Curriculum Vitae Solve Sæbø Education Master (Cand. Scient.) in applied statistics at NLH, 1999. Thesis: Rekursiv prediksjon- med anvendelse på plantevekst/Recursive prediction with application to plant growth. PhD (Dr. Scient.) in applied statistics at NLH, March 2004. PhD-Project: Healthy cow – dairy cattle records - a tool for improved animal health financed by the Norwegian Research Council. Thesis: Analyzing survival data on dairy cattle – Some new methods and applications. Work experience Nov 2008 : Associate Professor, IKBM, UMB at Group for Biostatistics August 2007 – Nov 2008 : Researcher at IKBM, UMB at Group for Biostatistics. March 2004 – July 2007 : Postdoc at IKBM, UMB at the FUGE-project: Development of a stable and robust assay for early detection of breast cancer using gene expression technology and peripheral blood sample''. Teaching experience - Introduction to statistics (STAT100) at IKBM, UMB (2010,2011, 2012) - Theoretical Statistics (STAT360) at IKBM, UMB, (2007, 2010, 2012) - Statistical programming in R (STIN300) at IKBM, UMB, (2010, 2012) - Analysis of variance and design of experiments (STAT310) at IKBM, UMB (2009, 2011) - Statistical data analysis (STAT300) at IKBM, UMB, (2006, 2009) - Regression Analysis (STAT200) at IMF, NLH, (2002) - Computer intensive statistical methods (STAT-IN240) at IMF, NLH, (2002) - Time series (STAT230) at IMF, NLH, spring (2001) - Other: Invited teacher in Bayesian statistics in STAT260 autumns (2001, 2002), and in Bayesian statistics and Markov Chain Monte Carlo (MCMC)-methods in STAT-IN 340 at UMB, (2005, 2006) Awards - Teaching award (Based on student evaluations) for the course STIN300 – Statistical programming in R, spring 2010 and spring 2012. - Teaching award (Based on student evaluations) for the course STAT100 – Introduction to statistics, autumn 2010. Publications Papers in international and national journals and book chapters Mehmood, T., Liland, K.H., Snipen, L., Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression. Chemometrics and Intelligent Laboratory Systems (accepted). Karlsson, M.K., Lönneborg, A. and Sæbø, S. Microarray based prediction of Parkinson’s Disease using clinical data as additional response variables. Statistics in Medicine (accepted). Mehmood, T, Bohlin, J., Kristoffersen, A.B., Sæbø, S., Warringer, J. and Snipen, L. (2012) Exploration of multivariate analysis in microbial coding sequence modeling. BMC Bioinformatics (accepted). Ordiz, A., Støen, O.-G., Sæbø, S., Kindberg, J., Delibes, M. and Swenson, J.E. (2012). Do bears know they are being hunted? Biological Conservation (Accepted). Helland, I., Sæbø, S and Tjelmeland, H. (2012) Near optimal prediction from relevant components. (Accepted Scandinavian Journal of Statistics, doi: 10.1111/j.14679469.2011.00770.x). Isaeva, J., Martens, M., Sæbø, S., Wyller, J.A. and Martens H. (2012) The modelome of curvature. Many nonlinear models approximated by a single bi-linear metamodel with verbal profiling. Physica D, 21(9), 877-889. Overgaard, H., Sæbø, S., Reddy, M.R., Abaga, S., Matias, A., Slotman, M.A. (2012) Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea. Malaria Journal, 11:56. Mehmood T, Martens H, Sæbø S, Warringer J and Snipen L (2011). A Partial Least Squares based algorithm for parsimonious variable selection. Algorithms for Molecular Biology, 6:27. Dørum, G., Snipen, L., Solheim, M. and Sæbø, S. (2011) Smoothing gene expression data with network information improves consistency of regulated genes. Statistical Applications in Genetics and Molecular Biology, Volume 10(1). Mehmood, T., Martens, H., Sæbø, S., Warringer, J. and Snipen, L. (2011) Mining for Genotype-Phenotype Relations in Saccharomyces using Partial Least Squares. BMC Bioinformatics, 12:318. Isaeva, J., Sæbø, S., Wyller, J.A., Wolkenhauer, O., and Martens, H. (2011) Nonlinear modelling of curvature by bi-linear metamodelling (accepted, Journal of Chemometrics and Intelligent Laboratory Systems). Isaeva, J., Sæbø, S., Wyller, J.A., Nhek, S., and Martens, H. (2011) Fast and comprehensive fitting of complex mathematical models to massive amounts of empirical data. (accepted, Journal of Chemometrics and Intelligent Laboratory Systems). Booij, B.B., Lindahl, T. Wetterberg, P., Skaane, N.V., Sæbø, S., Feten, G., Rye, P.D., Kristiansen, L.I., Hagen, N., Jensen, M., Bårdsen, K., Winblad, B., Sharma, P., and Lönneborg, A. (2011). A gene expression pattern in blood for the early detection of Alzheimer’s disease. Journal of Alzheimer’s Disease, 23(1), 109-119. Martens, H., Måge, I., Tøndel, K., Isaeva, J., Høy, M., Sæbø, S. (2010). Multi-level binary replacement (MBR) design for computer experiments in high-dimensional nonlinear systems. Journal of Chemometrics, Vol 24, pp 748-756. Isaeva, J., Sæbø, S., Wyller, J., Liland, K.H., Fergestad, E.M., Bro, R. and Martens, H. (2010) Using GEMANOVA to explore the pattern generating properties of the Delta-Notch model. Journal of Chemometrics, 24 (10), 626-634. Aarøe, J., Lindahl, T., Dumeaux, V., Sæbø, S., Tobin, D., Hagen, N., Skaane, P., Lönneborg, A., Sharama, P. and Børresen-Dale, A-L. (2010). Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Research, 12:R7. Sæbø, S., Martens, M. and Martens H. (2010) Three-block data modeling by endo- and exo-LPLS regression. In Handbook of Partial Least Squares: Concepts, Methods and Applications. Esposito Vinzi, V.; Chin, W.W.; Henseler, J.; Wang, H. (Eds.). Springer. Færgestad, E.M., Langsrud, Ø., Høy, M., Hollung, K., Sæbø, S., Liland, K.H., Kohler, A., Gidskehaug,L., Almergren, J., Anderssen, E. and Martens, H. (2009). Analysis of megavariate data in functional genomics. In Comprehensive Chemometrics. Brown, S., Tauler, R., Walczak, R. (Eds.). Elsevier, Oxford. Schüller, R.B., Tande, M., Almøy, T., Sæbø, S., Hoffmann, R., Kallevik, H. and Amundsen, L. (2009). A new statistical method for determination of wax appearance temperature. Annual Transactions - The Nordic Rheology Society, 17 (1), 191-197. Dørum, G., Snipen, L., Solheim, M. And Sæbø, S. (2009). Rotation testing in Gene Set Enrichment Analysis for small direct comparison experiments. Statistical Applications in Genetics and Molecular Biology, 8 (1), A34. Sæbø, S., Almøy, T., Aarøe, J., Aastveit, A.H. (2008) ST-PLS: A multi-directional nearest shrunken centroid type classifier via Partial Least Squares. Journal of Chemometrics, 22 (1), 54-62. Sæbø, S., Almøy, T., Flatberg, A., Aastveit, A.H., Martens, H. (2008) LPLS-regression: a method for prediction and classification under the influence of background information on predictor variables. Chemometrics and Intelligent Laboratory Systems, 91 (2) 121-132. Zedrosser, A., Støen, O-G., Sæbø, S., Swenson, J.E. (2007). Should I stay or should I go? Natal dispersal in the brown bear, Animal Behavior 74 (3) 369-376. (doi:10.1016/j.anbehav.2006.09.015). Svorkmo-Lundberg, T., Bakken, V., Helberg, M., Mork, K., Røer, J.E., Sæbø, S. (2006) Norsk VinterfuglAtlas : Fuglenes utbredelse, bestandsstørrelse og økologi vinterstid. Støen, O-G., Zedrosser, A., Sæbø, S., Swenson, J.E. (2006). Inversely densitydependent natal dispersal in brown bears Ursus arctos, Oecologia. Støen, O-G., Bellemain, E., Sæbø, S., Swenson, J.E. (2005). Kin-related spatial structure in brown bears Ursus arctos, Behavioral Ecology and Sociobiology. Sæbø, S., Almøy, T., Heringstad, B., Klemetsdal, G., Aastveit, A.H. (2005). Genetic evaluation of mastitis resistance using a first-passage time model for Wiener processes for analysis of time to first treatment, Journal of Dairy Science. Sæbø, S., Almøy, T., Aastveit, A.H. (2005). Disease resistance modelled as first-passage times of genetically dependent stochastic processes, Applied Statistics. Sæbø, S., Frigessi, A. (2004). A genetic and spatial Bayesian analysis of mastitis resistance, Genetics Selection Evolution. Sæbø, S., Almøy, T. (2004). Composite Hazard Functions Reflecting Competing Latent Processes, Biometrical Journal. Grimholt, U., Larsen, S., Nordmo, R., Midtlyng, P., Kjøglum, S., Storset, A., Sæbø, S., Stet, R.J.M. (2003). MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major, Immunogenetics. Aalen, O., Moger, T.A., Amundsen, E., Sæbø, S., Wedon-Fekjær, H. (2003). Overlevelses- og forløpsanalyse: Det tematiske området Norevent, Norsk Epidemiologi. Sæbø, S., Almøy, T., Snipen, L.G. (2001). Adjusted Prediction of Plant Height with Application to Greenhouse Grown Poinsettias. Biometrical Journal 43 (4), 421-434. On-going work Mehmood, T., Warringer, J., Snipen, L. and Sæbø, S. Improving stability and understandability of genotype-phenotype mapping in Saccharomyces using regularized variable selection in L-PLS regression (submitted). Dørum, G., Snipen, L., Solheim, M. and Sæbø, S. Rotation gene set testing for longitudinal data from complex microarray experiments (submitted). Liland, K.H., Sæbø, S., Høy, M. and Martens, H. Distribution based truncation in multivariate calibration (submitted) Liland, K.H., Whist, A.C., Jonsson, M., Hopp, P. and Sæbø S. Developing a risk based surveillance system: Part I: (In prep). Liland, K.H., Whist, A.C., Jonsson, M., Hopp, P. and Sæbø S. Developing a risk based surveillance system: Part II: Multivariate Statistical Process Control. (In prep). Posters at international meetings and conferences Mehmood, T., Warringer, J., Sæbø, S. and Snipen, L. (2011) Two Stage Variable Elimination in L-PLS Regression Where Background Information on Independent Variable is Available. Conferentia Chemometrica. Liland, K.H., Sæbø, S. Egeland, T., Sandberg, E., Snipen, L. and Almøy, T. (2011) Teaching applied statistics to students in natural sciences using the R Commander. useR! 2011. Isaeva, J., Sæbø, S., Wyller, J.A., Liland, K.H., Færgestad, E.M., Bro, R. and Martens, H. (2008). Exploring the parameter properties of the Delta-Notch model using GEMANOVA on sensory data from generated images. The 9th International Conference on Systems Biology, Gøteborg, August 2008. Sæbø, S., Aarøe, J., Helland, Å., Haakensen, V., Lindahl, T., Skaane, P., Hagen, N., Lönneborg, A., Børresen-Dale, A.-L. and Sharma, P. (2007). A cross-study verification of breast cancer gene signature in peripheral blood. The 14th European Cancer Conference, Barcelona, Spain. Aarøe, J., Lindahl, T., Sæbø, S., Skaane, P., Hagen, N., Lönneborg, A., Børresen-Dale, A.-L., Sharma, P. (2006). Expression profiling of peripheral blood cells for early detection of breast cancer. The 19th EACR conference, Budapest, Ungarn. Lönneborg, A., Lindahl, T., Sæbø, S., Bårdsen, K., Hagen., N., Jensen, M., Sharma, P., Hirt, M.., Sharma, P. (2006). Employing blood-based gene expression signature to discriminate patients with Alzheimer's and Parkinson disease. International Psychogeriatric Association, European Regional Meeting, Lisboa, Portugal. Aarøe, J., Lindahl, T., Sæbø, S., Skaane, P., Myhre, S., Reiersen, T., Lönneborg, A., Børresen-Dale, A.-L. Og Sharma, P. (2006). Expression profiling of peripheral blood cells for early detection of breast cancer. The 97th AACR Annual Meeting, Washington DC, USA. Talks at national and international meetings and conferences Liland, K.H., Sæbø, S.. Høy, M. and Martens, H. (2011). Distribution based truncation in multivariate calibration. 12th Scandinavian Symposium on Chemometrics. Helland, I., Sæbø, S. and Tjelmeland, H. Bayes PLS: Near optimal prediction from relevant components. International Biometric Conference, Florianopolis, Brazil, 2010. Sæbø, S., Tjelmeland, H. and Helland I,: Near optimal prediction from relevant components with Bayes PLS. Kjemometrisymposiet 2010, Sundvollen. Mehmood, T., Snipen, L. and Sæbø, S.: PLS for sequence classification, Presented in 11th Scandinavian Symposium on Chemometrics (2009). Isaeva, J., Sæbø, S., et al. Using GEMANOVA to explore the properties of dynamical systems models, 2009 (SSC11) Isaeva, J., Sæbø, S., et al. Using GEMANOVA to explore the properties of dynamical systems models, Isaeva, 2009 (BFYS) Dørum, G., Snipen, L., Solheim, M. and Sæbø, S.: “Gene set analysis - Finding differentially expressed sets of genes”. Bionformatics Forum For Young Scientists (2009) Dørum, G., Snipen, L. and Sæbø, S: “Gene Network Enrichment Analysis” 11th Scandinavian Symposium on Chemometrics (2009) Helland, I. and Sæbø, S. (2008). A Bayesian predictor under symmetry based on the parametric partial least squares algorithm. IWAP – International Workshop on Applied Probability, 7-10 juli 2008, Université de Technologie de Compiègne, France. Helland, I. and Sæbø, S. (2008). Optimal prediction from relevant components. A revision of PLS. Seminarserie innen temaet ” Statistical Theory and Methods for Complex, High-Dimensional Data”, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK. Sæbø, S. (2008). Predicting phenotypic outcome from expression data – how to integrate network information. Workshop – Integrative Network Analysis, 10.-11. april 2008, Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany. Sæbø, S, and Helland, I. (2008). Towards optimal prediction from relevant components. Kjemometrisymposiet 2008, Voss Sæbø, S., Kohler, A., Næs, T. and Martens, H. (2007). A tool-box of methods for multimatrix modelling. PLS07-5th International symposium. Matforsk, Ås, Norway. Sæbø, S. (2007). L-PLS og bruk av bakgrunnsinformasjon om gener ved klassifikasjon av sykdom. Kjemometrisymposiet 2007, Geilo. Sæbø, S., Almøy, T., Aastveit, A.H. og Martens, H. (2006). Increasing Classifier Accuracy by Exploiting Background Variable Information using LPLS. The 23rd International Biometric Conference, Montreal, Candada. Sæbø, S. (2006). Integrated data analysis using LPLS regression. Invitert foredrag, Max Planck Institute of Molecular Plant Physiology, Potsdam, Tyskland. Sæbø, S., Frigessi, A. (2003) A genetic and district based Bayesian analysis of mastitis resistance in Norway. Det 12. Norske Statistikermøte, Hurdal. Sæbø, S., Almøy, T., Aastveit, A.H., Heringstad, B., Klemetsdal, G. (2002) Modelling time to first treatment of clinical mastitis as first passage times of stochastic processes. World Congress on Genetics Applied to Livestock Production, Montpellier, Frankrike. Sæbø, S. (2001). International Biometric Society - Nordic Region Conference, Savonlinna, Finland Sæbø, S. (2001) Modelling population heterogeneity in survival data on the assumption of competing underlying processes. New developments in Event History Analysis. En internasjonal workshop i regi av NOREVENT, Oslo.
© Copyright 2026 Paperzz