Chem 1B Dr. White Worksheet 15 Key– Crossover Temperature and ΔG° 1. The enthalpy and entropy change of a reaction are -4.7 kJ/mole and -69.5 J/mole K respectively over a wide range of temperatures. What is the crossover temperature? Is the reaction spontaneous at temperatures above or below this temperature? 0 = ΔH − TΔS ΔH −4.7kJ / mol T= = = 68K ΔS −0.0695kJ / molK The reaction is spontaneous below 68K and non-spontaneous above 68K. € 2. The enthalpy and entropy change of a reaction are 34.7 kJ/mole and 6.95 J/mole K respectively over a wide range of temperatures. What is the crossover temperature? Is the reaction spontaneous at temperatures above or below this temperature? 0 = ΔH − TΔS ΔH 34.7kJ / mol T= = = 4990K ΔS 0.00695kJ / molK The reaction is spontaneous above 4990 K and non-spontaneous below 4990 K. € € 3. Using the listed [ΔGof values] calculate ΔG° for the reaction: Mn3O4(s) [-1283.2 kJ/mol] + 4 CO(g) [-137.2 kj/mol] → 3 Mn(s) + 4 CO2(g) [-394.4 kJ/mol] ΔG o rxn = [4mol × −394.4kJ / mol + 3mole × 0.0kJ / mol]− [1mol × −1283.2kJ / mol + 4mol × −137.2kJ / mol] = 254kJ 4. Using the listed information calculate ΔG° (kJ) for the reaction at 25°C and 100.°C: C6H12(g) + 9 O2(g) → 6 CO2(g) + 6 H2O(l) ΔHof (kJ/mole) -156.4 -393.5 -285.9 o S (J/K mole) 204.4 205.1 213.7 69.9 (NOTE: the ΔH° and ΔS° values are constant over 25°C and 100°C) ΔH o rxn = [6mol × −393.5kJ / mol + 6mole × −285.9kJ / mol]− [1mol × −156.4kJ / mol + 9mol × 0kJ / mol] = −3920kJ ΔS o rxn = [6mol × 213.7J / molK + 6mole × 69.9J / molK ]− [1mol × 204.4 J / molK + 9mol × 205.1kJ / mol] = −348J / K ΔG o = −3920kJ / mol − 298K × −0.348kJ / K = −3816kJ € € ΔG o = −3920kJ / mol − 373K × −0.348kJ / K = −3790kJ 1 Chem 1B Dr. White 2 5. Calculate ΔHof at 298K for ClF3 from the ΔG° of reaction and the S° values. 3 F2(g) + Cl2(g) → 2 ClF3(g) ΔG° = -246.0 kJ S° (J/K.mole) 202.8 223.1 281.6 ΔS o rxn = [2mol × 281.6J / molK ]− [3mol × 202.8J / molK + 1mol × 223.1kJ / mol] = −268.3J / K ΔG o = ΔH o − TΔS o −246.0kJ = ΔH o − 298K (−0.2683kJ / K ) € ΔH o = −326.0kJ −326.0kJ = [2mol × ΔH of ,ClF3 ]− 0 ΔH of ,ClF3 = −163.0kJ / mol 6. From the table of values below, determine the boiling point of bromine (in °C). € Br2(l) Br2(g) Br(g) Br–(g) ∆H°f [kJ/mol] — 30.91 111.9 –218.9 ∆Gf° [kJ/mol] — 3.13 82.40 –102.9 S° [J/mol.K] 152.23 245.38 174.90 80.71 Br2 (l) Br2 (g) Boiling point occurs when ΔG°=0 (when ΔG°<0, the gas phase is favored and when ΔG°>0, the liquid phase is favored). ΔS o rxn = 245.38J / molK −152.23J / molK ΔS o rxn = 93.15J / molK ΔH o rxn = 30.91kJ / mol − 0 = 30.91kJ / mol 0 = ΔH o − TΔS o ΔH o 30.91kJ / mol T= = = 331.8304K o 0.09315kJ / molK ΔS 331.8304 − 273.15 = 58.7 o C €
© Copyright 2026 Paperzz