ChemistryofRareEarthElementsinWastewater Introduc8on As clean water becomes scarce, the removal of contaminants from wastewater is becoming increasinglyimportant.Nutrientssuchasphosphorus(P)intheformofphosphate(PO43-)serveasa foodsourceforalgae.RecentlyexcessiveamountsofPinnaturalwatershaveledtolargealgalblooms which release toxins into the water and deplete dissolved oxygen concentraEons. These consequences result in the death of other fresh water species and the contaminaEon of drinking watersources.1Asaresult,newregulaEonsarebeingputintoplacethatgreatlyrestrictthedischarge of P into the environment. New wastewater treatment plant discharge permits are requiring ever lowerPconcentraEonsintheeffluent.TheselowerpermitlimitscanbedifficulttoreachwithexisEng technology.RareEarth(RE)technologyhasemergedasaviablealternaEvetechnologywhichcanhelp reduce the effluent P concentraEon through chemical addiEon alone. RE technology from Neo Chemicals&Oxides(Neo)isaliquidcoagulantthatcontainstherareearth(RE)elementslanthanum (La)andcerium(Ce).Thispaperisintendedtoexplainthechemistry,applicaEonandtoxicityofREin treaEngwastewater. RareEarthChemistryinWastewater Therareearthelementsarethesetof15elementswithatomicnumbers57-71aswellasYSrium(Y, Atomicnumber:39).TheyarelocatedonthelowerporEonoftheperiodictablesomeEmesreferred to as the f-block. UnEl about 60 years ago, not much was known about these elements. The term “rare earth” is actually a misnomer because the elements are not rare. For example, the two RE elements of interest to this paper, La and Ce, are the 26th and 28th most abundant elements in the Earth’scrust,respecEvely.2Innature,rareearthelementsarefoundinover100mineralswithmajor depositsinIndia,SouthAfrica,Brazil,Australia,Malaysia,andtheUSA.2Therareearthsingeneraland parEcularlyLaandCeformverystrongbondswithoxyanionslikephosphateandcarbonate.TheLa andCebondwithphosphateissofavoredthatcommonrareearthcontainingmineralscontainrare earth phosphate. This strong bonding is the basis for the use of rare earths as phosphate removal agents.RareearthbasedproductslikethosefromNeohavebeenusedforphosphateremovalfrom waterinmulEpleindustrieslikeaquariumwatertreatment,3 poolandspawatertreatment,4 andlake remediaEon.5 Inwastewatertreatmentseveralpatentswerepublishedcirca1970describingtheuse of rare earth salts for precipitaEon and removal of phosphate.6 All of this demonstrates rare earth basedproductsareeffecEveatremovingPinavarietyofwatertreatmentapplicaEons. Thetypicalcoagulantsusedinwastewatertreatmentareiron(Fe)andaluminum(Al)based.Febased coagulants include ferric chloride, ferrous sulfate, and ferrous chloride among others. Al based coagulants include aluminum sulfate (alum), sodium aluminate, and polyaluminum chloride (PAC). RecentlyREtechnologyhasemergedasaviablealternaEvetechnologyforPremoval.Theprinciple differencebetweenFe,AlandREbasedproductsisthemechanismbywhichtheyremovephosphate, asshowninFigure1.TherehasbeensomedebateaboutthemechanismofFeandAlbasedproducts. Version0.1 Created4-1-16 OriginallyitwasthoughtthatFeandAlformedFePO4orAlPO4,butrecentstudieshaveshownthat the mechanism is more complicated. Smith has reported that the mechanism actually consists of a two-stepprocess.AmetaloxidesuchasAl2O3orFe2O3iniEallyformswhichisfollowedbyadsorpEon ofphosphateontothemetaloxidesurface.7 Thismechanismisconsistentwiththeobservedneedfor increasing amounts of Fe or Al at low phosphate concentraEons, i.e. the adsorpEon process is less efficientwhenthereisliSlephosphatepresent. Incontrast,themechanismforrareearthremovalofphosphateisastraighgorwardmetalphosphate precipitaEon resulEng in the formaEon of the mineral rhabdophane, which is a stable form of RE foundinnature.TheprecipitaEonreacEoncanbedescribedbytheequaEon RE3++PO43-!REPO4·H2O WhileREcanreactinasimilarmechanismtothatofFeandAlviatheformaEonofaRE(OH)3which can adsorb phosphate, the precipitaEon reacEon with phosphate to form rhabdophane is greatly favored. AnotherdifferencebetweenFe,Al,andREbasedcoagulantsisthemolarraEoofthecoagulantmetal toPthatisneededtoremovePtothedesiredlevel.Thephosphateremovalperformanceofvarious Fe, Al, and RE based coagulants vs the molar raEo of coagulant to P is shown in Figures 2 and 3. Regardless of starEng P concentraEon, addiEon of the RE as CeCl3 resulted in the lowest P concentraEonbeingachievedwhentheRE:PraEowas1:1.Bycomparison,FeandAlbasedcoagulants need to be dosed at higher mole raEos (at least 2.5:1 (Fe or Al):P) in order to achieve similar P concentraEons. Version0.1 Created4-1-16 Figure2.Premovalvs.molarra1oforvariouscoagulants.BeginningPconcentra1onof2.5mg/L. Figure3.Premovalvs.molarra1oforvariouscoagulants.BeginningPconcentra1onof1.0mg/L. TheREtoPreacEonmechanismaccountsforthenear1:1RE:PmolarraEoobservedforPremoval.In thiswayREtechnologyisuniqueamongcoagulants. TheaddiEonofREtechnologytowastewaterhasthepotenEaltoremovemulEpledifferentanions.In addiEontoPasphosphate,therareearthelementsinREtechnologycanforminsolublecomplexes with carbonate (CO32-), hydroxide (OH-), and fluoride (F-). Examples of these reacEons are shown in Table I. Also listed in Table I is the precipitaEon pH range, the solubility product (Ksp) and concentraEonofREcalculatedfromtheKsp.TheKspisameasurementofthesolubilityofasolidandis Version0.1 Created4-1-16 calculatedbymulEplyingtheequilibriumconcentraEonsofthecaEonandanionwitheachraisedto thepowerofitsstoichiometricequivalent.Forexample,forCePO4 Ksp=[Ce3+][PO43-] whileforCeF3 Ksp=[Ce3+][F-]3 ThelowertheequilibriumconcentraEon,thesmallertheKsp,andthusthemoreinsolublethesolid. ForpracEcalpurposes,thesmallertheKspisthelesssolublethereacEonproduct.AsacomparaEve example,theKspoftablesalt(NaCl)is3.73x101.ThisKspis26ordersofmagnitudegreaterthanthatof ceriumphosphateandthusNaClisverysolubleandceriumphosphateisveryinsoluble. TableI.CommonreacEonsbetweenrareearthsandanions Anion ReacEonthatformsaninertsolid PrecipitaEon pHrange Ksp,, EquilibriumFree REinSoluEon, ppm(pH7) Phosphate La+3(aq)+PO4-3(aq)→LaPO4·H2O(s) Ce+3(aq)+PO4-3(aq)→CePO4·H2O(s) >2 5.0x10-25 9.9x10-8 Carbonate/Bicarbonate (HCO3-dominantatpH7) 2La+3(aq)+3HCO3-(aq)→La2(CO3)3(s)+3H+(aq) 2La+3(aq)+3CO3-2(aq)→La2(CO3)3(s) 2Ce+3(aq)+3HCO3-(aq)→Ce2(CO3)3(s)+3H+(aq) 2Ce+3(aq)+3CO3-2(aq)→Ce2(CO3)3(s) >3.5 ~8x10-36 0.01 HydroxideAlkalinity La+3(aq)+3OH-(aq)→La(OH)3(s) 2La(OH)3+6OH-!La2O3+6H2O Ce+3(aq)+3OH-(aq)→Ce(OH)3(s) 2Ce(OH)3+6OH-!Ce2O3+6H2O >4 1.0x10-22 0.19 Fluoride La+3(aq)+3F-(aq)→LaF3(s) Ce+3(aq)+3F-(aq)→CeF3(s) 3-8 1.8x10-19 1.26 TypicalwastewatereffluentneedstobeinthepHrangeof6-9andasseeninTableIthepHrange whereREwillprecipitatetheseanionsiswellwithinthisrange.Alsothelowestequilibriumfreeion concentraEon calculated from the Ksp in Table I is for the reacEon with phosphate. This is further evidencethatREwillfavorprecipitaEonofP. CaseStudiesinWastewaterTreatmentPlants REtechnologyhasrecentlybeenusedtotreatPtomeetthelowdischargelimitof0.075mg/L.A2 MGDwastewatertreatmentplantdischargingintoalakeinMinnesotahasbeenevaluaEngmethods to remove P to this level for its upcoming permit. The influent P averages around 2 mg/L but can rangefrom1-4mg/L.IniEallyatrialwasdonetoevaluatetheuseofacombinaEonofPACandferric chloride.WhilethistrialwassuccessfulinmeeEngthedischargelimitof0.075mg/L,numerousother issuesaroserelatedtofiltraEonfromtheincreaseddosageofcoagulant.LaterwhenREtechnology wasevaluated,theeffluentTPdroppedrapidlyandwithin7dayswasbelowthetargetlimitof0.075 mg/L(seeFigure4below). Version0.1 Created4-1-16 Figure4.TPdischargeatMinnesotaPlantusingRareEarthTechnology Figure5.CoagulantdoseandTPdischargeatMinnesotaplantusingRareEarthTechnology Version0.1 Created4-1-16 The iniEally high dose rate rapidly gets the RE into the system and can then be lowered while maintainingtheTPdischargelimit.ThismethodiseffecEveforrapidlyloweringthePandopEmizing thedosetomeetthePdemand.WhencomparedtotheprevioustrialusingacombinaEonofPACand ferric chloride, the use of RE technology had several advantages. The first of which was the lack of seSlingorfiltraEonissues.Secondlythedoserateofcoagulantwasmuchlower. ThePACandferric chloridetrialhadcombinedcoagulantdoseratesofnear180GPDwhileREtechnologywasbelow35 GPD. RE technology has also been used recently in a 3 MGD waste water treatment plant in Wisconsin wherethedischargelimitforTPisalso0.075mg/L.InfluentTPinthisplantvariesbetween2and5 mg/L.OverthecourseofthistrialtheinfluentTPincreasedslightly.DespitethisincreasetheEffluent TPremainedbelowthedischargelimit.Asinthetrialdescribedabove,theiniEalcoagulantdosewas high and resulted in a rapid decrease in the effluent TP concentraEon. The dose was then lowered overEmeandtheeffluentTPremainedbelowthelimit. Figure6.InfluentandEffluentTPwithCoagulantDoseusingRETechnology Another wastewater treatment plant discharging into a stream that leads to Lake Erie has permits whichlimitthedischargeofAlto1.1mg/LandPto1.0mg/L.ThisisacasewheretheeffluentPlevels arenotextremelylowbuttheamountofAlthatcanbeusedislimited.TheinfluentPwasinthe3-4 mg/Lrange.OperatorsaSemptedtomeetthePdischargelimitbyalternaEvelydosingferricchloride orPACpriortotheprimaryandsecondaryclarifiers.Ferricchloridewasdosedathighdosagerates and was unable to meet the P discharge limit. Switching to PAC put a limit on the dosing amount because PAC is Al based and would increase the discharge of Al. With RE technology the plant was able to meet both permits using a moderate dose of rare earth. The data from the plant is shown belowinFigures7and8.TheresultsshowthattheaddiEonofREwasmoreeffecEveatremovalofP andhadtheaddedbenefitofnotaddingAltothesystem. Version0.1 Created4-1-16 Figure7.TotalPhosphorusbeforeandaOerREtechnology. Figure8.TotalAluminumbeforeandaOerREtechnology. Version0.1 Created4-1-16 RE technology has also been used in terEary treatment. A 30 MGD municipal plant equipped with advancedphysicaltreatment(mulE-mediafiltraEonandcarboncontactors)wasusingalumtoremove Pfromwastewater.WithalumthefinaleffluentPconcentraEonachievedwas0.09ppmTP.WhenRE technologywasevaluatedasanalumreplacement,thePconcentraEonachievedwas0.07ppmTPin thefinaleffluent(seeFigure9below). Figure9.EffluentPconcentra1onbeforeandaOerREtechnologyaddi1on These four examples of the use of RE technology to remove P from wastewater demonstrate the abilitytobeaneffecEvealternaEvetotheuseoftypicalFeandAlbasedcoagulants.TheyshowRE technologycanbeusedtoachieveverylowdischargelimitsinavarietyofplantsizesanddosepoints. ToxicityofREtechnologyinWastewater The toxicity of chemical addiEves to wastewater should be tested to determine the effect of the addiEvesontheecosystem.IdeallytheaddiEvewilldowhatitisdesignedtodo,onlybedischargedin aminimalamount,andnothaveanyadverseeffectsontheecosystem.Toconfirmthis,theEPAhas published methods for measuring the toxicity of effluents, the Whole Effluent Toxicity (WET) test.8 GenerallytheWETtestwillmeasurethenumberoforganismsthatwillsurviveinwaterwithadosed amount of either plant effluent or the chemical addiEve. Freshwater organisms are Ceriodaphnia dubia (daphnid), Daphnia pulex and Daphnia magna (daphnids), Pimephales promelas (fathead minnow), Oncorhynchus mykiss (rainbow trout) and Salvelinus fonEnalis (brook trout). The concentraEon that will kill 50% of the organisms is known as the LC50. Other numbers such as the NOEL (No Observed Effect Level), NOAEL (No Observed Adverse Effect Level), and LOAEL (Lowest ObservedAdverseEffectLevel)canalsobedeterminedfromthistesEng.Todate,REtechnologyhas been implemented in over 40 faciliEes in the USA since 2014. Every facility has passed effluent complianceWETtesEngwhileusingREtechnology. Version0.1 Created4-1-16 Inanefforttotestworst-casetoxicityoftheaddiEves,itishelpfultoassumetheyarenotremovedin the treatment process and are discharged directly. LC50 values from published EPA documents and recentNeostudiesareshowninTableIIbelowforCeriodaphniaspeciesandPimephalespromelas.As ofthiswriEng,weareunawareoftoxicitystudiesconductedwithFebasedcoagulants. TableII.LC50ofAlandREforCeriodaphniaandPimephalesspecies. Coagulant CeriodaphniaspeciesLC50 (mg/L) Pimephalespromelas(fatheadminnow)LC50(mg/ L) Al 3.69 >18.9 RE 9.2 107.3 ThemeasuredLC50ofREforCeriodaphniaspeciesiscomparabletothatofthereportednumbersfor Al coagulants. This indicates that RE elements have similar toxicity to Al for Ceriodaphnia. However theLC50ofREforPimephalespromelasismuchhigherthanthereportedvalueforAl.Thisindicates thatREsarelesstoxictoPimephalespromelasthanAl. The insoluble material generated (sludge) from rare earth addiEon to wastewater has also been tested.ThetypicalconcentraEonofRECl3inREtechnologyis780g/L,appliedatavolumetricdosage rate of 1:53,000, yields approximately 12 mg REPO4/L. This value is lower than the conservaEvely calculatedsafelimitof14mgREPO4/Lfordrinkingwater.9Thetreatedwateristhenfurtherprocessed through a solids/liquid separaEon system such as a clarifier or filter. Any rare earth solids that precipitatewouldthereforeberemoved,withtheactualrareearthphosphateconcentraEonlikelyto bemuchlowerthan12mg/Latthepointofdischarge.10TheprimarypotenEalforhumanexposureto RE technology treated water would be through consumpEon of treated water, whereas aquaEc organismscouldbeexposedatanypointayertreatmentofawaterbodywithREtechnology.Thus liSletonoharmfuleffectsareexpectedfromsolidsgenerated. Generally rare earths have a low toxicity raEng.11 ,12 There are no known human toxicity studies of ceriumphosphate.However,lanthanumcarbonate,acommonlyusedhumandrugforkidneydisease, hasbeenextensivelystudied.13 IntheacidicmammaliangastrointesEnaltract,lanthanumcarbonate breaksdownandcombineswithphosphatetoformlanthanumphosphate,thusulEmatelyremoving the phosphate from the human body. This process is similar to the way RE technology removes phosphate from water bodies. Therefore, the extensive human and animal studies of lanthanum carbonate also address the final lanthanum product in the human body, namely lanthanum phosphate. Lanthanum carbonate, and therefore lanthanum phosphate, has very low toxicity in humans and animals. There is no indicaEon that lanthanum phosphate is genotoxic (causes cancer or other significant health problems).14 In a bioassay to determine potenEal genotoxicity, the major component of RE technology, cerium chloride, was found to rapidly form cerium phosphate in the biologicalsystemand,likelanthanumphosphate,wasnotgenotoxic.Giventhesimilarchemistryand environmentalbehavioroflanthanumphosphateandceriumphosphate,thereisnoreasontobelieve thatceriumphosphatewouldhavedifferenttoxicityandshouldbeconsiderednon-toxicforhumans atthelowconcentraEonslikelytobeencounteredinwatertreatedwithREtechnology. The toxicity of the sludge generated towards denitrificaEon bacteria has also been studied in unpublishedsludgerespiraEoninhibiEonstudies.Therareearthsolidspresentinthesludgewouldbe Version0.1 Created4-1-16 those discussed earlier such as REPO4, RE2(CO3)3, and RE(OH)3. A study conducted by Intrinsic TechnologiesforNeofoundnotoxicitytowardsacEvatedsludgemicrobes.Asacomparison,forCeO2 theEC50forinhibiEonofrespiraEonwasgreaterthan1000mg/L.15 BasedonthistheaddiEonofRE towastewatertreatmentshouldhavenoeffectonthemicrobes. NeohasalsoevaluatedtheeffectoflandapplyingthesludgegeneratedintreatmentplantsusingRE basedcoagulants.ThisstudywasperformedbyRichardWolkowski,Ph.D.(ExtensionSoilScienEstat UniversityofWisconsin-Madison)atAlfisolSoilManagement,LLC.Inthisstudy,Pavailabilitytocorn from rare earth biosolids was invesEgated and compared to P availability from a commercial P ferElizer and ferric biosolids. Corn was chosen for the study as it is the most common crop treated withbiosolidsandisgrownonfourmillionacresinWisconsin.Rareearthbiosolidsproducedsoilwith PavailabilitybetweenPferElizerandferricbiosolidsasmeasuredbythechangeinsoiltestP.Thecorn whole-plantdrymaSeryieldeitherwasunaffectedbytherareearthbiosolids.Thus,theapplicaEon ofrareearthbiosolidsisnotexpectedtoaffectthegrowthandyieldofcornwhenappliedatnormal ratesthatsupplythecornNrequirement. Conclusion TheuseofREtechnology,arareearthbasedcoagulant,toremovePfromwaterisquiteeffecEve.The basisforthisisthesolidsformedresemblenaturallyoccurringmineralswhichhaveverylowsolubility. FurthermorethesemineralformshavelowsolubilityatthenormalpHofwastewaterwhichispH6-9. ThusthewatertreatedwithREtechnologywillhavelowconcentraEonsofRE,andP.Toxicitystudies have also shown RE based coagulants and the precipitates formed when used in wastewater to be non-toxic to have low toxicity. Furthermore the presence of RE in the land applied sludge has no observed impact on the growth of corn plants. For these reasons RE based coagulants are a viable opEonforuseinwastewatertreatment. DuetothechemistryoftherareearthelementsfoundinREtechnology,highlyinsolublesolidsare expectedtoformwhenREisappliedinwastewatertreatment.Assuch,theconcentraEonof solubleREintheeffluentisexpectedtobequitelow.Rareearthshavebeenshowntohavelow toxicityandlowenvironmentalimpact. 1hSp://www.circleozlue.org/2016/water-quality/epa-announces-naEonal-wastewater-nutrient-polluEon-census/ 2Greenwood,N.N.;Earnshaw,A.ChemistryoftheElements,2ndEd.;BuSerworth-Heinemann:Oxford,2001. 3Forreferencesregardingrareearthuseinaquariumssee 1. 2. 3. Knop,D.NewPhosphateFighter?CoralMagazine,2009,6(6),p2-11. Zhang,Y.;Wong,K.S.Lanthanumchlorideorlanthanumcarboxylatefororthophosphateremovalinseawater aquarium-afeasibilitystudy,Environmentallaboratory,ZOEDivision,OceanPark,HongKong Yaiullo,J.FeaturedAquarium:AtlanEsMarineWorld.AdvancedAquarist.February2007,VolumeVI.(hSp:// www.advancedaquarist.com/2007/2/aquarium) 4Forreferencesregardingrareearthuseinpoolsandspassee 1. 2. 3. 4. 5. Mills,D.J.RemovalofPhosphatefromWater.U.S.Patent6,946,076,Sep.20,2005. Mills,D.J.TreatmentofSwimmingPoolWaters.U.S.Patent6,146,539,Nov.142000. Kulperger,R.;Okun,R.;Munford,G.MethodsandComposiEonsUsingLanthanumforRemovingPhosphatefrom Water.U.S.Patent6,524,487,Feb.25,2003. Kulperger,R.;Okun,R.;Munford,G.MethodsandComposiEonsUsingLanthanumforRemovingPhosphatefrom Water.U.S.Patent6,338,800,Jan.15,2002. Lowry,R.N.PhosphateRemoval…Revisited.Pool&SpaMarke1ngmagazine,2003,27(7),p57. Version0.1 Created4-1-16 5ForreferencesregardingrareearthuseinlakeremediaEonsee 1. 2. Peterson,S.A.NutrientInac1va1onasaLakeRestora1onProcedure:LaboratoryInves1ga1ons,U.S.Govt.Print. Off.,1974. hSp://www.sepro.com/phoslock/ 6Forpatentsregardingrareearthuseinwastewatersee 1. 2. Kleber,E.V.;Recht,H.L.RemovalofPhosphatefromWasteWater.U.S.Patent3,956,118,May11,1976. Daniels,S.L.;Parker,D.G.RemovalofPhosphatefromWasteWater.U.S.Patent3,617,569,Nov.2,1971. 7Hanlon,C.ScoSSmith:UnderstandingandMaximizingPhorphorusRemovalINFLUENTS,Fall2015,p8-9. 8MethodsforMeasuringtheAcuteToxicityofEffluentsandReceivingWaterstoFreshwaterandMarineOrganisms,Fiyh Ed.October2002.U.S.EnvironmentalProtecEonAgencyEPA-821-R-02-012. 9TheoralreferencedoseforthesimilarcompoundLanthanumPhosphateis0.5mg/kg-day(NSFInternaEonal2010as citedbyUnitedStatesEnvironmentalProtecEonAgency(USEPA).2012.Rareearthelements:AreviewofproducEon, processing,recycling,andassociatedenvironmentalissues.EPA/600/R-12/5721.August.).Thusthesafedailyexposure levelofarareearthphosphateis0.5mg/kg-day*70kg=35mg/day(assuminga70kgperson).Usingthe80%upper ceiling(UnitedStatesEnvironmentalProtecEonAgency(USEPA).2000.Methodologyforderivingambientwaterquality criteriafortheprotecEonofhumanhealth.OfficeofWater,EPA-822-B-00-004.October.Availableonline:hSp:// water.epa.gov/scitech/swguidance/standards/upload/2005_05_06_criteria_humanhealth_method_complete.pdf) contaminantexposurefromwaterthesafeconcentraEonis0.5mg/kg-day*70kg*0.8/(2L/dayconsumed)=14mg/L. 10REPO 4willbedetectedinatotalphosphorustest.Assumingall12mg/LREPO4wasdischarged,theTPmeasuredwould be1.6mgP/L,whichismuchhigherthannewdischargepermitscomingintoeffect(<1or<0.1). 11Kilbourn,B.T.Cerium:AGuidetoItsRoleinChemicalTechnology.Molycorp,Inc.:Fairfield,NJ,1992. 12Haley,T.J.PharmacologyandToxicologyoftheRareEarthElements.J.Pharm.Sc,1965,54,663. 13Forreferencessee 1. 2. 3. FoodandDrugAdministraEon(FDA).2004.ReviewandEvaluaEonofNewToxicologyDataSubmiSedwith Fosrenol®NDAResubmission(NDA21-468).Availableonline:hSp://www.accessdata.fda.gov/drugsagda_docs/ nda/2004/21-468_Fosrenol_Pharmr.pdf Hutchison,A.J.,etal.2009.Lanthanumcarbonatetreatment,forupto6years,isnotassociatedwithadverse effectsontheliverinpaEentswithchronickidneydiseaseStage5receivinghemodialysis.ClinNephrol. 71:286-95. Finn,W.F.,etal.2005.Along-term,open-labelextensionstudyonthesafetyoftreatmentwithlanthanum carbonate,anewphosphatebinder,inpaEentsreceivinghemodialysis.CurrMedResOpin.21:657-64. 14ANOHSC(AustralianNaEonalOccupaEonalHealthandSafetyCommission).1998.Availableonline:hSps:// www.nicnas.gov.au/__data/assets/word_doc/0015/20175/NA606FR.docx. 15ToxicologicalReviewofNanoCeriumOxide.Prospect2010 Version0.1 Created4-1-16
© Copyright 2026 Paperzz