On Minimizing the Sum of a Convex Function and a Concave Function Polyakova, L.N. IIASA Collaborative Paper June 1984 Polyakova, L.N. (1984) On Minimizing the Sum of a Convex Function and a Concave Function. IIASA Collaborative Paper. IIASA, Laxenburg, Austria, CP-84-028 Copyright © June 1984 by the author(s). http://pure.iiasa.ac.at/2549/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting [email protected] NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR ON M I N I M I Z I N G THE SUM OF A CONVEX FUNCTION AND A CONCAVE FUNCTION L,N, POLYAKOVA June 1984 CP-84-28 CoZZaborative Papers r e p o r t work which h a s n o t been performed s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s and which l i m i t e d review, Views or opinions do n o t n e c e s s a r i l y r e p r e s e n t t h o s e its- N a t i o n a l Member O r g a n i z a t i o n s , z a t i o n s s u p p o r t i n g t h e work, has received only expressed herein of the I n s t i t u t e , o r o t h e r organi- INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 L a x e n b u r g , A u s t r i a PREFACE I n t h i s p a p e r , t h e a u t h o r p r e s e n t s an a l g o r i t h m f o r minimizing t h e sum of a convex f u n c t i o n and a concave f u n c t i o n . The f u n c t i o n s i n v o l v e d a r e n o t n e c e s s a r i l y smooth and t h e r e s u l t i n g f u n c t i o n i s q u a s i d i f f e r e n t i a b l e . The main p r o p e r t y of s u c h f u n c t i o n s i s t h e non-uniqueness of d i r e c t i o n s of s t e e p e s t d e s c e n t (and a s c e n t ) , and t h e r e f o r e s p e c i a l p r e c a u t i o n s must be taken t o guarantee t h a t t h e algorithm converges t o a s t a t i o n a r y point. T h i s .paper i s a c o n t r i b u t i o n t o r e s e a r c h on n o n d i f f e r e n t i a b l e o p t i m i z a t i o n c u r r e n t l y underway w i t h i n t h e System and D e c i s i o n S c i e n c e s Program. ANDRZEJ WIERZBICXI Chairman System and D e c i s i o n S c i e n c e s ON MINIMIZING THE SUM OF A CONVEX FUNCTION AND A CONCAVE FUNCTION L.N. POLYAKOVA Department o f A p p l i e d M a t h e m a t i c s , L e n i n g r a d S t a t e U n i v e r s i t y , U n i v e r s i t e t s k a y a nab. 7 / 9 , L e n i n g r a d 199164, USSR Received 27 December 1 9 8 3 Revised 2 4 Rarch 1 9 8 4 We consider here the problem of minimizing a particular subclass of quasidifferentiable functions: those which may be represented as the sum of a convexfunctionanda concave function. It is shown that in an n-dimensional space this problem is equivalent to the problem of minimizing a concave function on a convex set. A successive approximations cethod is suggested; this makes use-of'some of the principles of E-steepest-descenttype approaches. Key w o r d s : Quasidifferentiable Functions, Convex Functions, Concave Functions, E-Steepest-Descent Methods. 1 . Introduction The problem of minimizing nonconvex nondifferentiable func- tions poses a considerable challenge to specialists in mathematical programming. Most of the difficulties arise from the fact that there may be several directions of steepest descent. To solve this problem requires both a new technique and a new approach. In this paper we discuss a special subclass of non- differentiable functions: the form those which can be represented in where f 1 is a finite function which is convex on En and f2 is a . finite function which is concave on En Then f is continuous and quasidifferentiable on En , with a quasidifferential at x E En which may be taken to be the pair of sets where In other words, af(x) is the subdifferential of the convex function f 1 at x E En (as defined in convex analysis) and af (x) is the superdifferential of the concave function f2 at x E En . Consider the problem of calculating inf f (x) xEEn . Quasidifferential calculus shows that for x * E E tobe a minimum n point of f on En it is necessary that We shall now show that the problem of minimizing f on the space En can be reduced to that of minimizing a concave function on a convex set. - L e t R d e n o t e t h e e p i g r a p h o f t h e convex f u n c t i o n f l R = e p i f = { z = [ x , ~ ]E En x E l h ( z ) and d e f i n e t h e f o l l o w i n g f u n c t i o n on En x El - f l (XI , i.e., 11 4 01 t : S e t R i s c l o s e d and convex and f u n c t i o n $ i s q u a s i d i f f e r e n t i a b l e a t any p o i n t z E E n x El . Take a s i t s q u a s i d i f f e r e n t i a l a t z = [ x , p ] t h e p a i r o f s e t s D $ ( z ) = [{O} where 0 E En+l , af2(x) x ill] , . L e t u s now c o n s i d e r t h e problem of f i n d i n g I t i s well-known (see, e . g . , [ 31) t h a t i f a concave f u n c t i o n a c h i e v e s i t s i n f i m a l v a l u e on a convex s e t , t h i s v a l u e i s a c h i e v e d on t h e boundary o f t h e s e t . Theorem 1 . For a p o i n t x * t o b e a s o l u t i o n o f p r o b l e m ( I ) , i t i s b o t h n e c e s s a r y and s u f f i c i e n t t h a t p o i n t t i o n t o problem ( 3 ) , where P* = f (x*) [ x * , p * ] be a s o l u - . Proof Necessity. 11 + f 2 L e t x* be a s o l u t i o n o f problem ( 1 ) (x) ? f l ( x ) . Then + f 2 ( x ) > f l ( x * ) + f 2 1 x * ) V p 2 f l ( x ) , VxGEn= (4) But ( 4 ) i m p l i e s t h a t where p* = f l ( x * ) . Thus t h e r e e x i s t s a z * = [ x * , p * ] E R such t h a t $(z) 1 )I (z*) Vz E R . This proves t h a t t h e c o n d i t i o n is necessary. Sufficiency. That t h e c o n d i t i o n i s a l s o s u f f i c i e n t c a n b e proved i n a n a n a l o g o u s way by a r g u i n g Backwards from i n e q u a l i t y ( 5 ) . 2. A numerical algorithm Set E 2 0 . A point xo E E n p o i n t of t h e f u n c t i o n f on En i f i s c a l l e d an E - i n f - s t a t i o n a r y where i.e. , 'aE f ( x o ) f l a t xO . i s t h e E - s u b d i f f e r e n t i a l o f t h e convex f u n c t i o n F i x g E En and s e t Theorem 2. For a p o i n t xo t o be an E - i n f - s t a t i o n a r y p o i n t o f t h e f u n c t i o n f on E~ , it i s b o t h n e c e s s a r y and s u f f i c i e n t t h a t a,£ (x,) min Il g ll = 1 Necessity. a4 2 0 . Let xo be an E-inf-stationary point of f on En . Then from (6) it follows that Eience min max I I ~ I I =z&+a,f(~~) I - (z,~) and thus for every g E En, lgll=l Vw sf(xol , we have min w a f (xo) However, this means that proving that the condition is necessary. That it is also suf- ficient can be demonstrated in an analogous way, arguing backwards from the inequality ( 9 ) - -6- Note that since the mapping is Hausdorff-continuous if > 0 (see, e.g., [I]), then the E following theorem holds. If Theorem 3. E > 0 then the function max (v,g) i s convaaEf (x) En . t i n u o u s i n x on E n f o r any f i x e d g E Assume that xo is not an E-in£-stationary point. Then we can describe the vector gE (x0)= arg min Il g ll = 1 aEf(xO) a9 as a direction of E-steepest-descent of function f at point Xo It is not difficult to show that the direction where vOE E CEf(xO) - WO E gf(x0) and max min Ilv+wl WET£ (x") fiaEf(x,) = -llv OE + w l =aE(xo) , o is a direction of E-steepest-descent of function f at point x 0 Now let us consider the following method of successive ap- proximations. - Fix xO E En > 0 a n d c h o o s e an a r b i t r a r y i n i t i a l a p p r o x i m a t i o n E . Suppose t h a t t h e Lebesque s e t i s bounded. - -af ( x k ) If Assume t h a t a p o i n t x C , then a_,£ ( x k ) E E~ h a s a l r e a d y been found. xk i s a n E - i n f - s t a t i o n a r y point of f on E~ ; i f n o t , t a k e X k+ 1 = Xk where g E k = g , ( x k ) Xk + akgEk a k = a r g min f (xk+ag &k a20 , i s an E-steepest-descent d i r e c t i o n of f a t ' Theorem 4 . The f o l l o w i n g r e l a t i o n h o l d s : l i m a, (xk) = 0 kProof. . W e s h a l l p r o v e t h e t h e o r e m by c o n t r a d i c t i o n . Assume t h a t a s u b s e q u e n c e i x k 1 of s e q u e n c e { x k } a n d a number a>O e x i s t S such t h a t (The r e q u i r e d s u b s e q u e n c e must e x i s t s i n c e D ( x o ) i s compact.) W i t h o u t l o s s o f g e n e r a l i t y , w e c a n assume t h a t x (clearly, x I: E D ( x O )) . Then -x ks * where The t e r m o ( a t g E k ) a p p e a r s i n t h e above e q u a t i o n due t o t h e conc a v i t y of f 2 . s The f a c t t h a t f u n c t i o n f 2 i s concave i m p l i e s t h a t o ( a t g E k s) 5 0 ' d a > O t WgEk E En t S and t h e r e f o r e f (xk s + agEk (xk 1 + ) s S la max (vtgEk )dr O v E a f l (xk +Tg,k ) s S + a min 6af2(xk S (wt g EkS S Since a Ef 1 (x) 3 af 1 (x) f o r every x max eaE (xkf+TgEk l ) S and t h u s S ( v t g ~ k2s E En , max we have t + f ( x k +ag s EkS s f(xk s ) +la O max vEaEf 1 (xk +rgEk ) S + a S i n c e t h e mapping a E f l i s Hausdorff-continuous > > 0 such t h a t and hence Therefore a t the point x * 0 such t h a t where S r ( z ) = {x E E n ] llx-zll 6 r } K S min ~ ( Xa 1f(w,gEks ks ~ there exists a 6 ) d +~ . Also, t h e r e e x i s t s a number , Inequality (10) contradicts the fact that sequence {f(xk)} is bounded, thus proving the theorem. References [I] E.A. Nurminski, "On the continuity of &-subgradient mappings", C y b e r n e t i c s 5 (1977) 148-1 49. [2] L.N. Polyakova, "Necessary condtitions for an extremum of a quasidifferentiable function", V e s t n i k L e n i n g r a d s k o g o U n i v e r s i t e t a 13 ( 1 980) 57-62 (translated in V e s t n i k Leningrad U n i v . Math. 13 (1981) 241-247). [3] R. T. Rockafellar , Convex Ana Z y s i s (Princeton University Press, Princeton, New Jersey, 1970).
© Copyright 2026 Paperzz