Organic Azides An Exploding Diversity of a Unique Class of Compounds R N N N R N N N R N N N R N N N Changkun Li (李长坤) March 31st 2006 1 Dedicated to Professor Rolf Huisgen Bräse, S. et al Angew. Chem. Int. Ed. 2005, 44, 5188 – 5240 2 1 Compounds with NN Multiple Bonds 2N N2 X H N2 N N N N N N X H 3N Ph N N N N N N 3 Organic Azides 1 Introduction 2 Synthesis of Organic Azides 3 Reactions of Organic Azides 4 Applications of Azides 5 Summary and Outlook 6 Acknowledgement 4 2 Property of Sodium Azide 5 Physicochemical Properties of Organic Azides Ph N N N 1-phenyl-1H-triazirine R N3 1 R N N N R N N N R N N N 1a 1b 1c R N N N 1d N3 O2 N NO2 N3 N3 NO2 Kaiser, M. et al Propellants Explos. Pyrotech. 2003, 27, 7 – 11 6 3 Physicochemical Properties of Organic Azides R N3 1 R N N N R N N N R N N N 1a 1b 1c A Pseudohalide R N N N 1d Polarities Boiling points Chromatographic property Hammett Parameters Directing Effect (NC + NO)/NN≥ 3 b.p. 152oC Ν3 7 Synthesis of Organic Azides R N N N R N N N R N N N R N N N N3 N3 N3 O N3 8 4 Synthesis of Aryl Azides Aryl Azides from Diazonium Compounds Ar ΝaΝ3 Ar-N N N N N N N -N2 N N N N N -N2 Ar Ar N N N Ar N N -N2 N N+ N– -N2 Ar N N N N N N N Ar N N N Butler, R.N. et al J. Chem. Soc. Perkin Trans. 2, 1998, 2243 – 2247 9 Synthesis of Aryl Azides Nucleophilic Aromatic Substitution: SNAr Reactions Cl N R NO2 N NaN3 R N3 NO2 N PhMe up to 96% N R O N O Wilson, W. S. et al J. Org. Chem.1990, 55, 3755 – 3761 Aryl Azides from Organometallic Reagents I Mes 1) nBuLi, 0oC Mes 2) TsN3 N3 Mes Mes 96% Tilley, T. D. et al Organometallics 2002, 21, 5549 –5563. 10 5 Synthesis of Aryl Azides Aryl Azides by Diazo Transfer + CF3SO2N3 N aq. CuSO4, Et3N CH2Cl2/MeOH N 95% N3 NH2 Tor, Y. et al Org. Lett. 2003, 5, 2571 – 2572. Wong, C.H. et al J . Am. Chem. Soc. 2002, 124, 10773-10778-811 Synthesis of Alkenyl Azides Hassner’s Methods R R H IN3 R H I H N3 R H H -HI R R N3 Hassner, A. et al J. Am. Chem. Soc. 1965, 87, 4203 –4204 Hassner, A. Acc. Chem. Res. 1971, 4, 9 – 16. Knoevenagel Reaction of Aldehydes and Azidoacetate OMe CHO N N3CH2CO2Me NaOMe, MeOH OMe CO2Me -10oC N N3 o-xylene OMe 67% N N H CO2Me Molina, P.and Fresneda, P. M. et al J. Org. Chem. 2003, 68, 489 –499. 12 6 Synthesis of Alkenyl Azides Via a-Oxophosphonium Ylides X O R2 R1 PPh3 NBS, NCS or NIS Me3SiN3 RT, 5min R1 N3 O O R2 R1 R1 X R1 N X R2 NXS R2 R1 PPh3 O heptane 98oC, 2-3h 37-98% R2 PPh3 R1 O X Y R2 PPh3 -OPPh3 R2 PPh3 -OPPh3 R2 PPh3 O R1 X R1 X Y R2 Y X Y 1 R2 R e Melo, D. P et al Tetrahedron 2001, 57, 6203 – 6208. 13 Synthesis of Alkyl Azides Classic Nucleophilic Substitution OH 11 Cl2C=S, Py DMAP(cat.) o CO2Et CH2Cl2, 0 C OH S O O 11 95% CO2Et NaN3, DMF PPTS, 0oC OH 87% CO2Et 11 N3 Bittman, R. et al J. Org. Chem. 2000, 65, 7627 –7633 Ring Opening of Epoxides by Azide O Me3SiN3(20eq) catalyst(0.2eq) Et2O, 24h N3 H N OH t Bu H N Cr O Cl O tBu tBu tBu Jacobsen, E. N. et al J. Am. Chem. Soc. 1995, 117, 5897 – 5898. 14 7 Synthesis of Alkyl Azides The Mitsunobu Reaction Boc NH O OMe Boc PPh3, HN3 DEAD, CH2Cl2 NH O OMe 90% OH Boc H2, 10% Pd/C EtOAc O OMe 99% N3 NH NH2 Lee, Y.S. et al Tetrahedron 2001,57, 2139 – 2145 Alkyl Azides by Diazo Transfer H2N Tf2O, NaN3 then CuSO4, K2CO3 CO2H N3 CO2H 84% Ghadiri, M. R. et al J. Am. Chem. Soc. 2003, 125, 9372 – 9376. 15 Synthesis of Alkyl Azides Polar 1,2- and 1,4-Addition Reactions O Me3SiN3, HOAc cat. NR3, CH2Cl2 O 25oC, 20h 90% N3 Miller, S. J. et al Org. Lett. 1999, 1,1107 – 1109. 1) Ph3P O OMe Br N Ac OAllyl N3 O O C6H6, Reflux 2) Me3SiN3, MeSO3H M.S.(4A), CH2Cl2 OAllyl Br N Ac Kawasaki, T. et al Org. Lett. 2000, 2, 3027 – 3029. 16 8 Synthesis of Alkyl Azides 1,2-Addition to Non-Activated Double Bonds PhI(OAc)2 (PhSe)2, NaN3 Ν3 78% PhI(OAc)2 + R R . N3 SePh 2N3 . + . PhI + R N3 . R + PhSeSePh + 2N3 2AcO N3 N3 + . PhSe PhSe . PhSeSePh 2PhSe Tingoli, M. et al J. Org. Chem. 1991, 56, 6809 – 6813 17 Synthesis of Alkyl Azides π-Allylpalladium Complexes X [Pd(dba)2], PPh3 [15]crown-5, THF NaN3 X=OMs, OTs, OAc 81-85% L X Pd 1)HS(CH2)3SH 2)(Boc)2O N3 3) RuCl , NaIO 3 4 4) HCl 5) Dowex 42% L NH3 CO2 Salaön, J.et al Tetrahedron: Asymmetry 1998, 9, 1131 –1135. C–H Activation ΟΑc O IN3, MeCN , 1h 98% ΟΑc O N3 Bols, M. et al Angew.Chem. Int. Ed. 2001, 40, 623 – 625. 18 9 Synthesis of Acyl Azides R1 R1 1)SOCl2, benzene R1 OH 2)NaN3, Et2O/H2O O N3 O O O R2OH O O OR2 N H , benzene R1 N O C (R3)2Cu(CN)Li2, H3O or R3MgX, H3O O R1 O R3 N H O Padwa, A. et al J. Org. Chem. 1999, 64, 3595 – 3607 O Cl Me N N Me Me N N N Cl N Cl N N CH2Cl2 0-5oC Cl N O Me N O R O O N O R Cl O N O N R OH O Cl O NaN3 O O 25oC R N3 R Bandgar, B. P. et al Tetrahedron Lett. 2002, 43, 3413 –3414. 19 Synthesis of Acyl Azides DPPA Activation MeO2C CO2Me 1) LiHMDS, tBuSCH2Cl 2) PLE, pH 7.2 buffer PMBO CO2Me 10% TFA CH2Cl2 CO2Me HN 87% HO2C 74% yield, 91%ee t BuS tBuS 1)Ph2P(O)N3, Et3N (CH2Cl)2, 100min tBuS O 2) PMBOH, reflux, 4h CO2Me N3 t BuS 72% H2N CO2Me O Kedrowski, B. L. J. Org. Chem. 2003, 68, 5403 – 5406. Solid-phase Synthesis O DPPA TEA toluene O HO O O O toluene 90oC O N3 O O O RNH2 CH2Cl2 HN N H C N O O R O O K2CO3 MeCN, 60oC R >90% yield >70% purity O N N H Castelhano, A. L. et al Tetrahedron Lett. 1998, 39, 7235 – 7238. 20 10 Summary : Synthesis of Organic Azides Aryl Azides N2 N3 O2N Alkenyl Azides Mes N3 Mes O O IN3 N3 N3 N R2 1 OEt R PPh3 N NBS, NCS or NIS Me3SiN3 Alkyl Azides O O PPh3, HN3 DEAD, CH2Cl2 NaN3 PhI(OAc)2 X (PhSe)2, NaN3 Acyl Azides Cl N O R Cl NaN3 Cl N N Me N Cl Ph2PON3 O 21 Organic Azides 1 Introduction 2 Synthesis of Organic Azides 3 Reactions of Organic Azides 4 Applications of Azides 5 Summary and Outlook 6 Acknowledgement 22 11 Reactions of Organic Azides Electrophiles Nucleophiles Nu E R N3 ...... R N N N 1 2 3 Nitrene Chemistry X Y R Click Chemistry Cycloaddition 23 Reactions with Electrophiles at N1 Boyer Reaction LA O O + N3 R N2 N O R N R Aubé, J. et al J. Am. Chem. Soc. 1991, 113, 8965 –8966 Boyer Reaction : Asymmetric Version N3 OH + O Ph Me Me Ph OH BF3 .OEt2 O Ν N2 N O Aubé, J. et al J. Am. Chem. Soc. 2003, 125, 7914 –7922 24 12 Reactions with Electrophiles at N1 Boyer Reaction : Epoxides as Electrophiles O N3 BF3 .OEt2 CH2Cl2, 2min N O 94% Murphy, J. A. et al Org. Lett. 2003, 5, 3655 – 3658 Possible Pathway N2 N O N3 N BF3 -N 2 O BF3 .OEt2 O BF3 N O BF3 N -BF3 O 25 Reactions with Electrophiles at N1 Nitrenium Ions by Protonation of Organoazides O Ph O 2HN3 H2SO4 O NH N 76% O O HN Ph O Casey, M. et al ARKIVOC. 2003, 7, 310 – 327. Nitrenium Ions by Others CO2Et Tf2O, 0oC CHCl3 EtO2C NH2 70% Ν3 Abramovitch, R. A. et al Tetrahedron Lett. 2003, 44, 6965 – 6967 26 13 Reactions with Electrophiles at N1 Imine Salts Ν3 Ν3 O Br BrCOCOBr N N N 82% N N Br N Br N Br N PhOMe N N Br Br Shibasaki, M. et al Angew Chem. Int. Ed. 2004, 43, 478 – 482. HeteroCumulenes Ν C N3 3 octane, 125oC 24h 93% O Cl N N N N O S O O S Cl O 3 O G. J. Ho (Merck, USA), US Patent 13595P, 1996 27 Reactions with Electrophiles at N1 Reaction of Organoazides with Boron Compounds B Cl + N HCl (excess) N3 86% Vaultier, M. et al Synlett , 1993, 519 – 521. Reaction of Organoazides with Activated Alkynes n-Bu N N N AuL n-Bu N N N n-Bu n-Bu n-Bu n-Bu AuL n-Bu N N n-Bu n-Bu H N n-Bu AuL Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802-5803. 28 14 React with Nucleophiles at N3 The Staudinger Reduction RN3 + PR'3 -N2 R N N N PR'3 H2O R N PR'3 R NH2 + O=PR'3 Possible Mechnism PR'3 R N N N R N N N PR'3 R N N N PR'3 N PR'3 N N R N N PR'3 -N2 N R R N PR'3 29 React with Nucleophiles at N3 The Staudinger Ligation O .. R Ph O OMe N3-R' P OMe R N2 Ph N R' P N R' Ph Ph O O OMe R P Ph Ph H2O N H P=O Ph Ph R R' Bertozzi, C. R. et al. Science 2000, 287, 2007 – 2010 Bertozzi, C.R. et al J. Am. Chem. Soc. 2005, 127, 2686-2695 Application in Peptides Synthesis SH O 1 peptide R2P O PR2 SR' + S peptide1 peptide2 N R2P O peptide2-N3 S 1 peptide O peptide1 O 2 N R2P peptide H2O peptide1 N H O R P peptide2 + R HS S Raines, R. T. et al Org. Lett. 2000, 2, 1939 – 1941 30 15 React with Nucleophiles at N3 The Aza-Wittig Reaction R13P N R2 + R3 R13P O O + R3 R4 R4 N R2 The Imine Synthesis O O (EtO)2P O (EtO)2P PR3 N3 THF 1 R N PR3 O (EtO)2P R2 THF R2 N 1 R Palacios, F. et al Tetrahedron 2003, 59, 2617 – 2623. 31 React with Nucleophiles at N3 The Aza-Wittig Reaction in a New Light Ph O N nBu3P, toluene RT, 2.5h; then , 5h CO2Me N3 O N 1) KHMDS, THF -78oC, 1h O 2) Cl N3 -78oC, 30min RT, 1h O N O N Me O H N3 O Me N RT, 7h Ph OMe Ph3P, toluene RT, 12h then , 8h 98% N H Me Ph O O N O N Me Ph N TFA/H2O/THF H N Ph (-)-benzomalvin Eguchi, S. et al Tetrahedron 1998, 54, 7997 – 8008. 32 16 React with Nucleophiles at N3 The Aza-Wittig Reaction in a New Light O O N3 1) LDA (2eq) THF, -78oC 2) PBu3, THF 24h, 45oC O + OEt OH O H N 64% Ph3 O PO O O O OEt NH OEt N PPh 3 OEt O Langer, P. et al Chem. Commun. 2003, 3044 –3045. Reaction of Iminophosphoranes with other Electrophiles TBDPSO O HO N3 O O PPh3 o-xylene, TBDPSO 99% O NH O O Imanishi, T.et al Tetrahedron Lett. 2003, 44, 5267 – 5270; 33 Nitrene Chemistry Intermolecular Cycloadditions of Nitrenes Hirsch, A. et al J. Am. Chem. Soc. 2003, 125, 8566 – 8580. 34 17 Nitrene Chemistry Nitrenes to C=X Double Bonds N3 .. Y X N Y X hν, R N Y X R N O N O R R2 N N N O R R2 R1 R1 N N N R1 N N R1 N Application in Indole Syntheis N3 H H N hν or hν or H N3 35 Nitrene Chemistry Nitrenes to C=X Double Bonds Ο O Ο 109oC N3 TBDPSO 87% O O N TBDPSO RLi O NH R TBDPSO Bergmeier, S. C. et al J. Org. Chem. 1999, 64, 2852 –2859 CO2Et H H 86% N3 HO2C hν, toluene CO2Me EtO2C N CO2Me Cl N H OMe Shirahama, H. et al Tetrahedron 1996, 52, 10609 – 10630 36 18 Nitrene Chemistry Insertion into C-H Bonds sp 3 C-H Bonds CO2Me CO2Me DMF, N3 N NH N 60% OMe OMe Moody, C.J. et al J. Chem. Soc. Perkin Trans. 1, 1984, 2895 – 2901 Addition of Nitrenes to Heteroatoms 1 R S R 2 Boc BocN3 FeCl2, DMF R1 R2 R2 N S Boc N SR1 Bach, T. et al J. Org. Chem. 2000, 65, 2358 – 2367. 37 Nitrene Chemistry Rearrangement of Nitrenes N3 1 N N N hν H N NuH Nu ISC 3 N N N Warmuth, R.et al J. Am. Chem. Soc. 2005, 127, 1084 – 1085 Bally,T. and Albini, A. et al J. Am. Chem. Soc. 2005, 127, 5552 – 5562 Application of Rearrangement N3 Hex hν, λ > 345nm O H N Hex H2O, MeCN, 25oC, 3h 65% Bräse, S. et al unpublished results. 38 19 Nitrene Chemistry Fragmentation of azides O O t-Bu t-Bu N3 N3 t-Bu C O N -N2 O t-Bu N N N CN + N N t-Bu C N N N O t-Bu O O t-Bu t-Bu C NC C O -N2 N PhH C6H11 N , 84% C6H11 N C N C6H11 CN N C6H11 t-Bu O Moore, H.W. et al J. Am. Chem. Soc. 1970, 92, 4132 –4133 39 Cycloadditions Cycloaddition with Olefines Ν3 OMe NO2 N N N CDCl3 NO2 MeO + OMe N NO2 6 1 : Bräse, S. et al Chem. Commun. 2002, 1296 – 1297 L-proline, NsN3, Ethanol RT, 1 day O Me ∗ 38% 89% ee Ph Ns NH O Ph Me H2O N CO2H Me Ph NsN3 Ns CO2H N N ∗ N N Ph Me Ns CO2H N N ∗ Ph N Me N CO2H N Ns N ∗ Ph Me Bräse, S. et al unpublished results. CO2 N ∗ Ns NH Ph Me 40 20 Cycloadditions Cycloaddition with Olefines R1 R2 N3 + 2 R1 R N N N Me3SiOTf CH2Cl2, 0oC to RT O a O R1 R1 2 R1 R N -N2 bN N O -N2 a N R2 O N b R 68% HN R2 H N 2 R O R2 1 R1 O O Aubé, J. et al Org. Lett. 2003, 5, 3899 – 3902 Cycloaddition with Alkynes (Huisgen Reaction) R O MeO-PEG RCH2N3, PhMe 110oC, 12h O O 73-86% O N N N + O MeO-PEG O O O 1 : N N N R 2 Norris, P. et al Tetrahedron Lett 1998, 39, 7027-7030 41 Cycloadditions Cycloaddition with Alkynes A Breakthrough O O FGFG R-N3, CuI, DIPEA 0.1M NaOH(aq) 74-95% R N N N FGFG OH Meldal, M. et al J. Org. Chem. 2002, 67, 3057 – 3064 O + N3 CuSO4 . 5H2O, 1mol% Sodium Ascorbate, 5mol% H2O/tBuOH, 2:1,RT, 8h 91% N N N O Sharpless, K.B. et al Angew. Chem. Int. Ed. 2002, 41, 2596 – 2599 42 21 A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective Ligation Azides and Terminal Alkynes Proposed catalytic cycle for the CuI-catalyzed ligation. Sharpless, K.B et al Angew. Chem. Int. Ed. 2002, 41, 2596 -2599 Fokin,V.V. and Finn, M. G. et al Angew. Chem. Int. Ed. 2005, 44, 2210-2215 Noodleman, L.Sharpless, K.B. and Fokin, V.V.et alJ. Am. Chem.Soc. 2005, 127, 15998-15999 43 “Click Chemistry” Following natures lead, we endeavor to generate substances by joining small units together with heteroatom links(C-X-C). The goal is to develop an expanding set of powerful, selective, and modular “blocks” that work reliably in both small- and large-scale applications. We have termed the foundation of this approach “click chemistry”. ———— K. B. Sharpless Sharpless, K. B. et al Angew.Chem. Int. Ed. 2001, 40, 2004-2021 44 22 “Click Chemistry” Stringent criteria that a process must meet to be useful 1) Modular, wide in scope, give very high yields, generate only inoffensive byproducts that can be removed by non-chromatographic methods, and be stereospecific. Product must be stable under physiological conditions. 2) Simple reaction conditions (ideally, the process should be insensitive to oxygen and water), readily available starting materials and reagents, the use of no solvent or a solvent that is benign (such as water) or easily removed, and simple product isolation. 3) Having a high thermodynamic driving force, usually greater than 20 kcal/ mol. spring-loaded nature Provide a foundation for the rapid assembly of new and pure molecular entities 45 “Click Chemistry” Click Chemistry in Water 1) Greater free energies in water 2) Hydrogen-bonding situations arise 3) Reaction of two solutes is usually faster than side-reaction with water 4)Heat capacity , boiling temperature 5)Hard & soft differentiating leverage 6) Protecting groups is avoided 46 23 Cycloadditions Controllable Selectivity Ν3 N [Ru] + N N N N N + Ru(OAc)2(PPh3)2 100% CpRuCl(PPh3)2 85% Cp*RuCl(PPh3)2 100% Cp*RuCl(NBO) 100% 15% Fokin, V. V. and Jia, G. et al J. Am. Chem.Soc. 2005, 127, 15998-15999 Possible Mechanism 47 Cycloadditions Combination with Pd Chemistry R R H + OCO2Me + TMSN3 cat Pd(0), cat Cu(I) N N N Yamamoto, Y et al J. Am. Chem. Soc. 2003, 125, 7786 – 7787 R Possible Mechanism H N N N OCO2Me + TMSN3 LnCu R Pd(0) HX CuXLn H CO2 + TMSOMe R R N CuLn N N Pd Pd N3 48 24 Cycloadditions Cycloaddition with Allene N N N CH3 . . N N N toluene 100oC N -N2 N . . . CH3 N CH3 H CH3 CH3 N N CH3 CH3 not observed Feldman, K. S. et al J. Am. Chem.Soc. 2005, 127, 4590-4591 Sulfonyl Azides and Copper(I) Acetylides Cycloaddition Cu . R1 1 R 2 Cu, Base 3 4 + R SO2N3 + HNR R / H2O 1 R HNR3R4 NSO2R2 Cu H2O N NSO2R2 R1 N N SO R2 2 NR3R4 O R1 N H SO2R2 Chang, S. et al J. Am. Chem.Soc. 2005, 127, 2038-2039 J. Am. Chem.Soc. 2005, 127, 16046-16047 49 Cycloadditions Sulfonyl Azides and Copper(I) Acetylides Cycloaddition R1 H 2 R + N CuI, 2mol% TBTA, 2mol% Na ascorbate, 4mol% R2 R1 NaHCO3, 1 equiv tBuOH/H2O, 2:1 RT, 2-8h 27-83% N N S O2 H N O S O2 Fokin, V.V. et al Angew. Chem. Int. Ed. 2006, 45, asap, DOI: 10.1002/anie.200503805 R 1 2 + R SO2N3 + Ph R1 Ν Cu Cu, Base Ph N N N SO R2 2 Cu R1 . R1 NSO2R2 Ph NSO2R2 N Ph Fokin, V.V. et al Angew. Chem. Int. Ed. 2006, 45, asap, DOI: 10.1002/anie.200503936 50 25 Cycloadditions Tetrazoles N N3 S DMF 110-130oC N N N S N >90% n n N N3 O O n DMF 110oC O >90% O N N N N n Sharpless, K. B. et al Org. Lett. 2001, 3, 4091 – 4094. Cycloaddition with Other Dipolarophiles MeO BF3.OEt2 CH2Cl2 -78oC-RT OTES Ν3 R R O O N R O OBF3 N N N N + NH N R 0-4% 38-54% Rh2(OAc)4, 77%-quant. Aubé, J. et al Org. Lett. 2000, 2, 1657 – 1659. 51 Other Reactions The Curtius Rearrangement and Related Reactions CON3 CON3 CON3 1) 37% HCl, THF, reflux NCO NCO 2)Dowex 550 A, OH , CH3OH NCO Dioxane, quant. NH2 NH2 NH2 52% Menger, F.M. et al Angew. Chem. Int. Ed. 2002, 41, 2581 – 2584. The Schmidt Rearrangement OH HN3 / H2SO4 CH2Cl2, 0oC N 65% NaBH3CN MeOH 68% N methylation H N Me -H +H N3 NH N N Plat, M. M. et al Tetrahedron Lett. 1983, 24, 1937 – 1940. 52 26 Other Reactions Radical Additions to Organoazides Bu3SnH AIBN, N N+ N– R R H N SnBu3 R'OH R' O Bu3Sn N N .N R SnBu3 NH2 SnBu3 + R PhSiH3 Bu3SnH -N2 R N SnBu3 R' O SiH2Ph Application of Radical Addition Bu3SnH(cat.) PhSiH3 nPrOH, AIBN, 80oC OEt N3 75% Ph OEt NH H Ph Bu3Sn , -N2 OEt OEt N N SnBu3 Ph SnBu3 Ph Fu, G. C. et al J. Org. Chem. 1998, 63, 2796 – 2797 53 Other Reactions [3,3] Sigmatropic Rearrangements N N N N N N R R N3 N3 O [CuI] MCPBA N3 Ph N H N N Ph Sharpless, K. B. and Fokin, V.V. et al J. Am. Chem. Soc. 2005, 127, 13444 – 13445 NHFmoc N3 OH . R HN3 PPh3 DEAD . O3 R HO2C R NBoc RCM R Spino, C. et al Org. Lett. 2005, 7, 4769-4771. 54 27 Other Reactions Azide Ions as Leaving Groups Ph SiMe2Ph CO2Et 1) LDA, -78oC 2) TrisylN3, 2h anti/syn >98:2 Ph SiMe2Ph TBAF, THF, 2h CO2Et 86% CO2Et Ph N3 Landais,Y. et al Tetrahedron Lett. 2003, 44, 6995 – 6998. Azides to Nitriles RCH2 N N N BrF3 RCH2 N N N F RCH2 N N N -[BrF] -N2 F Br F F Br F F RCH2 N F -2HF F RCN Rozen, S. et al Org. Lett. 2003, 7, 2177-2179. 55 Summary : Reactions of Organic Azides Electrophiles Nucleophiles Nu E R N3 R N N N 1 2 3 ...... Nitrene Chemistry X Y R others Cycloaddition Click Chemistry 56 28 Applications of Azides For Industry Uses Azides as Explosives and Propellants Herbicides and Pesticides Polymerization Initiators Blowing Agent and Gas Generators Photoresists and Printing Plates Rubber Vulcanization Cross-linking of other Polymers Adhesives Dyes Photoaffinity Labeling . . .. .. 57 Applications of Azides For Academic Research Azides Heterocyclic Compounds Biologically Active Compounds Synthesis In Natural Products Synthesis Goal of “Click Chemistry” Cross-linking Agents Material Science 58 29 Applications of Azides Combination of "Click Chemistry" and Living Radical Polymerization Haddleton, M. et al J. Am. Chem. Soc. 2006, 128, asap , ja058364k Macrocyclic Polymers via "Click" Cyclization Grayson S.M et al J. Am. Chem. Soc. 2006, 128, asap , ja0585836 59 Applications of Azides Bis(imino)pyridine Iron Imides Chirik, P. J. et al J. Am. Chem. Soc. 2006, 128, asap , ja057165y 60 30 Summary and Outlook R N3 R N N N R N N N R N N N 1a 1b 1c 1 R N N N R N N N R N N N 1d R N N N R N N N Nu E R N3 R N N N 1 2 3 X Y R ...... 61 Outlook M RN3 N3 R N N N . . .. .. 62 31 Acknowledgement Professor Wang Professors in Organic Institute All labmates 63 32 33 34
© Copyright 2026 Paperzz