Settlement of Marine Organisms in Flow Author(s): Avigdor Abelson and Mark Denny Reviewed work(s): Source: Annual Review of Ecology and Systematics, Vol. 28 (1997), pp. 317-339 Published by: Annual Reviews Stable URL: http://www.jstor.org/stable/2952496 . Accessed: 29/03/2012 21:45 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of Ecology and Systematics. http://www.jstor.org 1997.28:317-39 Annu.Rev.Ecol. S-vst. ? 1997 bvAnnualReviewsInc. All rightsreserved Copyright SETTLEMENT OF MARINE ORGANISMS IN FLOW Abelson Avigdor Tel Aviv,Israel Research,Tel AvivUniversity, forNatureConservation Institute 69978; e-mail:[email protected] MarkDenny University, Stanford HopkinsMarineStation,BiologicalSciencesDepartment, 93950-3094 PacificGrove,California KEY WORDS: larvae,spores flow,propagules, settlement, ABSTRACT A feature commonto manybenthicmarineplantsand animalsis thereleaseof ofdispersal.Successful onlymechanism thatserveas theorganism's propagules transient dispersaldependsto a largeextenton theprocessof settlement-the phasebetweenthepelagiclifeofthepropaguleandthebenthicexistenceofthe settlement onthreelevels: 1. Flowcanactby adult.The flowofwatermayaffect the propagules.Theseforcesmayaffect forcesonsettling hydrodynamic exerting or encounter, itsbehaviorfollowing withthesubstratum, propagule'sencounter cue thatinducesactivebehaviorofmotile both.2. Flowmayprovidea settlement cues (e.g. sediment propagules.3. Flow mayactto mediatevarioussettlement We discussthesethreelevelsof flow of attractants). load andtheconcentration offlowinthesettlement importance thepotential effects as a meansofexamining indifferprocess,andthenwe exploretheecologicalconsequencesofsettlement factors. offlowandflow-derived in lightofthedirecteffects entflow-regimes INTRODUCTION Evidence is accumulatingfor the significantinvolvementof water motion in diverse biological and ecological processes in the sea (e.g. 13, 24, 39, 62). food, and wastes to and fromorganThese effectsinclude thefluxof nutrients, isms, externalfertilizationof gametes,disturbanceby hydrodynamicforcesof benthicorganisms,and the abilityof organismsto detectscents. In addition, 317 17$08.00 0066-4162/97/1120-03 318 ABELSON & DENNY flowmaycontrol orstrongly regulate thedispersalofbenthic species.A feature commonto manybenthicplantsandanimalsis thereleaseofpropagules(e.g. sporesandlarvae),whichare,inmostcases,theorganism's onlymechanism of dispersal.Severalpossibleadvantages accruetoa lifehistory thatincludesdispersingpropagules:widedistribution ofoffspring, geneflow,andcoexistence withdisturbance (39,73). Fulfilment of thesetasksdependsto a largeextent on theprocessofsettlement-the transient phasebetweenthepelagicdispersal phaseandthesessileexistenceoftheadult.Duringthisphasepropagules must first encounter thesubstratum. Followingitsarrivalat theseabed,a propagule mustdetermine theadequacyofthesubstratum foradultrequirements byusing a variety ofsettlement cues,whichmayincludesurfacecontour(17,95), substratum type(15), chemistry (55,65), thepresenceofa microbial film(82), and flowconditions (e.g. 58, 100). Finally,thepropagulemusteffectively attach, thereby allowingmetamorphosis anddevelopment intoa reproductive adult. Flowmayaffectsettlement ofmarineorganisms on threelevels.First,flow mayactas anagentexerting hydrodynamic forcesonsettling which propagules, thepropagule'sencounter either withthesubstratum, mayaffect thepropagule's behavior(passiveor active)followingencounter, or both. Second,flowmay actas a settlement cue thatinducesactivebehaviorofmotilepropagules.Only a fewstudies(mostofwhichdeal withinvertebrate larvae)haveexaminedthe role of flowregimein determining siteselectionby propagules(e.g. 4, 58). factoraffecting varioussettlement Finally,flowmayact as a mediating cues (e.g. sedimentation, chemicaldistribution, andlightintensity). Therearethreeapproachesto thestudyof floweffects on settlement. The first,and probablythemostcommon,is to monitorsettlement on substrata in thefield(e.g. 27, 56, 57). By characterizing theflowpattern inducedby and comparing thisto thesettlement oflarvae,one can substrata, distribution relatethesettlement to flow.The primary indirectly pattern problemwiththis is a practicalone; itis difficult to observethebehaviorof approach,however, propagulesundernaturalflowconditions.The secondapproachcircumvents thisobservational settlement inthelabproblembydirectly observing behavior undercontrolled flowconditions oratory (e.g. 4, 15,21, 58). Thedisadvantage ofthisapproachis thatitcannotsimulatetheexactflowconditions experienced bypropagulesin thefield.The thirdmethodemploysnumerical modelingof flowconditions in thefieldandofpropagules'behaviorduringdisprevailing persalandsettlement (e.g. 25, 28, 34). Thislastapproachdependslargelyon data obtainedby theothertwoto supplyrealisticvaluesforparameters and modelsmustoftenbe boundaryconditions.To be mathematically tractable, modelsmayrevealneglected simplistic. Despitethislimitation, aspectsofempiricalstudiesand can providenewdirections of research.A synthesis of all threeapproachesis likelybestto augment offlow oftheeffects understanding ofpropagules. on thesettlement SETTLEMENTIN FLOW 319 In thepresent reviewwe examinethethreelevelsoffloweffects andthevarious structural andbehavioral features ofpropagules thatmayinteract withflow We thenexploretheecologicalconsequencesofsettlement duringsettlement. as theyareaffected bytheflowcharacteristics ofdiffering substratum types. SUBSTRATUM TYPES AND FLOW PATTERNS The vastmajority of studiesthatdeal withsettlement, whether in thefield,in thelab,orona computer, examinebehaviorandsettlement overplanar patterns substrata.In nature, however, thesurfacesavailableforsettlement (e.g. coral reefs,kelpforests, andartificial reefsandotherengineered structures) include a diversity ofshapes.To understand floweffects on settlement andto assessthe we first flow-generated forcesthata propagulemustwithstand, mustcharacterize theflowpatterns associatedwithcommonsubstrata in thesea. To thisend we briefly describetheflowpatterns inducedbythreemajorsubstratum types: planarsurfaces, protruding bodies,anddepressions.Ourqualitative description is basedon thesimplifying assumption thattheundisturbed, mainstream flow is steady.In thefield,however, itis notuncommon tofindflowthatis unsteady duetotidesand/or waveaction(fora morethorough ofbenthic flow description see 62). environments, Planar Substrata in themarineenvironment andinExamplesofplanarsurfacesare numerous clude substrata of limitedarea,suchas rockfaces,as well as morespacious such as softbottoms.If we assumethattheflowis steadyovera substrata, planarsubstratum oriented parallelto thedirection of watermotion,theflow nearthesubstratum (in thebenthicboundarylayer)is similarly steady.The boundarylayerovera planarsubstratum developsfroma verythin,laminar flowjust downstream of theleadingedge of thesurface,to a turbulent, thick from boundary layerfurther alongthesurfaceata certaindistancedownstream theedge(Figure1). Iftheplanarsubstratum is spaciousandhydrodynamically smooth,a fullydevelopedboundarylayeris characterized by threezones: a thinviscoussublayeradjacentto theseafloor,a turbulence-dominated layer adjacenttothemainstream flow,anda buffer layerbetweenthetwo(Figure1). Althoughtheocean flooris seldomsmooth,viscoussublayersthatmayexist there(16) canbe upto6 mmthick.Forpurposesofcalculating theforcesacting on smallpropagulesduringsettlement, therelevant zone is thisthinsublayer. Bodies Protruding The surfacesofmarinesubstrata arefrequently rough,andtheflowoverrough substrata can be dividedintovariousflowregimes(54,97,98). Some ofthese involve"protruding bodies,"thoseelementsor bodiesthatprojectabovetheir 320 ABELSON & DENNY Um LBL _ -'P ofplanarsubstratum. The oftheflowregimesin thevicinity FigureI Schematicrepresentation boundary layer(TBL) bysolidlines.Thefullyturbulent laminarboundary layer(LBL) is indicated layeris indicatedby is characterized by eddiesand sweeps(indicatedby curliques).The buffer flow;thebrokenlineindicatestheouter smalleddiesovertheviscoussublayer.Um = free-stream ofwhichis 3; arrowsindicatetheflow,and theirlength edge oftheboundary layer,thethickness oftheviscoussublayer. proportional to flowvelocity.3v = thickness andthepresenceof whichalterstheflowpattern:kelpstipes,coral neighbors suchas pilingsand artificial reefs. branches, rocks,and manmadestructures bodiesofferless surfacearea thando planarones,they Althoughprotruding forman important of thesubstratum in manymarine component nonetheless environments. In our analysisof flowpatternin the vicinityof protruding as a simplemodel(Figure2). bodies,we use a circularcylinder The presenceofa cylinder causesflowto accelerateas watermovestoward in Figure2), and itswidestcross-section (at 0 = 900 forthecircularcylinder On the flownearthecylindercan reachvelocitiestwicethatof mainstream. sideofthecylinder, flowdecelerates.Due totheadversepressure downstream a separation zoneis inducedresulting associatedwiththedeceleration, gradient in a downstream wake(Figure2). Depressions onthesurfacesofsubmerged Depressions(e.g. pitsandcrevices)areabundant manmadestructures, andbothsoftbottoms and substrata including organisms, hardbottoms.Generallyspeaking,depressions havetheoppositeeffectfrom areathrough whichwater protruding bodies-theyincreasethecross-sectional slowswhenflowing overandintoa depression flows,andwaterconsequently thatresults gradient (62). Thedecreasingvelocityleadstoan adversepressure anda vortical ina separation oftheflowattheupstream edgeofthedepression flowwithin thecavityitself(Figure3). Flowoftenreattaches tothesubstratum at thedownstream rim(96; Figure3C). SE1TLEMENT -_> Um > u~~_L |- A IN FLOW 321 Ur2Um W Um Rb W0a B Figure2 Schematicrepresentation of a protruding body(A), itscrosssection(B), and theflow regimeinitsvicinity. Theflowpattern inducedbyprotruding bodies(inhighReynoldsnumbers) is oftwozonetypes:accelerated thinboundary laminar, andretarded layerflow(L) inupstream turns, turbulent flowin downstream wakes(W). Um = free-stream flow(notethatthevelocityat the boundary-layer edgecan reach2 Um); brokenlinesindicatetheouteredgeoftheboundary layers; brokenarrowsindicatestreamlines, andfullarrowsflowvelocitywherelengthis proportional to velocity.Rb = bodyradius,0 = anglebetweena givenpointandtheupstream stagnation point; oftheboundary a = thickness layer. The maximumtangential velocitiesof vorticeswithindepressionsare apone tenththemainstream proximately flowvelocityand do notexceed two tenthsmainstream velocity(e.g. 40, 77, 91). Periodically, thevortexwithin thecavitybecomesunstableandis shedfromthecavity.Thisvortex-shedding leadstobulkreplacement offluidwithin thedepression and,thereby, potentially to thebulkdeliveryof propagulesto thecavity.The sheddingof vorticesis enhancedbythepresenceofa distinct strongly downstream edgeto thecavity (69). Most studiesdealingwithcavityflowhave examineddepressionsbelowa in whichcase sharplydefinedvorticesare thedominant planarsubstratum, of cavityflow. Depressionsin hardsubstrata patterns howmaybe formed, ever,fromwallsraisedabove thelocal topography, and theymayproducea different of cavityflow(A Abelson,personalobservation).This flow pattern slowentrainment includesa relatively of fluidoutofthecavitybythe pattern flow"(an outwardcurrent "mainstream thatoccupiesmorethanthreequarters of thecavitycrosssection),and a rapidinwardcurrent nearthedownstream lip (Figure3C). Deliveryofpropagulestothecavityundersuchcircumstances 322 ABELSON & DENNY Um A B Um C ofa shallowdepression(A) (wherethedepression's depthis Figure3 Schematicrepresentation offlow)anddeepdepressions equal toorless thanitslengthin thedirection (B, C) (wheredepthis pointsare greater thanlength)andtheflowregimesin theirvicinity. Separationandreattachment indicates illustrated bythestreamlines (in C). Solidarrowsindicateflowdirection; arrowthickness relativeflowvelocity;wavylinesindicatethezone of slow outwardcurrent; Um = free-stream vortex. flow;P = primary vortex;S = secondary whilepassiveescapeofpropagmaybe enhancedbytheinward, rapidcurrent, current is slowerthanthepropagules sink. ulesis unlikely becausetheoutward no quantitative ratesto Unfortunately, studyhas yetaddressedthetransport cavitiesunderthesecircumstances. FLOW AS A FORCING AGENT can be dividedintotwocriticalstages:thedeliveryofpropagules Settlement to thesubstratum, and thesubsequentestablishment of thelarvaeor spores, SETTLEMENT IN FLOW 323 and metamorphosis. a stagethatincludesbothattachment Here,we describe possibleeffects of flowas a physicalforcing mechanism thatactson settling propagulesduringthesetwostages. Transport of propagulesto mechanisms each substratum typeare listed,alongwiththerelevant problemseach poses forpropagules.We thenexamineproblemsthatpropagulesmightencounter in exploringthesubstratum and achievinga residencetimesufficient forthe creationofa firmattachment-aprocessthatis a function oftime(e.g. 29). MechanismsofPropagule TransportTo Substrata tothesubstratum canbe achievedthrough activeswimDeliveryofpropagules ming,passivetransport bytheambientflow,or both.Passive,flow-mediated delivery maybe dividedintotwomajorcategoriesdependingon whether the flowis laminarorturbulent. Marinepropagulescan be classifiedacthemselves. Nonmotile cordingto theirabilityto transport propagulesinclude variousbacteria,bacterialcapsules,fungaland algal spores,larvaeof some invertebrate species,dispersivefragments of bothplantsand animals,and the slow-moving juvenilesand adultsof tinyspecies. Motilepropagulesinclude somealgalsporesand(primarily) invertebrate larvae.Thesemotilepropagules canreach5 mminlength (10) butarefrequently whereasthenonmuchsmaller, motilefragments canbe muchlarger-uptoseveralcentimeters long(e.g. 35). Amongpropagulesthatare nominallymotile,mostare weak swimmers, capable of maintaining speeds of less than 1 cm/s(19,51). This speed is less thantheflowspeedscommonnearocean substrata (e.g. 13), suggesting ofmostself-propelled thattheflowmaylimitthemaneuverability propagules. we assumethatundermostprevailing flowconditions, turbulent Accordingly, ofpropagulesto thesubstratum is due to passivemotion. transport DELIVERY BY ACTIVE SWIMMING The basic mechanisms by whichparticlescan inlaminarflowwereintroduced be delivered tothesubstratum tothebiological literature & Koehl(72) inthecontext ofaerosolfiltration byRubenstein theory. a numberof studies(e.g. 8, 42, 75) have contributed to our Subsequently, of the mechanisms marine understanding controlling particleentrapment by Fourofthesemechanisms organisms. mayalso operatetotransport propagules inwhichneutrally tosubstrata:1. Directinterception, follow buoyant particles within if are carried oneparticle radiusofthesubstratum, streamlines;particles in whichparticlesthataredenserthan it. 2. Inertialimpaction, theyencounter as flowis accelerated whilepassingarounda thefluiddivergefromstreamlines denseparticlesmoveinthe protruding body;underappropriate circumstances, 3. Gravitational a mechanism direction ofthesubstratum. similar deposition, toinertial butoneinwhichdeviation froma streamline is causedby impaction, DELIVERY BY LAMINAR FLOW 324 ABELSON & DENNY inwhichverytinypropagules mayexhibit a gravity. 4. Diffusional deposition, causingthemto encounter thesubstratum. random, Brownianmotion,thereby The natureofturbulent flowsnearthe bed is characterized sequenceof "ejections"and "sweeps," by an alternating whicharerandom inspaceandtime(84). Theejectionphaseis a slowmovement in theflow,whichmove of vorticesthatcreateshorseshoe-shaped structures The sweepphaseis characterized by high-speed awayfromthesubstratum. flowthatpenetrates theviscoussublayeras fluidmovestowardthesubstratum. arecarried tobe a mechanism bywhichpropagules Sweepshavebeensuggested on theviscoussublayerto thesubstratum (18). To date,information through ratesof theefficiency mechanism, andontheencounter ofsweepsas a transport particlestransported bysweeps,is lacking,andwe mustrelyon thetraditional by fora qualitativeestimation of theefficiency theoryof turbulent diffusion whichturbulence transports propagules(e.g. 25, 28). DELIVERY BY TURBULENT TRANSPORT ofpassiveproTYPES Thetransport TRANSPORT TO DIFFERENTSUBSTRATUM transport, pagulesto horizontal, planarsubstratais dominatedby turbulent and downwardswimming (e.g. 24, 30, 34). Turbugravitational deposition, is a function of turbulent transport) lence intensity (an indexof theefficacy of bothflowvelocity(24) and whether theflowis accelerating (50). At high is mainstream velocitiesin decelerating or steadyflows,turbulence intensity mechanism to a planarsubstratum transport typically high,and thedominant regardless ofpropagulesize. However,under is likelytobe turbulent transport flows), intensities (e.g. slowandaccelerating conditions ofverylowturbulence bygravitational deposition (especiallyfor transport mayinsteadbe dominated Given thatconsequently sinkfast)anddownward swimming. largepropagules inthesea andthevariety thevastareaofplanarsubstrata ofeffective transport ratesovera wide mechanisms thatcan combineto maintainhighencounter rangeofflowvelocitiesandpropagulesizes,itcan be arguedthat,amongthe threesubstratum planarsubstrata types,thechancesofa propaguleencountering arethehighest. A preliminary modelof transport to protruding bodiessuggeststhatdirect is thedominant data). The mechanism (A Abelson,unpublished interception is proportional andpropagofdirectinterception tobothflowvelocity efficiency thetransport ratesofpropagules(whicharetypiule size (42,72). Therefore, are velocitiescommonin themarineenvironment callysmall)in thelow-flow expectedtobe low. inhibits mostofthetransport mechanisms Theseparated flowina depression as suggestedby Yageret al thatprevailoutsidecavities.The sole exception, which,in thiscase, is coupledto theprocess (96), is gravitational deposition, SETTLEMENT IN FLOW 325 Particlescan effectively ofvortex-shedding. settleonlyin theinterim between withwhichvorticesareshedis determined sheddingevents.The frequency by theflowvelocity, cavitydimension, and a dimensionless index(theStrouhal whichis a function number), ofthecavityshapeandReynoldsnumber(92). is likelytobe thedominant Gravitational mechanism deposition transporting propagulesintodepressions.One shouldbearin mind,however, thatparticle dynamicsin vorticescan be complicatedand are notwell understood.For example,submicron particlescan segregate fromtheflowduetotherotational motionoftheflow(33), a processforwhicha physicalexplanation is lacking.In withlow flow-velocities, deepdepressions diffusional deposition anddirected swimming mayalso be important. TheLimitstoExploration andAttachment Once a propaguleencounters the substratum, thenextstepin settlement is eitherexploration of thesurfaceor immediate attachment. In eithercase, the propagulemustbe able to controlitspositionin space,whether to stayin one toestablisha permanent spotfortimesufficient attachment ortomoveinsearch ofan optimalsite. The abilityof a propaguleto controlitspositiondependson whether itcan resistthehydrodynamic forcesimposedon it. Understeadyflowconditions, a propaguleon thesubstratum is exposedto dragand liftforces,and if the flowaccelerateseitherspatiallyor temporally, an acceleration reactionis also thevelocitygradient imposed.In addition, inthebenthicboundary layerexerts a torqueon thepropagule,a "rotary force"thatrollsthepropagulealongthe substratum (A Abelson,P Sanjines,S Monismith, submitted). In theabsenceof adhesion,even theslightest forcesare sufficient to dislodgepassiveparticlesfromthesubstratum, withtheresultthatnonadhesive propagulesarelikelyto settleonlywheretheflowis exceedingly slow(e.g. in depressions).Undersuchbenignflowconditions, directed swimming mayalso be effective in allowinga propaguletomaintain itsposition. Assumingthatthesurfacesofsubstrata areequallyrough,therelativeforces ongivenpropagule sizesatthesubstratum surface maydependonthesubstratum type.Protruding bodiesinducethelargest hydrodynamic forcesamongthethree substratum types.Theserelatively to thesteep strongforcesaredue primarily overtheprotruding-body velocitygradients as wellas totheincreased surfaces, flowvelocityalongthesidesofthebody(which,in cases ofcircularcylinders, mayreachvaluestwicethemainstream flowvelocity;Figure2). An additional roleindetermining the force,theacceleration reaction, mayplayan important resultant forceon relatively largepropagules.Planarsubstrata presentintermediatevaluesof meanforcesexertedon settlingpropagules.These forces are lowerthanthoseexertedby theflowin thevicinityof protruding bodies 326 ABELSON& DENNY on planarsubstrata, buthigherthanthesein depressions.Propagulessettling shearstressesdue to sweepsthatmay can experienceinstantaneous however, exceed30 timestheaverage(26). Problems ProposedSolutionsToForce-Related barrithatcan actas potential twofactors In thediscussionabove,we identified manner inwhichthey ofmarinepropagules-theinefficient erstothesettlement forces bodiesand theneedto resisthydrodynamic aredeliveredto protruding totheseproblems Thesolutions whilemaintaining a positiononthesubstratum. with thatincreasetheprobability ofencounter are of twokinds:mechanisms (or instantaneous attachment and mechanisms of temporary, thesubstratum, adhesion),whichenablethepropaguleto achievetheresidencetimerequired fora permanent attachment. bodiesis posiof transport to protruding As has beennoted,theefficiency toincrease withpropagulesize; hence,an obviousmechanism tivelycorrelated a protruding bodyis to increase of a propaguleencountering theprobability thepropagule'ssize. However,largepropagulesexperiencelargeflow-related Likewise,largepropagules forcesthatcan detachthemfromthesubstratum. theoptimalsolutionshouldbe one thatinare costlyto produce.Therefore, butdoes notincrease size priorto encounter creasesthepropagule'seffective theforceexertedafterencounter. The evolvedsolutionsto thisproblemare based on theuse of flexibleapdevicesthatincreasethepropagule'svolume.For pendagesorothertemporary example,mucussheathsenvelopethepropagulesofredalgae (12) anddiatoms thesheathof a red-algalsporemayin(E Gaiser,personalcommunication); (Figure4A). Another creaseitsactualvolumebynearlyan orderofmagnitude fromthepropagule'sbody(Figure4B), a sois to extendprojections strategy lutionfoundinbacterialcapsules(20) andpili(60), fungalspores(38), andthe of redalgae (47) and softcorals(Y Benayahu,personal dispersivefragments Thesefragments producestickycrownsofrhizoids. communication). devicesthatcoverthewholesurfaceareaofthepropagulebody Attachment whichinmany beimpractical formotilepropagules, ofitmight ora largeportion (bycilia,forinstance).Motile cases utilizetheirbodysurfaceforlocomotion are juvenilesoradultsofinvertebrates propagulessuchas larvaeanddispersive appendagewhich,due tothecontinuous morelikelytouse a single,projecting occupya muchlarger reorientation of thepropagulein flow,maynonetheless without an appendage(4) (Figure4C). Projecteffective spacethana propagule ingappendagesincludethemucousthreadssecretedby larvaeof hydrozoans sea anemones(76), corals(4, 88), information), (37; A Abelson,unpublished and polychaetes(32), and byjuvenilesand smalldispersiveadultsof snails (49,90) andbivalves(23, 87). SETTLEMENT IN FLOW 327 "l A .... . toehnedecutraeflavewtpordnbde4. d y f e .e .i l y d . . L..*.I. o ........... * T t r T T T i . Howe r I . . . . .. .........._ .. .. .. ... .. . -. .._ .* .... . .t 1TT .. ........*. ..,,I, .. . .i. . .. T Figre Atachen deiceofproagles (Amuousshath.(B.sufac pojetios (.g bacteria pili); C)threas (e.g..ucous.an.byssus) After thepropagulehasreachedthesubstratum,ithastwopotentialremainin p a m it t e m l m a n o n prjctn apedae hav bee obere in Single~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ flowi tan to rise Singe pojecingappedags hveben bsered naaflowtan togive iveris p n aa s m . A toehaned ncouterrats o larae ithprorudig bdie (4..Howver.th incraseprbabiityof nconteris arglyepenenton.he.rienatin.o.th ote rtuigbd. propagule~ ~proaguls ~ ~ maybe ~~~~...... ....inttono an.t.pedgerltv appenage-earin afectd, amng oheractor, bythei rai an th aspect~~~~~~~~~~~~~~~~~~~~~~~~~ dispto enrg (eg ... aspet rtioand hetubln 41.i... urblentdisipaion nery (.g.41....... Afte theproagul hareahed heubstatu,.ithas.wo.otenialremanin probems If ti tosette terepermnenly, tm ti a peranentattahmentis mde.Aterntive.t.aintin.ts.ositon.. t ....tmay.b.advntage... 328 ABELSON & DENNY in searchof a moreappropriate explorethesubstratum site. In bothcases, someformofadhesionis required. Oftenan adhesiveis secretedpriorto theorganism'sencounterwiththe substratum, examplesbeingthemucousthreadsand sheathsdescribedabove. Theseallowthepropaguletoadhereinstantly uponcontactwiththesubstratum. Ifthepointofcontactis inappropriate, somepropagules can cutthemselves off thesubstratum andreturn to theflow(4). Thistrial-and-error strategy maybe an inefficient meansof searchingfora favorablesiteto settle.Alternatively, adhesioncan be effected by devicesthatenablethepropaguleto movewhile keepingits attachment. The mostprominent exampleis thebarnaclecypris larva,whichusesitsantennular attachment organstoholditselfon thesubstratumwhileit explores(e.g. 21, 99). The exactadhesivemechanismof these antennules is notclear,butitseemsthatthelarvacan controltheadhesiveness ofitsantennules. A similarroleis playedbythepyriform organofthecyphonauteslarvaofbryozoans.Thisorganis reported tosecretea thinmucussheet thataidslocomotion andhelpstofastenthelarvatemporarily tothesubstratum (83); larvaeofthebryozoanMembranipora membranacea havebeenobserved to exploresubstrata in flow(1), althoughtheexactmechanism oflocomotion in cyphonautes larvaeis notyetclear. The morphology of a larvacan affectitsexploratory locomotionwhenthe is exposedto flow.This effecthas beenexaminedusingthreemororganism phologicalmodels(spheres,symmetrical elongatedmodels,andasymmetrical subelongatedmodels)in a flowtank(A Abelson,P Sanjines,S Monismith, mitted).The threemorphologies behavedifferently whenexposedto theshear flowofa benthic modelsweresubjected boundary layer.Specifically, spherical to torquelevelsstronger thantheforcesmostlarvaecan generate;theyrolled alongthesubstratum. their Thus,sphericallarvaemayhavetroublecontrolling in a pattern orientation. The symmetrical that elongatedmodelsautorotated includedtwoweakequilibrium so larvaeofthisshapemayalso have positions, theirorientation. The asymmetrically problemscontrolling elongatedmodels kepta stablepositionparallelto theflowdirectionand seemedto have the bestsuitedforlocomotion. morphology FLOW AS A SETTLEMENT CUE It is reasonabletoassumethatthevariouseffects offlowon settling organisms cue. of thelocal flowregimeas a settlement mayhaveled to theutilization Indeed,some fieldstudiesshow activesite selectionby larvaethatmaybe attributed to larvalresponseto different flows(e.g. 57, 93). The roleof flow itseffecton otherenvironmental maybe indirect, actingthrough parameters thefewstudieson activebehaviorof (see thefollowing section).Nevertheless, SETTLEMENT IN FLOW 329 settling propagulesin responseto flowshowthatlarvaecan selectsettlement sitesbysomehowsensingthelocal flowregime(e.g. 4, 43, 58). theflowregimein thatmaybe used by larvaeto characterize Parameters pressure gradient (adverseor include:flowdirection, shearstress, theirvicinity or viscoussublayer turbulence intensity, boundary-layer favorablegradients), areofteninterrelated (e.g. Theseflowparameters andacceleration. thickness, and turbulence inof theboundary layerthickness, shearstressis a function tensity maybe linkedto acceleration).As a consequence,it can be difficult behavior.For example,Crisp(21) is affecting to determine whichparameter plates. He studiedthebehaviorof barnaclelarvaein tubesand on rotating thatlarvaetendtomoveactivelyagainsttheflowbothbyswimdemonstrated mingand by usingtheiradhesiveantennules.Crisparguedthatthevelocity theattachment thataffects is theflowparameter gradient closetothesubstratum only oflarvaeofsessilespecies,andthenominalspeedofthewateris important when forits influence on thevelocitygradient.In thesame study,however, Crisprelated behavioroflarvaebeforeattachment, referring totheexploratory alongthe rather thanto thevelocitygradient toflowdirection larvalmigration designin Crisp'sstudydid not theexperimental Unfortunately, substratum. and velocity betweenlarvalresponseto flowdirection enablediscrimination gradient. In another corallarvaewereshowntoactivelyselectsetstudyofsettlement, tlement fromothersitesonlyintheirflowregime(4). Although sitesthatdiffer accelerations bydifferent thecorallarvaeselectsitesthatcan be characterized used to thepreciseflowparameters steadyflow,deceleration), (acceleration, selectpreferred siteswerenotclear. responThe studiescitedabovefailedtoisolatethespecificflowparameters to isolatethe sible fortheobservedlarvalbehavior.It is possible,however, flowregimes. thatinducedistinct effects offlowparameters byusingsubstrata betweenlarvalresponsesto flow For example,it is possibleto discriminate andflatplatesin a flowtank. andshearstressusingcircularcylinders direction of A cylinderaffects theflowsuchthatshearstressincreasesin thedirection ona flatplatethesheardecreases flowbecausetheflowaccelerates.In contrast, in thedirection of flowbecausetheboundarylayergrows.It was foundthat rather thanto changingtrendsin larvaerespondto flowdirection cyphonautes shearstress(1). FLOW AS A MEDIATING FACTOR AFFECTING SETTLEMENT CUES someofwhichareusedas setFlow affects variousenvironmental parameters, Despitethelikelihood ofbenthic marineorganisms. tlement cuesbypropagules 330 ABELSON& DENNY thisis probablytheleaststudied ofsuchindirect effects offlowon settlement, The mostprominent environmental aspectof therole of flowin settlement. cues aretheconcentrafactors thatareaffected byflowandusedas settlement inducers, themagnitude ofsediment tionofchemicalattractants orsettlement andthecharacteristics ofthe load,thegrainsize distribution ofsoft-substrata, microfilm. Flow and ChemicalCue Distribution Numerousstudies(forreviews,see 55, 65) describetheinduction and/or enlarvaein responseto chemicalfactors hancement ofsettlement in invertebrate producedby conspecificadults,hostand preyspecies,and microbialfilms. On theotherhand,veryfewstudieshave examinedtheeffectof chemicals on settling propagulesunderflowconditions(67, 89), and,to thebestof our ofwater-soluble knowledge, onlyonestudyhasexaminedthecombinedeffects chemicalcues andflowon settling propagules(89). chemicalsunDespiteourpoorknowledgeoflarvalresponseto waterborne derflowconditions, itis generally acceptedthatchemotaxis towarda preferred in flowis unlikelyto playa rolein settlement substratum (e.g. 22, 65). This flowovera conclusionis based on threelinesof reasoning.First,turbulent substanceis expectedto dilutethesubstanceto bodyreleasinga waterborne a shortdistancefromthesource(65). Second, concentrations within negligible and navigationin thesmallsizes of larvaewouldseem to makeorientation a concentration gradient unlikely(22). Finally,giventhelimitedlocomotory oflarvae,ithasbeenassumedthattheydo notmoveupstream (see, capabilities forexample,7). Because waterborne chemicalscannotbe trackedby downstreamexploration, thepossibility oftracking settlement sitesalonggradients ofwaterborne chemicalswouldappeartobe impractical. It is alwaysdangerousto underestimate theabilitiesoforganisms, however, chemicalswouldseem and theadvantageof beingable to trackwaterborne inhabitspatiallylimited,specific to be large. For example,manyorganisms of and forthemtheprobability substrata (e.g. thebodiesof hostorganisms), is likely substratum without theappropriate anyremoteindicator encountering low. Theabilityofdispersed chemicalstoindicateata distance tobe extremely thepresenceof therequiredsubstratum could be used by a capablelarvato movetowarditshost.Indeed,we believethatlarvaethatsettlein association withotherorganisms possessthecapacityto may(whileon thesubstratum) under substratum trackwaterborne settlement inducerstowardtheirpreferred considerations. We base ourviewon thefollowing flowconditions. mixeschemicalplumes, is thatturbulence rapidly First,whiletheexpectation it mustbe remembered thatmixingnearthewall is relatively weak,so that distances(52). Additionally, plumesmightremaincoherentforsubstantial SETTLEMENT IN FLOW 331 flow, whilelow concentrations mightbe measuredin themeanin turbulent rather thesearegenerally theresultofintermittent pulsesofhighconcentration, thanof a steadysupplyof mixedfluid(64). Relativelystrongchemicalcues Crabstrackwaterborne maythusbe availableoccasionallytoguidesettlement. flow(94). odorsfromdistancesof0.5 m and 1 m in a turbulent Second,thearguments againsttheabilityoflarvaeto orientandnavigatein inexperimental results.Mooreet al a concentration gradient arenotgrounded inchemicalsignalstructure thatifsignificant (53) suggested spatialdifferences occuratspatialscalesofa fewhundred mm,as theyfoundintheir consistently and distanceinformation fromodorplumescould be study,thendirectional derivedviadifferential sensory inputbetweenpairedsensorsinsmallorganisms. inlarvaeis atoddswitha largebody Furthermore, thecase againstchemotaxis of evidenceof chemotaxisin other,muchsmallerorganisms (e.g. 5, 8). For cells (a typeofphagocytic whitebloodcells) are able to example,neutrophil and detectverylow concentrations (ca 10-10M) ofa specificchemoattractant can detecta 1% difference in theconcentration acrossthecell,allowingthem tomigrate up a chemicalgradient (5). direction.Crisp Finally,somelarvaecan exploresubstrata in theupstream (21) foundthatbarnaclelarvaecanactively moveagainsttheflowbyswimming fast(4-5 cm/s)andusingtheiradhesiveantennules. Crisp'sresults extremely have beencriticizedfortheexperimental design,whichdid notsimulatethe naturalconditionsof larvae(58). However,it is reasonableto assumethat barnaclelarvaearecapableoflocomoting againstthestream.Thecyphonautes larvaeofMembranipora membranacea can exploresubstrata againstcurrents thataremuchfaster thantheirlocomotion overmucussheets speedsbycrawling thatattachthemto thesubstratum (1). Insummary, marineorganisms maybe trackwesuggestthatlarvaeofbenthic study ingwaterborne settlement cuesunderflowconditions.However,a future willhavetoresolvethisissuebyexamining whether plumescarrying chemical that settlement cuescaninduceupstream substratum exploration bypropagules habitats. utilizethesecues totracktheirpreferred Flow and Sediment Load exertsharmful effects on hard-bottom dwellersin diversemanSedimentation ners(e.g. 70). Sedimentgrainsin flowmayabradetheorganism's tissue;suswithfilter cancover pendedgrainscaninterfere feeding;anddepositedparticles themfrom outvariousvitalprocesses.Inlightof organisms, preventing carrying ofsediment hardsubstrata, sedthedeleterious effects on organisms inhabiting onthehabitatchoiceofsettling larvae. imentload is likelytohavean influence rate Thisissuehas notbeenexploredin depth,butin certaincases settlement loads (e.g. 36, 86). has beenshownto be reducedin areaswithhighsediment 332 ABELSON& DENNY Sedimentload is theoutcomeoftwocounteracting processes,sediment erosion(orentrainment) anddeposition.Flowis a dominant agentgoverning these sedimentological processesand therefore is likelyto be an important indirect factoraffecting propagulesiteselectionandsettlement. Flow and Soft-Substratum Type Size ofsediment grainsis an important inthebiologyandecologyof parameter soft-bottom dwellers(e.g.79). Grainsizemayaffect selectionbydeposit particle feeders(74), andgrainsize maydetermine theamountoforganicmatter inthe sediment andconsequently thefeedingefficiency ofdepositfeeders(e.g. 85). Theeffects ofgrainsize onsoft-bottom dwellersexplainswhathasbeenknown fordecades-thatsediment grainsize can determine siteselection,settlement, andmetamorphosis ofsoft-bottom dwellers(reviewsin 13,79). Flow characteristics (e.g. turbulence and shearstress)are crucial intensity in determining thegradeand structure of depositedsediments at a givensite (withinthelimiting frameofthesediment-grain ofthepotential coomposition sources;e.g. 6). Combiningtheroleof flowin sediment and the distribution roleof grainsize in siteselection,we can arguethatflowprobablyplaysan important rolemediating larvalsettlement inresponseto grainsize. Flow andBiofilmType Thereis mounting evidencefortherole of flowin bacterialattachment, removal,growth, andspatialdensity, as wellas foritseffect onmetabolicactivity ofbiofilm communities (1 1,45, 100). Flowcausingdifferent shearstresses may inducebacterialfilmsofdifferent andstructure. morphology Biofilmcommunitiesfunction as pioneercommunities developedduringthefirststagesof successionon a newlyclearedsubstratum, and theyact bothas an attractant andas theactualsubstrate uponwhichalgae andanimalssubsequently settle. Forexample,barnaclelarvaeoftwospeciesresponddifferently toeach oftwo films(61). Flow can thusindirectly affect latesettlers byitseffecton pioneer ofmicroorganisms. communities CONCLUSIONS AND SPECULATIONS ActiveVersusPassiveBehaviorinSettlement Mostmodelsofpropagular settlement thatwhena larva assume,forsimplicity, encounters thesubstratum, it immediately adheresand settles(e.g. 25, 78). modelsof benthicinvertebrate recruitment Similarly, treatlarvaeas passive particles (e.g. 71). Butmanandcoworkers (58,67) pointedoutthatsuchstudies theimportance disregard ofbehaviorin settlement, theirargument supporting withresultsclearlyshowingthatactivebehaviormaygreatly affect recruitment SETTLEMENT IN FLOW 333 theacceptedparadigmis thatsettlement patterns.Currently, is a combined resultofbothfloweffects andlarvalbehavior (e.g. 30). Itseemsthatthedelivery of larvaeto potentialhabitatsis governedmainlyby flow-related processes, larvalbehaviormaybe important whereasexploratory oversmallspatialscales aftertheinitialencounter withthesubstratum (e.g. 13,67, 93). Nonmotileandmotilepropagulesexhibitmajordifference in behaviorduring settlement. Nonmotilepropagules,by definition, do notactivelyexplore thesubstratum andcan selectan optimalhabitatonlybyinitiating permanent adhesionwhentheycome acrossa suitablesite. Althoughmotilepropagules are able to exploreand selectan appropriate settlement site,a widerangeof flowregimesexistunderwhichtheseorganisms areunabletoexplorethesurface. Supportforthisassumption is given,forexample,byPawlik& Butman (66), whohaveobserved"erosion"of larvaefromthebed at shearvelocities andcorrelation (shearvelocityis a measureofthemagnitude ofturbulent flucin velocitynearthesubstratum) tuations higherthan1.03cm s-1. In suchflow conditions, swimming ofmotilepropagulescan be considered ineffective. We therefore suggestthatdifferential settlement (i.e. deviationfromthesettlement distribution fromthedistribution predicted ofinitialcontactsofpropaguleswiththesubstratum) underconditions ofhydrodynamic forceshigherthan thepropaguleswimming forcesis due to desertion ofunfavorable sitesrather thantoexploration andactiveselectionofan appropriate site.Invertebrate larvae havebeenobservedto desertsubstrates following encounter in flowtanks theirsettlement (e.g. 4, 14,58). Moreover, larvaereportedly havedeserted site aftersettlement andmetamorphosis due to unfavorable conditions (e.g. 68). An alternative in flowis provided explanationfordifferential settlement by the"adhereandexplore"mechanisms ofbarnaclesand bryozoans.These mechanisms mayexplaindeviationsofsettlement distribution fromencounter ofbarnaclesand bryozoansunderflowconditions distributions (as was found byWalters, 93). Thepotential of"adhereandexplore"mechanisms importance is thattheysave thepropaguletheneed to return to theflowif it encounters unfavorable sites. EcologicalSignificance ofSettlement inEnvironments of Flow Conditions Different Flow causes foodparticlesto be distributed in sitesthat nonhomogeneously differ inheight, orovermorphologically ofbenthichabitats different substrata (3, 59), andorganisms inaccordancewiththeir maybedistributed food potential distribution (2). Larvaeof sessileparticle-feeders maysettlein flowpatterns thatenhancetheconcentration oftheir"preferred" food. In thissense,larvaeof suspension-, bedload-and deposit-feeding species see 3, 42, 48) areexpectedtoselectdistinct (fordefinitions, microhabitats that 334 ABELSON & DENNY differin theirflowpatterns and, as a consequence,theirprevailing particle compositions.Specifically, larvaethatfeedon fine,suspendedparticlesmay haveevolvedmechanisms (e.g. adhesiveappendages)thatallowthemtosettle onprotruding bodieswherethefluxesoffine,suspended particles arethehighest and wherethepotentially disturbing coarsebedloadparticlesarein relatively low quantities.On theotherhand,propagulesofbedload-anddeposit-feeders wouldbe expectedto have evolvedwithoutthesemechanisms because,for in terms example,adhesiveappendagesmightstickthemto sitesunfavorable of foodsupply.The larvaeof bedload-feeders are expectedto favorsiteson in whichthebedloadfluxesare thehighest, planarsubstrata whereasdepositfeedersaremorelikelytoprefer depressions. in flow Larvaethattendto settlein depressions mayrecognizedifferences conditions thatresultfromdifferent pitsizes (80). Likewise,larvaeofdifferent intheirresponsesto species,orofthesamespeciesindifferent seas,maydiffer thesamepitunderthesameflowconditions (17, 80). Alternatively, depressions maybe chosennotonlyfortheflowpattern theyinduce.For instance,small depressions, equal in size to or smallerthanmanypropagulesand withlittle effecton flow,maybe chosenas preferred settlement sites,possiblybecause theyprovidefirmattachment (46). Postsettlement also existthatenableorganisms topersistandgrow strategies in theoron a widerangeof substratum types.Forexample,theflowpattern canbe altered.Thiscan be accomplished eitherbychanging ganisms'vicinity thesubstratum morphology (an optionopen mainlyto soft-bottom dwellers, e.g. theampharetid polychaete Amphicteis scaphobranchiata; 63), orbybuildinga bodythatchangestheflowpattern experienced bytheorganism's feeding devices(e.g. diversecoralspecies;2). CONCLUDING REMARKS theeffectsof flowon settling We have presentedseveralthemesregarding in studiesof benthicecology. propagulesthatshouldreceivemoreattention is ofgreat areplanar.Themorphology ofthesubstratum First,notall substrata indetermining initsvicinity theflowpattern importance andconsequently may thespeciescomposition ofsettling playa pivotalrolein affecting propagules. The studiesof Mullineaux& Butman(57,58), forinstance,clearlyshowthe on thedistribution distinctive effectsof inducedflowpatterns oversubstrata These studieshaveconcentrated, on planar of larvaeat settlement. however, substrataand do notdeal withothersubstrataof greatimportance (butsee and itsresultant flowregimeis 80). The neglectof substratum morphology toexplainthedistribution oforganisms exemplified byfieldstudiesthatattempt differential on cylindrical bodies(suchas mangrove proproots)byexamining SETTLEMENTIN FLOW 335 (e.g. ceramictiles; 9). Studieswithdifferent settlement on planarsubstrata to assesstheexactroleofmorphology substratum morphologies arenecessary ofthedevelopingrecruits. on siteselectionofpropagulesandsurvivorship cue (whichmay playa roleas a settlement Second,flowcan simultaneously or influence activebehaviorof motilepropagules)and as a factorpreventing thesettlement betweenthesetworolesis disturbing process. Distinguishing has attempt forunderstanding thesettlement process.No significant important inwhichactiveexploration is possible beenmadetocharacterize environments andthosein whichactivelocomotion is prevented byexcessivehydrodynamic forces. flow settlement is correlated withflowconditions, Third,wheredifferential thedistribution of is oftenconsideredto be thesole factordirectlyaffecting cues. Pamayaffectdiversesettlement settling propagules.Flow,however, thedifferential otherthanflowbutinfluenced byflowmaydetermine rameters load,substratum settlement. Thesefactorsincludebiofilmstructure, sediment ofchemicals,andlightintensity (due to turbidity). type,distribution thatprotoexaminethehypothesis Finally,further workshouldbe conducted of jectingappendagesorotheradhesivedevicesareassociatedwithpropagules characterized byhighvelocitiesofflow(e.g. prospeciesinhabiting substrata hereis thatspecieslackingtheseappendagesare truding bodies).Thecorollary in with Some support low flowvelocity(e.g. depressions). likelytosettle sites coralspecies forthishypothesis is providedby settlement of several patterns thatmatchtheirfoodthatwerefoundtobe correlated to theadultdistribution insettlement ofthesespecies patterns particledistribution (4). The differences withand attachment can be relatedto mechanisms affecting larvalencounter to thesubstratum. settlement on protruding thatfacilitate Most mechanisms inflow otherthansettlement bodieshavebeenpreviously describedincontexts andhaveelicitedvariousexplanations as totheirroleinthebiologyandecology fortheroleofprojecting ofpropagules.Themostwidelyacceptedexplanations anddispersion (e.g. 44, 90), appendageson larvaeconcerntheirroleindrifting (81) argues aggregations (20). Strathmann in feeding(e.g. 31), andin creating thatthereis no evidencethatprojecting appendagesare used to maintainlarvae in suspension, as is oftensuggested.Likewise,thepresenceofprojecting appendagesamongtinypropagulesthatexhibitverylow settlingvelocities is notlikelyto affectdramatically theirdispersalrange,especiallyformotile propagulesthatcan maintaintheirverticalpositionby swimming.We do not fortherolesofprojecting appendages.However, denyalternative explanations able to settleon protruding manyorganisms possessingthemare apparently bodiesandin otherenvironments ofstrong, flow. accelerating In summary, theinformation ofpreviousstudiessuggeststhatflowmayact on settling oneormoreofthreelevels:as an agentexerting propagulesthrough 336 ABELSON & DENNY factoraffecting cue, and as a mediating hydrodynamic forces,as a settlement theexactrole of cues. A limitation to interpreting variousothersettlement amongthethreelevelsrequiresa complicated each levelis thatdiscrimination technicalprobexperimental setupthatin manycases maypose "unresolved" varioussettlement factor affecting lems.Ofthethreelevels,flowas a mediating hycues seemsto be theleaststudied.The roleof flowas an agentexerting propaguleshas been clearlyshownin various drodynamic forceson settling studies.Likewise,thereis increasing evidencefortheuse offlowbypropagules (mainlylarvae)in selectingpreferred sitesthatfittheadultrequirements. to To use theflowas a settlement cue,propagulesshouldpossessmechanisms cope withforce-related problems.Here we haveexploredsuchmechanisms whoseeffectiveness remainsto be examined.Takingintoaccountthesignificantinvolvement of flowin diversebiologicalandecologicalprocessesin the therelativeweightofeachlevel,the sea, itis reasonabletoarguethatwhatever overalleffect offlowmaybe crucialformanybenthicspecies. ACKNOWLEDGMENTS fortheir We arethankful andR Strathmann to JEckman,D Fautin,P Jumars, constructive comments on previousversionsof thispaper.Thisresearchwas FellowoftheUSIEF andtheBen-Gurion scholarship supported byFulbright ofScienceto A.A. shipoftheIsraelMinistry VisittheAnnualReviewshomepage at http://www.annurev.org. Literature Cited 1. AbelsonA. 1997.Settlement inflow:upstreamexploration ofsubstrata byweakly 7. swimming larvae.Ecology78:160-66 2. Abelson A, Loya Y. 1995. Cross-scale in patterns ofparticulate-food acquisition marinebenthicenvironments. Am. Nat. 145:848-54 8. 3. AbelsonA, MilohT, Loya Y. 1993.Flow inducedbysubstratum andbody patterns of benthicorganisms,and morphology 9. theirrole in determining food particle availability. Limnol.Oceanogr38:111624 10. 4. AbelsonA, WeihsD, Loya Y. 1994.Hyof drodynamic impedanceto settlement marinepropagules,and trailing-filament solutions.Limnol.Oceanogr39:164-69 5. AlbertsB, Bray D, Lewis J, RaffM, RobertsK, etal. 1989.MolecularBiology 11. oftheCell. New York:Garland.1219pp. 6. Allen JRL. 1985. PhysicalSedimentol- ogy.London:Allen& Unwin.272 pp. Andre C, JonssonPR, LindegarthM. bivalvelarvae on settling 1993.Predation feeders:theroleof bybenthicsuspension Mat: andlarvalbehavior. hydrodynamics Ecol. Prog.Ser 97:183-92 BergS. 1983.RandomWalksin Biology. Univ.Press.142 NJ:Princeton Princeton, PP. BinghamBL. 1992. Life historiesin an couplingof adult epifaunalcommunity: andlarvalprocesses.Ecology73:2244-59 BinghamBL, YoungCM. 1991. Larval behaviorof the ascidian Ecteinascidia turbinata(Herdman): an in situexperimentalstudyof the effectsof swimJ.Exp.Mar Bio. Ecol. mingondispersal. 145:189-204 BlenkinsoppSA, Lock MA. 1994. The on riverbiofimarimpactof storm-flow J.Phycol.30:807-18 chitecture. SETTLEMENT IN FLOW 12. Boney AD. 1975. Mucilage sheathsof sporesof redalgae. J. Mar Biol. Assoc. UK 55:511-18 of 13. ButmanCA. 1987. Larval settlement soft-sediment invertebrates: the spatial scalesofpattern explainedbyactivehabiroleofhytatselectionandtheemerging drodynamical processes.OceanogrMar Biol.Annu.Rev.25:113-65 14. ButmanCA, Grassle JP. 1992. Active habitatselectionby Capitella sp. I larvae.I. Two-choice experiments instillwaterandflumeflows.J.Mar Res. 50:669715 15. ButmanCA, GrassleJP,WebbCM. 1988. Substrate choicesmadeby marinelarvae in stillwaterandin a flumeflow. settling Nature333:771-73 16. CaldwellDR, ChrissTM. 1979.The viscous sublayerat the sea floor.Science 205:1131-32 of 17. ChabotR, BourgetE. 1988. Influence andsettledbarsubstratum heterogeneity of cypris nacledensityon thesettlement larvae.Mar Biol. 97:45-56 18. CharacklisWG. 1981. Foulingbiofilm a processanalysis.Biotech. development: Bioeng.23:1923-60 19. Chia FS, Buckland-Nicks J,YoungCM. 1984.Locomotionofmarineinvertebrate larvae:a review.Can J.Zool. 62:1205-22 20. CowenJP.1992.Morphological studyof marinebacterialcapsules: implications formarineaggregates. Mar Biol. 114:8595 21. CrispDJ. 1955.The behaviourofbarnainrelationtowatermovement cle cyprids J.Exp.Biol. 32:569-90 oversurfaces. 22. CrispDJ. 1965.Surfacechemistry, a facofmarineinvertebrate torinthesettlement larvae.Bot. Gothob.Acta Univ.Gothob. 3:51-65 23. DeBlok JW,Tan-MaasM. 1977. Functionofbyssusthreadsinyoungpostlarval Mytilus. Nature267:558 24. DennyMW. 1988. Biologyand theMechanicsoftheWave-Swept Environment. NJ:Princeton Univ.Press.329 Princeton, PP. 25. DennyMW, ShibetaMF. 1989. Conseforsettleturbulence quencesofsurf-zone mentand externalfertilization. Am.Nat. 134:859-89 26. DyerKR, SoulsbyRL. 1988.Sandtransshelf.Annu.Rev. porton thecontinental FluidMech.20:295-324 27. EckmanJE. 1983. Hydrodynamic processesaffecting benthicrecruitment. Limnol. Oceanogr28:241-57 28. EckmanJE.1990.A modelofpassivesettlement larvaeontobottoms byplanktonic 337 ofdiffering roughness. Limnol.Oceanogr. 35:887-901 29. EckmanJE,SavidgeWB,GrossTF. 1990. Relationship betweendurationof cyprid attachment and drag forcesassociated of Balanus amphitrite withdetachment Mar Biol. 107:111-18 cyprids. FE, GrossTF. 1994. 30. EckmanJE,Werner Modellingsome effectsof behavioron in a turbulent boundary larvalsettlement layer.Deep-Sea Res. 41:185-208 RR. 1985. Grav31. EmletRB, Strathmann ofsmall ity,drag,andthefeedingcurrents Science228:1016-17 zooplankton. EW. 1962. The 32. Gee JM, Knight-Jones ofa new morphology andlarvalbehaviour speciesofSpirorbis(serpulidae).J.Mar Biol.Assoc. UK 42:641-54 33. GoldshtikM, Husain HS, Hussain F. in a suspen1992.Loss of homogeneity sion by kinematicaction.Nature357: 141-42 34. GrossTF, Werner FE, EckmanJE. 1992. Numericalmodelingof larvalsettlement in turbulent bottomboundarylayers.J. Mar Res. 50:611-42 by 35. HighsmithRC. 1982. Reproduction in corals.Mar Ecol. Prog. fragmentation Ser 7:207-26 36. HodgsonG. 1990.Sedimentand thesettlement of larvaeof thereefcoralPocilCoralReefs9:41-43 loporadamicornis. 37. HughesRG. 1977.Aspectsofthebiology antennina. andlife-history ofNemertesia J.Mar Bio. Assoc. UK 57:641-57 38. JonesEBG, Moss ST. 1978. Ascospore appendagesof marineascomycetes:an evaluationof appendagesas taxonomic criteria. Mar:Biol. 49:11-26 39. JumarsPA. 1993. Conceptsin Biological Oceanography:An Interdisciplinary PrimerNew York: OxfordUniv.Press. 347 pp. in transfer 40. KoseffJR. 1983. Momentum a complexrecirculating flow.PhD thesis. Stanford Univ.,CA 41. KrushkalEM. Gallily I. 1988. On the orientation function of nondistribution sphericalaerosol particlesin a general case. J. shear flow. II. The turbulent AerosolSci. 19:197-211 42. LaBarbera M. 1984. Feeding currents and particle capture mechanismsin animals.Am. Zool. suspension-feeding 24:71-84 study 43. LacoursiereJO.1992.A laboratory selection of fluidflowand microhabitat vittatum (Diptera: by larvaeofSimulium Simuliidae).Can. J.Zool. 70:582-96 44. Lane DJW,BeaumontAR, HunterJR. 1985. Byssus drifting and the threads 338 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. ABELSON & DENNY musselMytilus of theyoungpost-larval edulis.Mar.Biol. 84:301-8 60. offlowrate Lau YL, Liu D. 1993.Effects in open chanon biofilmaccumulation nels.WaterRes. 27:355-60 LeTourneuxF, BourgetE. 1988. Impor- 61. tanceof physicaland biologicalsettlespatialscales mentcues usedat different bythelarvaeofSemibalanusbalanoides. Mar.Biol. 97:57-66 62. Lipkin Y 1977. Centroceras, the 'missile'-launchingmarine red alga. Nature270:48-49 63. Lopez GR, LevintonJS. 1987. Ecology animalsinmarinesedofdeposit-feeding iments.Q. Rev.Biol. 62:235-60 MartelA, DiefenbachT. 1993.Effectsof and microhab- 64. body size, watercurrent in postdrifting itaton mucous-thread gastropodsLacuna spp. metamorphic Mar Ecol. Prog.Ser.99:215-20 MiddletonGV, SouthardJB. 1984. Me65. chanics of SedimentMovement.Tulsa: SEPM. 2nded. Mileikovsky SA. 1973. Speed of active movementof pelagic larvae of marine 66. and theirabilityto bottominvertebrates theirverticalposition.Mar Biol. regulate 23:11-17 Monismith SG, KoseffJR,ThompsonJ, O'RiordanCA, NepfH. 1990.A studyof Limnol. 67. modelbivalvesiphonalcurrents. Oceanogr35:680-96 RK, Bement Moore PA, Zimmer-Faust JM,etal. 1992. MJ,Parrish SL, Weissburg Measurementof microscalepatchiness 68. in a turbulent aquaticodorplumeusing Biol. microprobe. a semiconductor-based 69. Bull. 183:138-42 MorrisHM. 1955. Flow in roughconduits.Trans.Am.Soc. Civ.Eng. 120:37398 70. MorseDE. 1990.Recentprogressin larclosand metamorphosis: val settlement ingthegaps betweenmolecularbiology 71. andecology.Bull.Mat:Sci. 46:465-83 MullineauxLS. 1988. The role of seta hard-substratum in structuring tlement 72. in thedeep sea. J.Exp. Mar. community Biol. Ecol. 120:247-61 MullineauxLS, ButmanCA. 1990. Rebenthicinverteof encrusting cruitment 73. flows: a deepbratesin boundary-layer on Cross Seamount. waterexperiment Limnol.Oceanogr35:409-23 MullineauxLS, ButmanCA. 1991. Iniand attachment 74. tial contact,exploration cypof barnacle(Balanus amphitrite) in flow.Mat: Biol. 110:93ridssettling 75. 103 DK. 1987. The dynamics Muschenheim of near-bedsestonfluxand suspensionfeedingbenthos.J.Mar.Res. 45:473-96 NakasoneN, IwanagaM. 1990. Pili of Vibriocholeraenon-01.Infect.Immun. 58:1640-46 of Neal AL, YuleAB. 1994.The tenacity Elminiusmodestusand Balanus cyprids to bacterialfilmsgrownunderdifferent shearregimes.J. Mar. Bio. Assoc. UK 74:251-57 PA. 1984.FlowenNowellARM,Jumars Annu.Rev. ofaquaticbenthos. vironments Ecol. Syst.15:303-28 Nowell ARM, JumarsPA, FauchaldK. ofa subtidal strategy 1984.The foraging and deep-seafeeder.Limnol.Oceanogr. 23:645-49 O'Riordan CA, MonismithSG, Koseff JR. 1993. A study of concentraovera bed formation tionboundary-layer of model bivalves.Limnol. Oceanogr. 38:1712-29 PawlikJR. 1992. Chemicalecology of ofbenthicmarineinvertethesettlement brates.OceanogrMar Biol. Annu.Rev. 30:273-335 Pawlik JR, ButmanCA. 1993. Settlementof marinetubewormas a function effects of currentvelocity: interacting and behavior.Limnol. ofhydrodynamics Oceanogr38:1730-40 Pawlik JR,ButmanCA, StarczakVR. of grefacilitation 1991. Hydrodynamic tube ofa reef-building garioussettlement worm.Science251:421-24 metaRichmondRH. 1985. Reversible morphosisin coral planulalarvae.Mar. Ecol. Prog.Ser.22:181-85 RockwellD, NaudascherE. 1978. Reoscillationsofflow view: self-sustaining past cavities. ASME J. Fluids Eng. 100:152-65 Rogers CR. 1989. Responses of coral tosedimentation. reefsandreeforganisms Mar Ecol. Prog.Ser 62:185-202 H. J,GainesS, Possingham Roughgarden dynamicsin complex 1988.Recruitment lifecycles.Science241:1460-66 DI, Koehl MAR. 1977. The Rubenstein offilter feeding:sometheomechanisms Am.Nat. 111:981reticalconsiderations. 94 ScheltemaRS. 1974. Biological interof larvalsettlement actionsdetermining Thalassia Jugosl. marineinvertebrates. 10:263-69 Self RFL, JumarsPA. 1988. Crossof particleselectionby phyleticpatterns J.Mat:Res. 46:119-43 depositfeeders. ShimetaJ, JumarsPA. 1991. Physical andratesofparticlecapture mechanisms SETTLEMENT IN FLOW 339 88. TranterPRG, NicholsonDN, Kinchingby suspension-feeders. Oceanogr.Mar. of spawning tonD. 1982. A description Biol.Annu.Rev.29:191-257 ofthecool 76. SiebertAE. 1974. A description of the andpost-gastrula development coral Catyophylliasmithi.J. embryology,larval development,and temperate Mar Biol.Assoc. UK 62:845-54 feedingofthesea anemonesAnthopleura elegantissimaand A. xanthogrammica. 89. TurnerEJ, Zimmer-Faust RK, Palmer ND. 1994. MA,Luckenbach M, Pentcheff Can. J.Zool. 52:1383-88 77. SinhaSN, GuptaAK, OberaiMM. 1982. Settlementof oyster(CrassostreavirLaminarseparating flowoverbacksteps ginica) larvae: effectsof water flow and water-soluble chemicalcue. Limnol. and cavities. Part II: Cavities.AIAAJ 20:370-75 Oceanogr.39:1579-93 inthelimpet 90. Vahl0. 1983.Mucusdrifting 78. SmithIR. 1982.A simpletheory ofalgal Helicionpellucidus.Sarsia 68:209-11 Freshw.Biol. 12:445-49 deposition. 79. Snelgrove PVR, Butman CA. 1994. 91. VarzalyAM. 1978.SomefeaturesoflowAnimal-sediment revisited: cavity.Enrelationships speedflowovera rectangular Univ.,CA. 189pp. gineerthesis.Stanford cause versuseffect. Oceanogr.Mat:Biol. 92. Vogel S. 1981. Life in MovingFluids. Annu.Rev.32:111-77 Boston:WillardGrant.352 pp. 80. SnelgrovePVR, ButmanCA, GrassleJP. loca93. WaltersLJ. 1992. Field settlement 1993.Hydrodynamic enhancement oflarvalsettlement inthebivalveMulinialatertionson subtidalmarinehardsubstrata: Is activelarvalexploration involved. Limalis andthepolychaeteCapitellasp. I in microdepositional environments. J.Exp. nol. Oceanogr.37:1101-7 RK. 1993. 94. Weissburg MJ,Zimmer-Faust Mar.Biol. Ecol. 168:71-109 RR. 1993.Hypotheses onthe Lifeanddeathinmovingfluids:hydrody81. Strathmann namiceffects onchemosensory-mediated originofmarinelarvae.Annu.Rev.Ecol. predation. Ecology74:1428-43 Syst.24:89-117 82. Strathmann RR, BranscombES, Vedder 95. WetheyDS. 1986.Rankingofsettlement insetas a costofdisK. 1981.Fatalerrors cues by barnaclelarvae: influenceof ofintertidal flora surfacecontour.Bull. Mar.Sci. 39:393persalandtheinfluence 400 on setofbarnacles.Oecologia48:13-18 ofthe SA. 1988.Metamorphosis 96. Yager PL, Nowell ARM, JumarsPA. 83. Stricker marinebryozoanMembraniporamem1993.Enhanceddepositionto pits: a lobranacea: an ultrastructural studyof cal foodsourceforbenthos.J.Mar: Sci. rapidmorphogenetic movements. J.Mor51:209-36 of the 97. Young WJ. 1992. Clarification phol. 196:53-72 criteriaused to identifynear-bedflow 84. SumerBM, Oguz B. 1978. Particlemotionsnearthebottomin turbulent flowin regimes.FreshwBiol. 28:383-91 an openchannel.J.FluidMech.86:109forthe 98. YoungWJ.1993.Fieldtechniques 27 of near-bedflowregimes. classification PA. 1978. Freshw.Biol. 29:377-83 85. TaghonGL, SelfRFL, Jumars Predictingparticleselectionby deposit 99. Yule AB, WalkerG. 1987. Adhesionin barnacles.In CrustaceanIssues 5: Barfeeders: a model and its implications. Limnol.Oceanogr.23:752-59 nacle Biology,ed. AJ Southard.Rotter86. Te FT. 1992.Responsetohigher sediment dam: Balkema G. 1994. loads by Pocilloporadamicornis planu- [00. ZhengD, TaylorGT,Gyananath oflaminarflowvelocity andnuInfluence lae. CoralReefs11:131-34 ofmaconcentration on attachment 87. TitmanCW,Davis PA. 1976.The dispertrient sal ofyoungpost-larval rinebacterioplankton. Biofouling 8:107bivalvemolluscs 20 Nature262:386-87 bybyssusthreads.
© Copyright 2026 Paperzz