachingform a) Lecture+Seminar,discussionofresults b) lecture(2wh),practicalsession(2wh) Examinationform Achievementoflearninggoals(unmarked):homeworkassignments Examination:markedwrittenexamcoveringthecontentsof(a)and(b) Prerequisitesforattending none Usageofthemodule The module is recommended to students enrolled in mineralogy, petrology, geochemistry, hydrology, hydrogeology or engineering geology. It provides a practical approach to chemistry of natural waters and their interaction with rocks under elevated temperatures andpressures. Recommendedreading a) Bear,J.(1979):HydraulicsofGroundwater.McGraw-Hill,NewYork,567. b) DreverT.,1998.TheGeochemistryofNaturalWaters.PrenticeHall,440p. AndersonG.M.,2005.ThermodynamicsofNaturalSystems.CambridgeUniversityPress, 648p. Lecturenotes 64 https://ilias.uni-freiburg.de/login.php 65 3.19VolcanicHazards Lecturer(s) a) Dr.V.May b) Dr.V.May Type Workload Credits Term Cycle Duration EGeomat.and Processes 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants a) VolcanologyandVolcanic Hazards a) 2wh/30h a) 60h a) 25 b) 2wh/30h b) 30h b) 25 ERockMech. AndGeodyn. CGeohazards b) VolcanicHazardsCaseStudies Learninggoalsandqualifications Thesubjectisdividedintotwomainblocksoneconcentratingonvolcanologyandvolcanic hazards(theoreticalbackground)andthesecondfocusingonthecurrentstateofresearch onvolcanichazards(seminarseries). a) This part of the module is designed in a source to surface structure; from the essential processesoccurringinthemagmaticchambertohowmagmaeruptsandthediversityof volcanic structures on the Earth’s surface. During the first half of the semester the students will learn; basic concepts in volcanology, magmatic chamber zonation, lava rheology and its relationship with gases and chemical composition, as well as different typesofvolcaniceruptions,depositsandstructures. The second half of the semester links, the volcanic aspects learned during the first half, with the effects of volcanic products on the civilization. During this part, direct and indirect volcanic hazards, as well as the implications of large volcanic eruptions will be learn.Inaddition,keyconceptsininvolcanomonitoringandvolcanoriskassessmentwill bediscussed. Thestudentsshoulddevelopagoodunderstandingofvolcanicprocesses,forms,deposits andhazards.Also,theywilldevelopposterpresentationskills. b) The volcanic hazards seminar series, aims to provide a solid overview of the current researchonvolcanichazardsaswellastoaidindevelopingcriticalthinking.Inaddition, 66 thevolcanichazardscasestudiesseminarprovidesthestudentswiththeopportunityto conducttheirownresearchproject.Thestudentsshoulddevelopin-depthknowledgeof anaspectofvolcanichazardsresearch. Syllabus a) Thefirstpartofthesemesterfocusedonbasicconceptsinvolcanologyfrommeltingto volcanic edifices and sediments. During the second half several aspects of volcanic hazardswillbelearn. b) Duringtheseminar,opendiscussiononanaspectofvolcanichazardswillbeconducted. At the end of the semester each student will have the opportunity to research on the hazardsofaparticularvolcano. Teachingform a) Lectureandpresentation b) Seminarandpresentation Examinationform Achievementoflearninggoals(unmarked): Regularattendanceofbothcourses Submissionofpapersummarythedaybeforetheseminarseries Examination(marked): a) Posterpresentation(20%)andwrittenexam(30%) b) Petvolcanopresentation(20%),finalreport(30%) Prerequisitesforattending None Usageofthemodule CompulsoryforstudentsinfocusareaGeohazards. Recommendedreading a) Parfitt,L.,&Wilson,L.(2009).Fundamentalsofphysicalvolcanology.JohnWiley&Sons. b) Lockwood, J. P., & Hazlett, R. W. (2013). Volcanoes: global perspectives. John Wiley & 67 Sons. Lecturenotes https://ilias.uni-freiburg.de/login.php 68 3.20EarthquakesandTsunamis Lecturer(s) Prof.Dr.S.Hergarten Type Workload Credits Term Cycle Duration EGeomat.and Processes 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants a) SeismologyandSeismic Hazard a) 2wh/30h a) 90h a) 25 b) 1wh/15h b) 15h b) 25 ERockMech. AndGeodyn. CGeohazards b) Tsunamis Learninggoalsandqualifications Earthquakes and tsunamis are among the most important natural hazards on Earth. However, the respective theory is extensive and rather complicated, and information on earthquakesandtsunamispropagatedinthemediaisoftenincorrect.Themoduleattempts to provide an understanding of those parts of the theory with particular relevance for understanding earthquakes and tsunamis as geohazards. The successful students shall be abletounderstandundinterpretscientificresultsonhistoricalandrecenteventsaswellas hazardassessmentsprovidedintheliteratureinarealisticway. Syllabus a) Theclasscombinestheclassicaltheoryofseismology(wavepropagation)withgeological andstatisticalaspectscomprisingthefollowingtopics: • Typesofelasticwavesandtheoryofwavepropagation • Focalmechanisms;seismicmomenttensor • Localizationofearthquakes • Earthquakeintensityandmagnitude;differentdefinitionsofmagnitudeandtheir relevance Thepresentedtheoryisaccompaniedbyexercises. b) The lecture covers the basic princples of tsunami generation and propagation in the ocean: • Typesofwavesinwaterandtheirfundamentalproperties 69 • • • Seismicandnonseismictsunamisources Velocityofpropagation;waveheight;interactionwiththecoast Registrationandwarningsystems Teachingform a) Lecture with additional assignments deepening the understanding of the theoretical concepts. b) Lecture Examinationform Achievementoflearninggoals(unmarked): a) --- b) --- Examination: Themarksarederivedbycombiningthescoresachievedintheexercises(a)andawritten testoftheendofthesemestercoveringallpartsofthemodule. Prerequisitesforattending --- Usageofthemodule --- Recommendedreading a) Lay,T.&Wallace,T.C.(1995):ModernGlobalSeismology.AcademicPress,521. Shearer,P.M.(2009):IntroductiontoSeismology.CambridgeUniversityPress,412. b) Levin,B.&Nosov,M.(2016):PhysicsofTsunamis.Springer,388. Kusky,T.M.(2008):Tsunamis-GiantWavesfromtheSea.InfobasePublishing,157. Lecturenotes https://ilias.uni-freiburg.de/login.php 70 3.21ImpactGeology This module will take place for the first time in winter term 2017/2018. The module descriptionswillbeaddedatthattime. 71 3.22ClimaticGeohazards Lecturer(s) Dr.C.Rambeau Type Workload Credits Term Cycle Duration 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants a) IntroductiontoClimatic a) 2wh/10h a) 50h a) 24 b) 1week/40h b) 50h b) 24 ERockMech.and 150h Geodyn. CGeohazards Geohazards b) ClimaticGeohazardspractical study Learninggoalsandqualifications Thiscourseisdividedintotwomainparts:thefirstblock(a)providestheparticipantswith an introduction to the Earth’s climate system and to climate-induced environmental changes,providingatheoreticalbackgroundtothetopic;thesecondblock(b)representsa casestudyaimingtogivetheparticipantstheopportunitytolearnhowspecificgeohazards canbereconstructedfromenvironmentalarchives. a) Thispartofthemoduleaimsto1)presentbrieflytheEarth’sclimatesystem,2)present examplesofpastenvironmentalchangesconnectedtoclimatevariationsand3)focuson natural hazards which can be linked with a changing climate (e.g., fire frequencies, erosionalprocesses,changesinriverdynamicsetc.).Thisblockiscomposedofaseriesof lectures giving the participants background information into the topic, and of a critical analysis of current research papers presenting case studies related to various climatic geohazards, in which the students will take an active part (group presentations / 3-4 studentsperreview).Thispartwillprovidetheparticipantswiththebasestounderstand how climate change can induce geohazards, and how such hazards can be assessed by examining environmental archives. The participants will also develop their skills in criticallyevaluatingscientificpublications,synthetizingdata,andpresentinginfrontofan audience. b) ThepracticalstudyoftheClimaticGeohazardscourseaimsatprovidingstudentswitha completestart-to-finishcasestudy,showinghowgeohazardscanbereconstructedfrom fluviatil/lacustrine environmental archives. It comprises fieldwork (upper Rhine Valley), examination of cores in the lab, the reconstruction, using one specific proxy, of past 72 environmentalconditionsinlinkwithclimatevariations,andtheredactionofareport. Syllabus a) Introduction to Climatic Geohazards: basic concepts of Earth’s climate, environmental changes in link with climate variation, and associated geohazards. Introduction to the currentstateofresearch,includingacriticalreviewoftheliterature;grouppresentation (3-4studentspertopic)ofachosentopic. b) Casestudy:reconstructinggeohazardsfromenvironmentalarchives.Including:collection of sediments in the field, lab study of one proxy of environmental change, critical assessmentoftheresultsandevaluationofpastclimatechange,andtheredactionofa report. Teachingform a) Lecturesandpresentations b) Fieldwork,labwork,dataassessment Examinationform Regularattendancetocoursesiscompulsory Examination(marked): a) Criticalreviewofliteratureandgrouppresentation(50%) b) Reportoncasestudy(50%) Prerequisitesforattending AttendancetoWSCourse“ResearchMethodsinGeosciences” Usageofthemodule CompulsoryforstudentsinfocusareaGeohazards. Recommendedreading Ruddiman,W.F.2013.Earth’sclimate:PastandFuture.W.H.Freeman Roberts,N.2014.TheHolocene:AnEnvironmentalHistory.Wiley-Blackwell Lecturenotes https://ilias.uni-freiburg.de/login.php 73 3.23MassMovements Lecturer(s) Prof.Dr.S.Hergarten Type Workload Credits Term Cycle Duration CGeohazards 150h 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants MassMovements 3sppw/45h 105h 16 Learninggoalsandqualifications Mass movements are the most important type of geohazards in mountainous regions. Assessing hazard and risk related to the various types of mass movements (shallow and deep-seated landslides, rockslides, rockfalls, rock avalanches, debris flows, and snow avalanches)isoneofthebiggestfieldsofprofessionalactivityinthecontextofgeohazards. Themoduleprovidesabasicunderstandingoftherespectiveprocesses,theirrepresentation bydifferentialequationsandtheirimplementationinnumericalmodels.Thestudentslearn howtoimplementthesimplestversionsofthemodelsinowncomputercodes(MATLAB),to assess which type of model is suitable for a given situation, and where the limitations in applicationtoreal-worldscenariosare. Syllabus Theclassstartswithanoverviewoverthevariousprocessesofmassmovementsandtheir characteristic properties. Afterwards the basic models of slope stability are discussed (method of slices, Bishop's method). The main part of the module concerns the different types of rapid mass movements (sliding, falling, avalanching) and their quantitative description. Understanding is deepened by exercises covering the range from implementationofsimplemodelstohazardassessment. Teachingform Lecturemixedwithpracticalexercisesandhomework. Examinationform Themarkswillbederivedfromthescoresreachedintheassignments(homework). Prerequisitesforattending 74 Basicknowledgeinprogramming(MATLAB)onthelevelofthemodule3.1“Computingin Geosciences”. Usageofthemodule CompulsoryforstudentsinfocusareaGeohazards. Recommendedreading Bromhead,E.(1992):TheStabilityofSlopes.Taylor&Francis,London,411. deBlasio,F.V.(2011):IntroductiontothePhysicsofLandslides.Springer,408. Lecturenotes https://ilias.uni-freiburg.de/login.php 75 3.24Hazard,RiskandPrediction Lecturer(s) Prof.Dr.S.Hergarten Type Workload Credits Term Cycle Duration CGeohazards 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants Hazard,RiskandPrediction 3sppw/45h 105h 16 Learninggoalsandqualifications Assessing hazard and risk is one of the major fields of professional work in the context of geohazards. This module provides a synthesis of the specific modules of the focus area “Geohazards”.Thestudentslearnabouttheconceptoffrequency-magnituderelations,how to derive hazard maps and how to transfer hazard to risk. Beyond this, the students learn aboutconceptsofpredictionandcontemporarytheoreticalconceptsunifyingdifferenttypes ofgeohazards. Syllabus Themaintopicsofthemoduleare: • Frequency magnitude relations; general concepts and distributions for different geohazards • Hazardmaps • Risk • Quantificationoftemporalcorrelationsandtheirpotentialforprediction • Self-organizedcriticality Teachingform Lecturemixedwithpracticalexercisesandhomework. Examinationform Themarksarederivedbycombiningthescoresachievedintheexercisesandawrittentest oftheendofthesemester. 76 Prerequisitesforattending Basicknowledgeinprogramming(MATLAB)onthelevelofthemodule3.1“Computingin Geosciences”isrequired.Beyondthis,itisrecommendedtohavefinishedthemajorityof theothermodulesofthefocusareaGeohazards(3.19--3.23). Usageofthemodule CompulsoryforstudentsinfocusareaGeohazards. Recommendedreading --- Lecturenotes https://ilias.uni-freiburg.de/login.php 77 3.25Rock-FormingProcesses Lecturer(s) a)Dr.C.Redler b)Dr.M.Junge Type Workload Credits Term Cycle Duration E 150h 5ECTS a)SS annual 1term b)SS Course/CourseName Presence Privatestudy Participants a)PetrologicalProcesses a)2wh/30h a)45h a)15 b)IntroductiontoOre-Forming Processes b)2wh/30h b)45h b)15 Learninggoalsandqualifications Thismoduleconsistsoftwocourses:(a)Petrologicalprocessesconcentrateonthegeneral processes leading to the formation and being recorded in igneous, metamorphic and sedimentary rocks, and (b) Introduction to ore-forming processes provides an overview of thegenesisofmineraldeposits.Themoduleisdesignedformasterstudentsinmineralogy, petrology and geochemistry, and the attendees will acquire state-of-the-art knowledge of petrogeneticandmineral-formingprocessesandwillbeabletoevaluateandinterpretorigin ofigneousandmetamorphicrocksandoremineralizationusingmicroanalyticalmethods. a)Theunderstandingofhowandwhyigneous,metamorphicandsedimentaryrocksformin theEarthandatitssurfaceisakeyprerequisiteforgeologicalworkandresearch.Inthis course students will learn about the processes that are essential for the formation of igneousrockssuchasliquidimmiscibility,fractionalcrystallization,magmamixingaswell as generation of magmas in general. In this context the formation and evolution of granitesfrompartiallymoltenrockswillbeconsidered.Themechanismsofmetamorphic rocksandtheirbehaviorinopen-andclosedsystemswillbementioned,withonefocus onprocessesoccurringduringmetasomatism.Inordertocompletetheentirerockcycle petrologyofsedimentaryrockswillbeashortcomponentofthiscourse.Thefocusofall topics will preferably emphasize chemical rather than the physical and mathematical aspects.Afterattendingthecourse,thestudentsshouldbeabletocharacterizedifferent processeswithinthefield,usinghandspecimensandinthinsections. b)Theunderstandingoftheprocessesoforegenesisareessentialfortheexplorationofraw materials and the formation of mineral deposits in general. In this course students will learnboththeoreticallyaboutthedifferentoredeposittypesandtheirgenesisaswellas 78 practicallyusinghandspecimenobservationsandoremicroscopy.Therangeofdifferent processes that are responsible for the formation of ore deposits found on Earth will be treatedduringthiscourseonvariousscales. Syllabus a)1.Igneousrocks:magmadifferentiation,mixing,meltsandvolatiles,commonand uncommonmagmatypes(e.g.adakites,carbonatites) 2.Metamorphicrocks:meltsegregationandmigrationtoformgraniticmagmas,open- andclosedsystems,mechanismsofmineralreactions 3.Metasomatism:typesofmetasomatism,chemical-exchangeprocesses 4.Sedimentaryrocks:petrologyandoriginofrepresentativerocktypes b)1.Introductionandprinciples 2.Magmaticore-formingenvironments 3.Sedimentaryore-formingenvironments 4.Metamorphicore-formingenvironments 5.Base-metaloredeposits(Pb,Zn,Cu,Sn,Ge,Inetc.) 6.Precious-metaloredeposits(Au,Pt,Pd) 7.Ferrousoredeposits(Fe,Mn,Cr,V,Ti,Mo,Wetc.) 8.Casestudiesandapplications Teachingform a)Lectureandpracticalsession b)Lectureandpracticalsession Examinationform Achievementoflearninggoals(unmarked):regularattendance Examination(marked):writtenexamination Prerequisitesforattending a)none b)none Usageofthemodule Elective for students in the focus area Geomaterials and Processes, Rock Mechanics and Geodynamics or another discipline with focus on the processes in the Earth’s interior and 79 formationofmineralresources. Recommendedreading a) Blatt, H., Tracy, R. J. and Owens, B. E. (2006). Petrology: igneous, sedimentary and metamorphic.Freeman,NewYork. Nichols,G.(2010).SedimentologyandStratigraphy.2ndedition.Wiley-Blackwell. Philpotts,A.andAgue,J.J.(2009).PrinciplesofIgneousandMetamorphicPetrology.2nd edition.CambridgeUniversityPress,Cambridge,684p. Winter, J. D. (2009). Principles of Igneous and Metamorphic Petrology. 2nd edition. PrenticeHall,NewYork,702p. b) Evans,A.M.(1993)OreGeologyandIndustrialMinerals.Blackwell,Oxford. Guilbert,J.M.,Park,C.F.(1986)TheGeologyofOreDeposits.Freeman,NewYork. Robb,L.(2005)IntroductiontoOre-FormingProcesses.Blackwell,Oxford. Sawkins,F.K.(1990)MetalDepositsinRelationtoPlateTectonics.Springer,Berlin. Pohl,W.L.(2005)EconomicGeology–PrinciplesandPractice.Wiley-Blackwell. Lecturenotes https://ilias.uni-freiburg.de/login.php 80 3.26ThermodynamicsofGeologicalandTechnicalMaterials Lecturer(s) Prof.Dr.D.Dolejš Type Workload Credits Term Cycle Duration E 150h 5ECTS SS annual 1term Course/CourseName Presence Privatestudy Participants ThermodynamicsofGeological andTechnicalMaterials 2wh/30h 120h 25 Learninggoalsandqualifications This module concentrates on physico-chemical principles that underlie structure-property relations of inorganic matter. These relations include feedback between occurrence and stability of minerals, silicate melts, aqueous fluids, their synthetic analogues including inorganic materials and atomic structure and its changes with temperature and pressure. Thermodynamic modeling of phase equilibria, construction of phase diagrams and predictionofelementpartitioningisabackboneofinterpretationofpressure-temperature paths of metamorphic rocks, differentiation mechanisms of magmas as well as design and optimization of numerous technological processes such as crystallization, smelting, combustion, fluid extraction etc. Syntheses of inorganic materials and inovative material properties are increasingly predicted and designed with the aid of thermodynamic and phaseequilibriumcalculations. The students are expected to develop a solid understanding of geological and materials thermodynamics,tobecomefamiliarwithstructureanduseofthermodynamicdatasetsand are able to design solutions to phase equilibrium problems in petrology, crystallography, materialsscienceorinorganicandphysicalchemistry. Syllabus The course builds on basic physical chemistry, introduces equations of state for solid and liquidmaterials,proceedsfromsimplephasestomulticomponentmixtures,andcloseswith a review of predictive methods: atomistic simulations of thermodynamic properties and numericalalgorithmsforcomputationofphasediagrams. 1.Thermodynamicstatefunctionsandstabilitycriteriaofsubstances 2.Equationsofstateforsolidandliquidsubstances 3.Equationsofstateforfluids 4.Thermodynamicsofmixing,partialpropertiesofsolutions 81 5.Propertiesofdilute,criticalandconcentratedmixtures 6.Thermodynamicconventionsanddatasets 7.Interpretationofexperimentaldata(phaseequilibria,solubility,elementpartitioning) 8.Linkbetweenthermodynamicpropertiesandphasediagrams 9.Phaseequilibriumcalculationsinmulticomponentnaturalandsyntheticsystems 10.Softwareforcalculationandconstructionofphasediagrams 11.Atomisticmodelingofthermodynamicproperties Teachingform Lecture(2hr),homeworkassignmentsandindividualproject Examinationform Achievementoflearninggoals(unmarked):attendanceoflectures,preparationof homeworkassignments Examination(marked):writtenexam(20%),homeworkassignments(20%),writtenproject report(35%),oralpresentationoftheproject(25%) Prerequisitesforattending None Usageofthemodule RecommendedforstudentsenrolledinthefocusareasGeomaterialsandProcessesorRock mechanics and Geodynamics and in the master program Sustainable Materials or other programsininorganicchemistryormaterialsscience. Recommendedreading Stølen S., Grande T. (2003). Chemical Thermodynamics of Materials: Macroscopic and MicroscopicAspects.Wiley,408p. GangulyJ.(2008).ThermodynamicsintheEarthandPlanetarySciences.Springer,501p. FegleyB.(2013).PracticalChemicalThermodynamicsforGeoscientists.AcademicPress,674 p. PatiñoDouceA.E.(2011).ThermodynamicsoftheEarthandPlanets.CambridgeUniversity Press,722p. 82 Lecturenotes https://ilias.uni-freiburg.de/login.php 83 3.27QuaternarySediments Lecturer(s) Prof.Dr.F.Preusser;Dr.C.Rambeau,Dr.N.Gribenski,Dr.J.-H.May Type Workload Credits Term Cycle Duration Elective 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants a)Sedimentaryenvironments a) 2wh/30h a) 45h a) 16 b)Loggingsediments b) 4days b) 15h b) 16 Learninggoalsandqualifications Studentswhosuccessfullycompletethismodulewillhavedevelopedanunderstandingof modernsedimentology.Themoduleissubdividedintotwocourses,onefocusingonthe theoreticalbackgroundandtheotheronpracticalissuesofdescribingsediments. Syllabus a) This course concentrates on the sedimentary dynamics and archives found such as in glacialandfluvialsettings.Afterthiscoursestudentswillunderstandthesesedimentary systemsindetail,willbeabletodescribeandinterpretsedimentarysequences,andput theseobservationsintoalocal,regionalandglobalcontext. b) Studentwilllearnhowtodescribe(log)sedimentsinoutcropsandcores. Teachingform a) Lecture b) Practicalwork Examinationform Achievementoflearninggoals(unmarked): a) Regularattendance b) Regularattendance Examination: a)Writtenexam(50%) 84 b)Projectreport(50%) Prerequisitesforattending a) Basicunderstandingofgeologyandsedimentology b) Regularattendanceofa) Usageofthemodule ElectiveinallfocusareasintheMScprogramGeology Recommendedreading a) BennandEvans:Glaciers&Glaciation,2ndedition,Hodder. Charlton:Fundamentaloffluvialgeomorphology,Routledge. b) EvansandBenn:Apracticalguidetothestudyofglacialsediments.Hodder. Lecturenotes https://ilias.uni-freiburg.de/login.php 85 3.28GeothermicsandGeothermalEnergy Lecturer(s) Prof.Dr.S.Hergarten Type Workload Credits Term Cycle Duration ERockMech. AndGeodyn. 150h 5ECTS WS annual 1term Course/CourseName Presence Privatestudy Participants GeothermicsandGeothermal Energy 3sppw/45h 105h 16 EGeohazards Learninggoalsandqualifications Despiteitsgreatpotential,geothermalenergyisslowlygrowingcomparedtoothersources ofrenewableenergyandstillposeschallengesconcerninggeologyandengineering.Inthis modulethestudentsmainlylearnhowto • assessthegeothermalpotentialatagivenlocationandto • designgeothermalsystemsfordifferentpurposes(electricity,heating)withfocuson feasibility,economicefficiencyandsustainability. Syllabus Themodulecoversthefollowingtopics: • Basicsofheattransport(conduction,advection) • Globalandlocalgeothermalpotential • Shallowgeothermalsystems(downholeheatexchangers,heatcollectors) • Seasonalheatstorage • Closeddeepgeothermalsystemsandtheirpotentialfordirectheating • Hydrothermalsystems • Petrothermalsystems The understanding of the theoretical concepts is deepened by exercises and homework whereconceptsforthedifferenttypesofgeothermalsystemsaredesignedandcalculated. 86 Teachingform Lecture mixed with practical exercises and homework and a visit of a geothermal power plant. Examinationform Themarksarederivedbycombiningthescoresachievedintheexercisesandawrittentest oftheendofthesemester. Prerequisitesforattending Basic knowledge in programming (MATLAB) on the level of the module 3.1 “Computing in Geosciences”. Usageofthemodule EectiveinfocusareasGeomaterialsandprocessesandGeohazards Recommendedreading Clauser, C. (2006): Geothermal Energy. In: K. Heinloth (Ed), Landolt-Börnstein, Group VIII, Vol.3C:EnergyTechnologies--RenewableEnergy,493--595,Springer Stober,I.&Bucher,K.(2013):GeothermalEnergy--FromTheoreticalModelstoExploration andDevelopment.Springer,291. Lecturenotes https://ilias.uni-freiburg.de/login.php 87 3.29ExternalModules Lecturer(s) VariousLecturers Type Workload Credits EGeomat.and Processes 150h/300h /450h 5,10or15ECTS WS/SS variable 1term ERockMech. AndGeodyn. Term Cycle Duration EGeohazards Course/CourseName Presence Electivemodulesupto15credits variable may be chosen from other natural sciences or environmental graduate programs. A maximum of 5 credits may be taken fromlanguagecoursesofferedby theLanguageTeachingCenterof theUniversity(SLI). Privatestudy Participants variable variable Note: Modulesarerestrictedtoasizeof5credits.Ifanexternalmoduleaccountsformorecredits only5willbecredited.Ifanexternalmoduleaccountsforlessthan5creditsseveralmodules have to be bundled. In this latter case the student has to consult the student advisor (Dr. HeikeUlmer:[email protected])inadvanceandstrictregulationsapply. 88 3.30TechnicalandAppliedMineralogy This module combines two courses from the M.Sc. Sustainable Materials – Crystalline Materials curriculum: “Modern Ceramics, Cements, and Glasses” and “Thermal Analysis”. For further course information please see the current M.Sc. Sustainable Materials – CrystallineMaterialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium IfyouareinterestedtoparticipateatthismodulepleasecontactDr.HiltrudMüller-Sigmund ([email protected]) 89 3.31X-RayMethods This module combines two courses from the M.Sc. Sustainable Materials – Crystalline Materials curriculum: “Structure Analysis by Diffraction” and “Defect Analysis by Diffraction”. For further course information please see the current M.Sc. Sustainable Materials–CrystallineMaterialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium IfyouareinterestedtoparticipateatthismodulepleasecontactDr.HiltrudMüller-Sigmund ([email protected] 90 3.32AdvancedCrystallography This module combines two courses from the M.Sc. Sustainable Materials – Crystalline Materials curriculum: “Crystallographic Methodology” and “Space Groups and Crystal Structures”. For further course information please see the current M.Sc. Sustainable Materials–CrystallineMaterialsguidebookat: http://www.cup.uni-freiburg.de/chemie/studium/msc_Crystalline%20Materials/Studium IfyouareinterestedtoparticipateatthismodulepleasecontactDr.HiltrudMüller-Sigmund ([email protected]) 91
© Copyright 2026 Paperzz