Calculus I (Math 251A)

Calculus I (Math 251A) - Test 1
(No Work - No Credit)
Problem 1. [10 Points] Find t.he equat.ion for the tangent line to the graph
of t.he function f(x) = x 2 cos:r at the point:r = 7r/3.
Problem 2. [10 Points] Differentiate f(x) = jX using first principles,
Problem 3. [10 Points] Find the following limits:
,
11m
t-.l
e +') t -
t- - 1
2
and
lim
4-x
vx
--r=:;:==7'
2
x~4 5 9
+
Problem 4. [10 Points] Show that f (x) = x 3 - 7rX + J2 has a root between
l' = 1 and x = 2. Provide a careful, complete argument.
Problem 5. [10 Points] Use approximation by differentials to find an ap­
proximate value for sec 46°.
Problem 6. [10 Points] A particle moves along the parabola y = x 2 in
the first quadrant in such a way that the x-coordinate (measured in meters)
increases at a st.eady 10 meters per second. How fast is the angle of inclination
e of the line joining t.he particle to the origin changing when x = 3 meters?
Problem 7. [10 Point.s] Find the slope of the curve x 3
folium of Descartes) at the point (4,2).
1
+ .y3 -
9xy = 0 (the
(.I
f\l/~
1'1
:;: ~. 9
z.
J
_'" 1 _ I"Z.
-1f (-/)
/1
-.
9
_r-) (v _r )
_..!L L
1/'"~--+-
~
\f --
3
z.
-
-
=
1
) \
,
G ( _~
Ii \ ­
-
I
z. G::'
3
2
_ _.:..---'<_'"+_'1_1
_~,
Vv.
('f - ) ') ...( "-J. 'i
16 - 'Y.
X-'>4
it.) a,)fr, \ ~
I - II+\L <::.. ()
h)~(~)= ~-~ir,..~
L)
~
J,)
.
~
'0
i \,e
iJ R~~e.t.... cav.-h
~[I
oU'"
\a e ~\I\
c e.
5)
1/10
>0
\
0>-
Cl~J 2...
~(2.).
v
L
v~
uo ,S
"
I
--<J~C (x) -
"" 'X
~ec. 45 = A<C ~ ::=: ~
ee '4 5 iJ Sec. '0­
-q ::- 2­
D
))tc.
46° tv
~c' (:) (~)
T
~c.~).:
-:::.
\i r
2. (
\ -4
+
z..
0
\
IIi'O )
fv
l
+()~ (9 - '} -
x
xck\
'"
o
N
h
it ~Q, ~
~.. x=~
¥
-\Rt
CAh
-~
dt:
~~
~l
<;\A~51'
z.
+
')(::::4 I
4~ T
e=
90
:0
('J"I
-k
= A~C G . Je =
~1..G.
(
~
2.,..
Q'
~\
--
"l.
=2.. :
tz.
~
­
\g' -
3(..
I
=0
,
--
I
T
""L
rs J. /J) ­
I
d.)( '"
-cs
~
e'"
1M
(0
~4\ .