The Comprehensive LaTeX Symbol List

The Comprehensive LATEX Symbol List
Scott Pakin <[email protected]>∗
3 January 2008
Abstract
This document lists 4947 symbols and the corresponding LATEX commands that produce them. Some
of these symbols are guaranteed to be available in every LATEX 2ε system; others require fonts and packages
that may not accompany a given distribution and that therefore need to be installed. All of the fonts
and packages used to prepare this document—as well as this document itself—are freely available from the
Comprehensive TEX Archive Network (http://www.ctan.org/).
Contents
1 Introduction
1.1 Document Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Frequently Requested Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Body-text symbols
Table 1:
LATEX 2ε Escapable “Special” Characters . . . . . . . . . . . . . . .
Table 2:
Predefined LATEX 2ε Text-mode Commands . . . . . . . . . . . . . .
Table 3:
LATEX 2ε Commands Defined to Work in Both Math and Text Mode
Table 4: AMS Commands Defined to Work in Both Math and Text Mode .
Table 5:
Non-ASCII Letters (Excluding Accented Letters) . . . . . . . . . .
Table 6:
Letters Used to Typeset African Languages . . . . . . . . . . . . . .
Table 7:
Letters Used to Typeset Vietnamese . . . . . . . . . . . . . . . . . .
Table 8:
Punctuation Marks Not Found in OT1 . . . . . . . . . . . . . . . .
Table 9: pifont Decorative Punctuation Marks . . . . . . . . . . . . . . . . .
Table 10: tipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 11: tipx Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 13: wsuipa Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 14: wasysym Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . .
Table 15: phonetic Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . .
Table 16: t4phonet Phonetic Symbols . . . . . . . . . . . . . . . . . . . . . . .
Table 17: semtrans Transliteration Symbols . . . . . . . . . . . . . . . . . . .
Table 18: Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 19: tipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . .
Table 20: extraipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 21: wsuipa Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . .
Table 22: phonetic Text-mode Accents . . . . . . . . . . . . . . . . . . . . . .
Table 23: metre Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . .
Table 24: t4phonet Text-mode Accents . . . . . . . . . . . . . . . . . . . . . .
Table 25: arcs Text-mode Accents . . . . . . . . . . . . . . . . . . . . . . . . .
Table 26: semtrans Accents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 27: wsuipa Diacritics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 28: textcomp Diacritics . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 29: textcomp Currency Symbols . . . . . . . . . . . . . . . . . . . . . .
Table 30: marvosym Currency Symbols . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
7
7
8
8
8
8
8
9
9
9
9
9
10
11
11
12
12
13
13
13
13
15
15
15
16
16
16
16
16
17
17
17
∗ The original version of this document was written by David Carlisle, with several additional tables provided by Alexander
Holt. See Section 7.7 on page 104 for more information about who did what.
1
Table
Table
Table
Table
Table
Table
Table
31:
32:
33:
34:
35:
36:
37:
wasysym Currency Symbols . . . . . . . . .
eurosym Euro Signs . . . . . . . . . . . . .
textcomp Legal Symbols . . . . . . . . . . .
cclicenses Creative Commons License Icons
textcomp Old-style Numerals . . . . . . . .
Miscellaneous textcomp Symbols . . . . . .
Miscellaneous wasysym Text-mode Symbols
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
17
17
18
18
18
19
19
3 Mathematical symbols
Table 38: Math-Mode Versions of Text Symbols . . . . .
Table 39: cmll Unary Operators . . . . . . . . . . . . . .
Table 40: Binary Operators . . . . . . . . . . . . . . . .
Table 41: AMS Binary Operators . . . . . . . . . . . . .
Table 42: stmaryrd Binary Operators . . . . . . . . . . .
Table 43: wasysym Binary Operators . . . . . . . . . . .
Table 44: txfonts/pxfonts Binary Operators . . . . . . . .
Table 45: mathabx Binary Operators . . . . . . . . . . .
Table 46: MnSymbol Binary Operators . . . . . . . . . .
Table 47: mathdesign Binary Operators . . . . . . . . . .
Table 48: cmll Binary Operators . . . . . . . . . . . . . .
Table 49: ulsy Geometric Binary Operators . . . . . . . .
Table 50: mathabx Geometric Binary Operators . . . . .
Table 51: MnSymbol Geometric Binary Operators . . . .
Table 52: Variable-sized Math Operators . . . . . . . . .
Table 53: AMS Variable-sized Math Operators . . . . .
Table 54: stmaryrd Variable-sized Math Operators . . . .
Table 55: wasysym Variable-sized Math Operators . . . .
Table 56: mathabx Variable-sized Math Operators . . . .
Table 57: txfonts/pxfonts Variable-sized Math Operators
Table 58: esint Variable-sized Math Operators . . . . . .
Table 59: MnSymbol Variable-sized Math Operators . . .
Table 60: mathdesign Variable-sized Math Operators . .
Table 61: cmll Large Math Operators . . . . . . . . . . .
Table 62: Binary Relations . . . . . . . . . . . . . . . . .
Table 63: AMS Binary Relations . . . . . . . . . . . . .
Table 64: AMS Negated Binary Relations . . . . . . . .
Table 65: stmaryrd Binary Relations . . . . . . . . . . . .
Table 66: wasysym Binary Relations . . . . . . . . . . . .
Table 67: txfonts/pxfonts Binary Relations . . . . . . . .
Table 68: txfonts/pxfonts Negated Binary Relations . . .
Table 69: mathabx Binary Relations . . . . . . . . . . . .
Table 70: mathabx Negated Binary Relations . . . . . . .
Table 71: MnSymbol Binary Relations . . . . . . . . . .
Table 72: MnSymbol Negated Binary Relations . . . . .
Table 73: mathtools Binary Relations . . . . . . . . . . .
Table 74: turnstile Binary Relations . . . . . . . . . . . .
Table 75: trsym Binary Relations . . . . . . . . . . . . .
Table 76: trfsigns Binary Relations . . . . . . . . . . . .
Table 77: cmll Binary Relations . . . . . . . . . . . . . .
Table 78: Subset and Superset Relations . . . . . . . . .
Table 79: AMS Subset and Superset Relations . . . . . .
Table 80: stmaryrd Subset and Superset Relations . . . .
Table 81: wasysym Subset and Superset Relations . . . .
Table 82: txfonts/pxfonts Subset and Superset Relations
Table 83: mathabx Subset and Superset Relations . . . .
Table 84: MnSymbol Subset and Superset Relations . . .
Table 85: Inequalities . . . . . . . . . . . . . . . . . . . .
Table 86: AMS Inequalities . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
20
20
20
20
21
21
21
21
22
23
23
23
24
24
24
25
25
25
25
26
27
28
29
29
30
30
30
30
30
30
31
31
31
32
32
33
34
34
35
35
36
36
36
36
36
36
37
37
37
37
2
.
.
.
.
.
.
.
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
wasysym Inequalities . . . . . . . . . .
txfonts/pxfonts Inequalities . . . . . .
mathabx Inequalities . . . . . . . . . .
MnSymbol Inequalities . . . . . . . .
AMS Triangle Relations . . . . . . .
stmaryrd Triangle Relations . . . . . .
mathabx Triangle Relations . . . . . .
MnSymbol Triangle Relations . . . . .
Arrows . . . . . . . . . . . . . . . . .
Harpoons . . . . . . . . . . . . . . . .
textcomp Text-mode Arrows . . . . .
AMS Arrows . . . . . . . . . . . . . .
AMS Negated Arrows . . . . . . . . .
AMS Harpoons . . . . . . . . . . . .
stmaryrd Arrows . . . . . . . . . . . .
txfonts/pxfonts Arrows . . . . . . . .
mathabx Arrows . . . . . . . . . . . .
mathabx Negated Arrows . . . . . . .
mathabx Harpoons . . . . . . . . . . .
MnSymbol Arrows . . . . . . . . . . .
MnSymbol Negated Arrows . . . . . .
MnSymbol Harpoons . . . . . . . . . .
MnSymbol Negated Harpoons . . . .
chemarrow Arrows . . . . . . . . . . .
fge Arrows . . . . . . . . . . . . . . .
MnSymbol Spoons . . . . . . . . . . .
MnSymbol Pitchforks . . . . . . . . .
MnSymbol Smiles and Frowns . . . .
ulsy Contradiction Symbols . . . . . .
Extension Characters . . . . . . . . .
stmaryrd Extension Characters . . . .
txfonts/pxfonts Extension Characters
mathabx Extension Characters . . . .
Log-like Symbols . . . . . . . . . . . .
AMS Log-like Symbols . . . . . . . .
Greek Letters . . . . . . . . . . . . .
AMS Greek Letters . . . . . . . . . .
txfonts/pxfonts Upright Greek Letters
upgreek Upright Greek Letters . . . .
txfonts/pxfonts Variant Latin Letters
AMS Hebrew Letters . . . . . . . . .
MnSymbol Hebrew Letters . . . . . .
Letter-like Symbols . . . . . . . . . .
AMS Letter-like Symbols . . . . . . .
txfonts/pxfonts Letter-like Symbols . .
mathabx Letter-like Symbols . . . . .
MnSymbol Letter-like Symbols . . . .
trfsigns Letter-like Symbols . . . . . .
mathdesign Letter-like Symbols . . . .
fge Letter-like Symbols . . . . . . . .
AMS Delimiters . . . . . . . . . . . .
stmaryrd Delimiters . . . . . . . . . .
mathabx Delimiters . . . . . . . . . .
nath Delimiters . . . . . . . . . . . .
Variable-sized Delimiters . . . . . . .
Large, Variable-sized Delimiters . . .
AMS Variable-sized Delimiters . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
38
38
38
39
39
40
40
40
41
41
41
41
41
41
42
42
42
42
43
43
44
46
46
47
47
47
47
48
48
48
48
48
49
49
49
49
49
50
50
50
50
50
51
51
51
51
51
51
51
52
52
52
52
52
53
53
53
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
stmaryrd Variable-sized Delimiters . . . . . . . . .
mathabx Variable-sized Delimiters . . . . . . . . .
MnSymbol Variable-sized Delimiters . . . . . . . .
mathdesign Variable-sized Delimiters . . . . . . . .
nath Variable-sized Delimiters (Double) . . . . . .
nath Variable-sized Delimiters (Triple) . . . . . . .
textcomp Text-mode Delimiters . . . . . . . . . .
metre Text-mode Delimiters . . . . . . . . . . . .
Math-mode Accents . . . . . . . . . . . . . . . . .
AMS Math-mode Accents . . . . . . . . . . . . .
MnSymbol Math-mode Accents . . . . . . . . . . .
fge Math-mode Accents . . . . . . . . . . . . . . .
yhmath Math-mode Accents . . . . . . . . . . . .
Extensible Accents . . . . . . . . . . . . . . . . .
overrightarrow Extensible Accents . . . . . . . . .
yhmath Extensible Accents . . . . . . . . . . . . .
AMS Extensible Accents . . . . . . . . . . . . . .
MnSymbol Extensible Accents . . . . . . . . . . .
mathtools Extensible Accents . . . . . . . . . . . .
mathabx Extensible Accents . . . . . . . . . . . .
esvect Extensible Accents . . . . . . . . . . . . . .
undertilde Extensible Accents . . . . . . . . . . . .
AMS Extensible Arrows . . . . . . . . . . . . . .
mathtools Extensible Arrows . . . . . . . . . . . .
chemarr Extensible Arrows . . . . . . . . . . . . .
chemarrow Extensible Arrows . . . . . . . . . . . .
trfsigns Extensible Arrows . . . . . . . . . . . . .
extarrows Extensible Arrows . . . . . . . . . . . .
extpfeil Extensible Arrows . . . . . . . . . . . . . .
holtpolt Non-commutative Division Symbols . . .
Dots . . . . . . . . . . . . . . . . . . . . . . . . .
AMS Dots . . . . . . . . . . . . . . . . . . . . . .
wasysym Dots . . . . . . . . . . . . . . . . . . . .
MnSymbol Dots . . . . . . . . . . . . . . . . . . .
mathdots Dots . . . . . . . . . . . . . . . . . . . .
yhmath Dots . . . . . . . . . . . . . . . . . . . . .
mathcomp Math Symbols . . . . . . . . . . . . . .
mathabx Mayan Digits . . . . . . . . . . . . . . . .
marvosym Digits . . . . . . . . . . . . . . . . . . .
fge Digits . . . . . . . . . . . . . . . . . . . . . . .
Miscellaneous LATEX 2ε Math Symbols . . . . . . .
Miscellaneous AMS Math Symbols . . . . . . . .
Miscellaneous wasysym Math Symbols . . . . . . .
Miscellaneous txfonts/pxfonts Math Symbols . . .
Miscellaneous mathabx Math Symbols . . . . . . .
Miscellaneous MnSymbol Math Symbols . . . . . .
Miscellaneous Internal MnSymbol Math Symbols .
Miscellaneous textcomp Text-mode Math Symbols
Miscellaneous marvosym Math Symbols . . . . . .
Miscellaneous fge Math Symbols . . . . . . . . . .
Miscellaneous mathdesign Math Symbols . . . . .
Miscellaneous arev Math Symbols . . . . . . . . .
Math Alphabets . . . . . . . . . . . . . . . . . . .
4
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
53
54
54
55
55
55
56
56
56
56
56
56
57
57
57
57
58
58
58
58
59
59
59
59
59
60
60
60
60
60
61
61
61
61
62
62
62
62
62
62
62
63
63
63
63
63
64
64
64
64
64
64
65
4 Science and technology symbols
Table 197: gensymb Symbols Defined to Work in Both Math and Text Mode
Table 198: wasysym Electrical and Physical Symbols . . . . . . . . . . . . . .
Table 199: ifsym Pulse Diagram Symbols . . . . . . . . . . . . . . . . . . . .
Table 200: ar Aspect Ratio Symbol . . . . . . . . . . . . . . . . . . . . . . . .
Table 201: textcomp Text-mode Science and Engineering Symbols . . . . . .
Table 202: wasysym Astronomical Symbols . . . . . . . . . . . . . . . . . . .
Table 203: marvosym Astronomical Symbols . . . . . . . . . . . . . . . . . . .
Table 204: mathabx Astronomical Symbols . . . . . . . . . . . . . . . . . . .
Table 205: wasysym APL Symbols . . . . . . . . . . . . . . . . . . . . . . . .
Table 206: wasysym APL Modifiers . . . . . . . . . . . . . . . . . . . . . . . .
Table 207: marvosym Computer Hardware Symbols . . . . . . . . . . . . . . .
Table 208: keystroke Computer Keys . . . . . . . . . . . . . . . . . . . . . . .
Table 209: ascii Control Characters (CP437) . . . . . . . . . . . . . . . . . .
Table 210: marvosym Communication Symbols . . . . . . . . . . . . . . . . .
Table 211: marvosym Engineering Symbols . . . . . . . . . . . . . . . . . . . .
Table 212: wasysym Biological Symbols . . . . . . . . . . . . . . . . . . . . .
Table 213: marvosym Biological Symbols . . . . . . . . . . . . . . . . . . . . .
Table 214: marvosym Safety-related Symbols . . . . . . . . . . . . . . . . . .
Table 215: feyn Feynman Diagram Symbols . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
67
67
67
67
67
67
68
68
68
68
68
69
69
69
69
70
70
70
70
70
5 Dingbats
Table 216:
Table 217:
Table 218:
Table 219:
Table 220:
Table 221:
Table 222:
Table 223:
Table 224:
Table 225:
Table 226:
Table 227:
Table 228:
Table 229:
Table 230:
Table 231:
Table 232:
Table 233:
Table 234:
Table 235:
Table 236:
Table 237:
Table 238:
Table 239:
Table 240:
Table 241:
Table 242:
Table 243:
Table 244:
Table 245:
Table 246:
Table 247:
Table 248:
Table 249:
Table 250:
Table 251:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
71
71
71
71
71
71
71
72
72
72
72
72
72
72
72
73
73
73
73
73
73
74
74
74
74
75
75
75
76
76
76
76
76
76
76
77
77
bbding Arrows . . . . . . . . . . . . . . . .
pifont Arrows . . . . . . . . . . . . . . . . .
universal Arrows . . . . . . . . . . . . . . .
marvosym Scissors . . . . . . . . . . . . . .
bbding Scissors . . . . . . . . . . . . . . . .
pifont Scissors . . . . . . . . . . . . . . . .
dingbat Pencils . . . . . . . . . . . . . . . .
bbding Pencils and Nibs . . . . . . . . . . .
pifont Pencils and Nibs . . . . . . . . . . .
dingbat Fists . . . . . . . . . . . . . . . . .
bbding Fists . . . . . . . . . . . . . . . . .
pifont Fists . . . . . . . . . . . . . . . . . .
bbding Crosses and Plusses . . . . . . . . .
pifont Crosses and Plusses . . . . . . . . .
bbding Xs and Check Marks . . . . . . . .
pifont Xs and Check Marks . . . . . . . . .
wasysym Xs and Check Marks . . . . . . .
universal Xs . . . . . . . . . . . . . . . . . .
pifont Circled Numbers . . . . . . . . . . .
wasysym Stars . . . . . . . . . . . . . . . .
bbding Stars, Flowers, and Similar Shapes
pifont Stars, Flowers, and Similar Shapes .
wasysym Geometric Shapes . . . . . . . . .
MnSymbol Geometric Shapes . . . . . . . .
ifsym Geometric Shapes . . . . . . . . . . .
bbding Geometric Shapes . . . . . . . . . .
pifont Geometric Shapes . . . . . . . . . .
universa Geometric Shapes . . . . . . . . .
universal Geometric Shapes . . . . . . . . .
igo Go Stones . . . . . . . . . . . . . . . .
manfnt Dangerous Bend Symbols . . . . .
skull Symbols . . . . . . . . . . . . . . . . .
Non-Mathematical mathabx Symbols . . .
marvosym Information Symbols . . . . . . .
Miscellaneous dingbat Dingbats . . . . . .
Miscellaneous bbding Dingbats . . . . . . .
5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Table 252: Miscellaneous pifont Dingbats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
6 Other symbols
Table 253: textcomp Genealogical Symbols . . . . .
Table 254: wasysym General Symbols . . . . . . . . .
Table 255: wasysym Circles . . . . . . . . . . . . . .
Table 256: wasysym Musical Symbols . . . . . . . . .
Table 257: arev Musical Symbols . . . . . . . . . . .
Table 258: harmony Musical Symbols . . . . . . . . .
Table 259: harmony Musical Accents . . . . . . . . .
Table 260: Miscellaneous manfnt Symbols . . . . . .
Table 261: marvosym Navigation Symbols . . . . . .
Table 262: marvosym Laundry Symbols . . . . . . .
Table 263: Other marvosym Symbols . . . . . . . . .
Table 264: Miscellaneous universa Symbols . . . . . .
Table 265: Miscellaneous universal Symbols . . . . .
Table 266: ifsym Weather Symbols . . . . . . . . . .
Table 267: ifsym Alpine Symbols . . . . . . . . . . .
Table 268: ifsym Clocks . . . . . . . . . . . . . . . .
Table 269: Other ifsym Symbols . . . . . . . . . . .
Table 270: epsdice Dice . . . . . . . . . . . . . . . .
Table 271: skak Chess Informator Symbols . . . . .
Table 272: metre Metrical Symbols . . . . . . . . . .
Table 273: metre Small and Large Metrical Symbols
Table 274: phaistos Symbols from the Phaistos Disk
Table 275: protosem Proto-Semitic Characters . . . .
Table 276: hieroglf Hieroglyphics . . . . . . . . . . .
Table 277: dictsym Dictionary Symbols . . . . . . .
Table 278: simpsons Characters from The Simpsons
Table 279: staves Magical Staves . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
78
78
78
78
78
78
79
79
79
79
80
80
80
80
80
81
81
81
81
82
82
82
83
83
84
84
85
85
7 Additional Information
7.1 Symbol Name Clashes . . . . . . . .
7.2 Resizing symbols . . . . . . . . . . .
7.3 Where can I find the symbol for . . . ?
7.4 Math-mode spacing . . . . . . . . . .
7.5 Bold mathematical symbols . . . . .
7.6 ASCII and Latin 1 quick reference .
7.7 About this document . . . . . . . . .
7.8 Copyright and license . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
87
87
87
87
99
100
100
104
106
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
References
106
Index
107
6
1
Introduction
Welcome to the Comprehensive LATEX Symbol List! This document strives to be your primary source of LATEX
symbol information: font samples, LATEX commands, packages, usage details, caveats—everything needed to
put thousands of different symbols at your disposal. All of the fonts covered herein meet the following criteria:
1. They are freely available from the Comprehensive TEX Archive Network (http://www.ctan.org).
2. All of their symbols have LATEX 2ε bindings. That is, a user should be able to access a symbol by name,
not just by \charhnumber i.
These are not particularly limiting criteria; the Comprehensive LATEX Symbol List contains samples of 4947
symbols—quite a large number. Some of these symbols are guaranteed to be available in every LATEX 2ε system;
others require fonts and packages that may not accompany a given distribution and that therefore need to
be installed. See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=instpackages+wherefiles for help
with installing new fonts and packages.
1.1
Document Usage
Each section of this document contains a number of font tables. Each table shows a set of symbols, with the
corresponding LATEX command to the right of each symbol. A table’s caption indicates what package needs to
be loaded in order to access that table’s symbols. For example, the symbols in Table 35, “textcomp Old-Style
Numerals”, are made available by putting “\usepackage{textcomp}” in your document’s preamble. “AMS”
means to use the AMS packages, viz. amssymb and/or amsmath. Notes below a table provide additional
information about some or all the symbols in that table.
One note that appears a few times in this document, particularly in Section 2, indicates that certain
symbols do not exist in the OT1 font encoding (Donald Knuth’s original, 7-bit font encoding, which is the
default font encoding for LATEX) and that you should use fontenc to select a different encoding, such as T1
(a common 8-bit font encoding). That means that you should put “\usepackage[hencodingi]{fontenc}” in
your document’s preamble, where hencodingi is, e.g., T1 or LY1. To limit the change in font encoding to the
current group, use “\fontencoding{hencodingi}\selectfont”.
Section 7 contains some additional information about the symbols in this document. It shows which symbol
names are not unique across packages, gives examples of how to create new symbols out of existing symbols,
explains how symbols are spaced in math mode, presents a LATEX ASCII and Latin 1 tables, and provides
some information about this document itself. The Comprehensive LATEX Symbol List ends with an index of
all the symbols in the document and various additional useful terms.
1.2
Frequently Requested Symbols
There are a number of symbols that are requested over and over again on comp.text.tex. If you’re looking
for such a symbol the following list will help you find it quickly.
, as in “Spaces are significant.”
........
8
ı́, ı̀, ı̄, ı̂, etc. (versus ı́, ı̀, ī, and ı̂)
........
13
¢
...............................
17
e
..............................
17
©, ®, and ™
‰
∴
......................
18
..............................
19
..............................
27
...............................
30
B and F
.........................
. and &
..
.
.........................
37
..............................
62
°, as in “180°” or “15℃”
..............
64
........................
65
......................
65
...............................
92
L, F, etc.
N, Z, R, etc.
R
−
´ā, `ê, etc. (i.e., several accents per character)
<, >, and | (instead of ¡, ¿, and —)
31
ˆ and ˜ (or ∼)
7
94
. . . . . . 100
. . . . . . . . . . . . . . . . . . . . . 101
2
Body-text symbols
This section lists symbols that are intended for use in running text, such as punctuation marks, accents,
ligatures, and currency symbols.
Table 1: LATEX 2ε Escapable “Special” Characters
$
%
\$
∗
\_ ∗
\%
}
&
\}
#
\&
{
\#
\{
The underscore package redefines “_” to produce an underscore in text mode (i.e., it
makes it unnecessary to escape the underscore character).
Table 2: Predefined LATEX 2ε Text-mode Commands
c
ˆ
˜
∗
\
|
{
}
•
©
†
‡
$
...
—
–
¡
>
\textasciicircum
\textasciitilde
\textasteriskcentered
\textbackslash
\textbar
\textbraceleft∗
\textbraceright∗
\textbullet
\textcopyright∗
\textdagger∗
\textdaggerdbl∗
\textdollar∗
\textellipsis∗
\textemdash
\textendash
\textexclamdown
\textgreater
a
o
r
TM
<
ª
º
¶
·
¿
“
”
‘
’
®
§
£
™
\textless
\textordfeminine
\textordmasculine
\textparagraph∗
\textperiodcentered
\textquestiondown
\textquotedblleft
\textquotedblright
\textquoteleft
\textquoteright
\textregistered
\textsection∗
\textsterling∗
\texttrademark
\textunderscore∗
\textvisiblespace
Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
∗
It’s generally preferable to use the corresponding symbol from Table 3 because the
symbols in that table work properly in both text mode and math mode.
Table 3: LATEX 2ε Commands Defined to Work in Both Math and Text Mode
$
¶
§
\$
\P
\S
c
©
†
\_
\copyright
\dag
‡
...
£
\ddag
\dots
\pounds
{
}
\{
\}
Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
Table 4: AMS Commands Defined to Work in Both Math and Text Mode
X
\checkmark
r
\circledR
8
z
\maltese
Table 5: Non-ASCII Letters (Excluding Accented Letters)
å
Å
Æ
æ
∗
Ð
ž
‡
§
·
—
€

\DH∗
\dh∗
\DJ∗
\dj∗
Ð
ð
Ð
đ
\aa
\AA
\AE
\ae
L
l
Ŋ
ŋ
\L
\l
\NG∗
\ng∗
ø
Ø
Œ
œ
ß
SS
Þ
þ
\o
\O
\OE
\oe
\ss
\SS
\TH∗
\th∗
Not available in the OT1 font encoding. Use the fontenc package to select an
alternate font encoding, such as T1.
\B{D}
\B{d}
\B{H}
\B{h}
\B{t}
\B{T}
\m{b}
\m{B}
\m{C}
°

ð
Ð
¡
‚
¢
ƒ
£
Table 6: Letters Used to Typeset African Languages
¤
„
†
¦
À
à
‰
©
ˆ
\m{c}
\m{D}
\M{d}
\M{D}
\m{d}
\m{E}
\m{e}
\M{E}
\M{e}
¨

­
ª
Š
‘
±
¬
Œ
\m{f}
\m{F}
\m{G}
\m{g}
\m{I}
\m{i}
\m{J}
\m{j}
\m{K}
\m{k}
\m{N}
\m{n}
\m{o}
\m{O}
\m{P}
\m{p}
\m{s}
\m{S}
»
›
º
š
®
Ž

¯
¶
\M{t}
\M{T}
\m{t}
\m{T}
\m{u}∗
\m{U}∗
\m{Y}
\m{y}
\m{z}
–
Â
â
Å
å
\m{Z}
\T{E}
\T{e}
\T{O}
\T{o}
These characters all need the T4 font encoding, which is provided by the fc package.
∗
\m{v} and \m{V} are synonyms for \m{u} and \m{U}.
Table 7: Letters Used to Typeset Vietnamese
Ơ
ơ
\OHORN
Ư
\ohorn
\UHORN
ư
\uhorn
These characters all need the T5 font encoding, which is provided by the vntex
package.
Table 8: Punctuation Marks Not Found in OT1
«
»
\guillemotleft
\guillemotright
‹
›
\guilsinglleft
\guilsinglright
„
‚
\quotedblbase
\quotesinglbase
"
\textquotedbl
To get these symbols, use the fontenc package to select an alternate font encoding,
such as T1.
Table 9: pifont Decorative Punctuation Marks
{
|
\ding{123}
\ding{124}
}
~
¡
¢
\ding{125}
\ding{126}
9
\ding{161}
\ding{162}
£
\ding{163}
Table 10: tipa Phonetic Symbols
È
b
c
d
é
g
Ü
1
ł
8
Ý
0
ì
B
ò
X
Å
Ñ
Æ
Þ
^
ă
ą
g
è
Û
ň
2
C
ć
ćý
š
J
ő
ť
ťC
ÿ
ý
dý
S
}
=
/
{
Ş
Ť
Ã
dz
E
S
\textbabygamma
\textbarb
\textbarc
\textbard
\textbardotlessj
\textbarg
\textbarglotstop
\textbari
\textbarl
\textbaro
\textbarrevglotstop
\textbaru
\textbeltl
\textbeta
\textbullseye
\textceltpal
\textchi
\textcloseepsilon
\textcloseomega
\textcloserevepsilon
\textcommatailz
\textcorner
\textcrb
\textcrd
\textcrg
\textcrh
\textcrinvglotstop
\textcrlambda
\textcrtwo
\textctc
\textctd
\textctdctzlig
\textctesh
\textctj
\textctn
\textctt
\textcttctclig
\textctyogh
\textctz
\textdctzlig
\textdoublebaresh
\textdoublebarpipe
\textdoublebarslash
\textdoublepipe
\textdoublevertline
\textdownstep
\textdyoghlig
\textdzlig
\textepsilon
\textesh
P
;
ż
#
á
ê
Á
â
ä
H
Ê
Î
Ò
Ó
č
É
Ö
ß
Û
K
Ì
ń
:
ş
ę
ű
Ô
¡
M
ñ
ë
Ð
Í
ŋ
ř
_
O
%
F
|
"
ij
ğ
7
\
9
3
Q
ź
Ç
\textglotstop
\texthalflength
\texthardsign
\texthooktop
\texthtb
\texthtbardotlessj
\texthtc
\texthtd
\texthtg
\texthth
\texththeng
\texthtk
\texthtp
\texthtq
\texthtrtaild
\texthtscg
\texthtt
\texthvlig
\textinvglotstop
\textinvscr
\textiota
\textlambda
\textlengthmark
\textlhookt
\textlhtlongi
\textlhtlongy
\textlonglegr
\textlptr
\textltailm
\textltailn
\textltilde
\textlyoghlig
\textObardotlessj
\textOlyoghlig
\textomega
\textopencorner
\textopeno
\textpalhook
\textphi
\textpipe
\textprimstress
\textraiseglotstop
\textraisevibyi
\textramshorns
\textrevapostrophe
\textreve
\textrevepsilon
\textrevglotstop
\textrevyogh
\textrhookrevepsilon
ï
ó
ù
ú
ü
$
À
à
ď
å
Ë
@
I
ĺ
Ï
ð
Œ
ś
ö
A
g
V
Ú
Y
­
ž
Â
tC
Ù
T
þ
£
ţ
5
ŕ
4
ľ
Õ
W
î
ô
õ
6
Ø
2
û
L
U
Ţ
Š
\textrtailn
\textrtailr
\textrtails
\textrtailt
\textrtailz
\textrthook
\textsca
\textscb
\textsce
\textscg
\textsch
\textschwa
\textsci
\textscj
\textscl
\textscn
\textscoelig
\textscomega
\textscr
\textscripta
\textscriptg
\textscriptv
\textscu
\textscy
\textsecstress
\textsoftsign
\textstretchc
\texttctclig
\textteshlig
\texttheta
\textthorn
\texttoneletterstem
\texttslig
\textturna
\textturncelig
\textturnh
\textturnk
\textturnlonglegr
\textturnm
\textturnmrleg
\textturnr
\textturnrrtail
\textturnscripta
\textturnt
\textturnv
\textturnw
\textturny
\textupsilon
\textupstep
\textvertline
(continued on next page)
10
(continued from previous page)
R
ě
G
Ů
Ű
Ä
~
¿
ã
í
\textfishhookr
\textg
\textgamma
\textglobfall
\textglobrise
ğ
ů
ß
Z
\textrhookschwa
\textrhoticity
\textrptr
\textrtaild
\textrtaill
\textvibyi
\textvibyy
\textwynn
\textyogh
tipa defines shortcut characters for many of the above. It also defines a command
\tone for denoting tone letters (pitches). See the tipa documentation for more
information.
Table 11: tipx Phonetic Symbols
"
B
.
D
2
%
&
@
)
H
G
ˇ
7
5
’
(
?
T
U
V
,
0
4
\textaolig
\textbenttailyogh
\textbktailgamma
\textctinvglotstop
\textctjvar
\textctstretchc
\textctstretchcvar
\textctturnt
\textdblig
\textdoublebarpipevar
\textdoublepipevar
\textdownfullarrow
\textfemale
\textfrbarn
\textfrhookd
\textfrhookdvar
\textfrhookt
\textfrtailgamma
\textglotstopvari
\textglotstopvarii
\textglotstopvariii
\textgrgamma
\textheng
\texthmlig
3
;
p
!
I
#
<
1
>
6
9
ˆ
˜
F
=
¨
˚
v
z
*
+
:
/
\texthtbardotlessjvar
\textinvomega
\textinvsca
\textinvscripta
\textlfishhookrlig
\textlhookfour
\textlhookp
\textlhti
\textlooptoprevesh
\textnrleg
\textObullseye
\textpalhooklong
\textpalhookvar
\textpipevar
\textqplig
\textrectangle
\textretractingvar
\textrevscl
\textrevscr
\textrhooka
\textrhooke
\textrhookepsilon
\textrhookopeno
\textrtailhth
´
q
r
s
t
w
x
y
˝
$
˙
¯
P
Q
R
S
E
u
{
C
A
8
˘
\textrthooklong
\textscaolig
\textscdelta
\textscf
\textsck
\textscm
\textscp
\textscq
\textspleftarrow
\textstretchcvar
\textsubdoublearrow
\textsubrightarrow
\textthornvari
\textthornvarii
\textthornvariii
\textthornvariv
\textturnglotstop
\textturnsck
\textturnscu
\textturnthree
\textturntwo
\textuncrfemale
\textupfullarrow
Table 13: wsuipa Phonetic Symbols
!
'
.
\babygamma
\barb
\bard
\bari
\barl
8
M
D
4
/
6
E
1
\eng
\er
\esh
\eth
\flapr
\labdentalnas
\latfric
\legm
\legr
\lz
*
:
J
\schwa
\sci
\scn
\scr
\scripta
(continued on next page)
11
(continued from previous page)
<
A
+
X
T
;
R
?
#
3
N
a
^
(
e
b
$
%
"
\baro
\barp
\barsci
\barscu
\baru
\clickb
\clickc
\clickt
\closedniomega
\closedrevepsilon
\crossb
\crossd
\crossh
\crossnilambda
\curlyc
\curlyesh
\curlyyogh
\curlyz
\dlbari
\dz
\ejective
,
d
&
I
5
G
K
Z
\
\glotstop
\hookb
\hookd
\hookg
\hookh
\hookheng
\hookrevepsilon
\hv
\inva
\invf
\invglotstop
\invh
\invlegr
\invm
\invr
\invscr
\invscripta
\invv
\invw
\invy
\ipagamma
[
)
2
>
C
O
S
V
7
@
=
f
c
\nialpha
\nibeta
\nichi
\niepsilon
\nigamma
\niiota
\nilambda
\niomega
\niphi
\nisigma
\nitheta
\niupsilon
\nj
\oo
\openo
\reve
\reveject
\revepsilon
\revglotstop
\scd
\scg
Y
W
]
U
H
0
9
F
L
P
_
Q
B
`
\scriptg
\scriptv
\scu
\scy
\slashb
\slashc
\slashd
\slashu
\taild
\tailinvr
\taill
\tailn
\tailr
\tails
\tailt
\tailz
\tesh
\thorn
\tildel
\yogh
Table 14: wasysym Phonetic Symbols
D
Þ
k
U
\DH
\Thorn
\dh
\inve
l
þ
\openo
\thorn
Table 15: phonetic Phonetic Symbols
j
M
n
N
"
s
d
F
\barj
\barlambda
\emgma
\engma
\enya
\epsi
\esh
\eth
\fj
f
?
B
b
D
T
k
K
D
\flap
\glottal
\hausaB
\hausab
\hausad
\hausaD
\hausak
\hausaK
\hookd
ī
c
h̄
U
m
r
\ibar
\openo
\planck
\pwedge
\revD
\riota
\rotm
\rotOmega
\rotr
12
A
w
y
e
p
u
u
a
G
\rotvara
\rotw
\roty
\schwa
\thorn
\ubar
\udesc
\vara
\varg
i
C
v
˚
h
x
\vari
\varomega
\varopeno
\vod
\voicedh
\yogh
ž
§
¢
¬

°
Table 16: t4phonet Phonetic Symbols
¡
¨
±
º
à
©
ª
\textcrd
\textcrh
\textepsilon
\textesh
\textfjlig
\texthtb
\texthtc
\texthtd
\texthtk
\texthtp
\texthtt
\textiota
\textltailn
\textopeno
|
ð
»
¡
¬
œ
¶
\textpipe
\textrtaild
\textrtailt
\textschwa
\textscriptv
\textteshlig
\textyogh
The idea behind the t4phonet package’s phonetic symbols is to provide an interface
to some of the characters in the T4 font encoding (Table 6 on page 9) but using
the same names as the tipa characters presented in Table 10 on page 10.
Table 17: semtrans Transliteration Symbols
-
,
\Alif
\Ayn
Table 18: Text-mode Accents
Ää
Áá
Ȧȧ
Āā
Ââ
\"{A}\"{a}
\’{A}\’{a}
\.{A}\.{a}
\={A}\={a}
\^{A}\^{a}
a
A
Àà
A¿ ¿a
Ãã
Aa
¯¯
A̧a̧
A
. a.
\‘{A}\‘{a}
\|{A}\|{a}‡
\~{A}\~{a}
\b{A}\b{a}
\c{A}\c{a}
\newtie{A}\newtie{a}∗
AŸ Ÿa
Ảả
A̋a̋
Ąą
A
a
\d{A}\d{a}
\G{A}\G{a}‡
\h{A}\h{a}§
\H{A}\H{a}
\k{A}\k{a}†
Åå
a
A
Ăă
A¼ ¼a
Ǎǎ
\r{A}\r{a}
\t{A}\t{a}
\u{A}\u{a}
\U{A}\U{a}‡
\v{A}\v{a}
\textcircled{A}\textcircled{a}
∗
Requires the textcomp package.
†
Not available in the OT1 font encoding. Use the fontenc package to select an
alternate font encoding, such as T1.
‡
Requires the T4 font encoding, provided by the fc package.
§
Requires the T5 font encoding, provided by the vntex package.
Also note the existence of \i and \j, which produce dotless versions of “i” and “j”
(viz., “ı” and “”). These are useful when the accent is supposed to replace the
dot. For example, “na\"{\i}ve” produces a correct “naı̈ve”, while “na\"{i}ve”
would yield the rather odd-looking “naı̈ve”. (“na\"{i}ve” does work in encodings
other than OT1, however.)
Table 19: tipa Text-mode Accents
´´
Ā
ā
´´
Ǎ
ǎ
\textacutemacron{A}\textacutemacron{a}
\textacutewedge{A}\textacutewedge{a}
(continued on next page)
13
(continued from previous page)
A
ffi affi
A<
a
<
˘ ā
˘
Ā
Ż
AŻ
a
ˆ
Ȧˆ
ȧ
§a
A§
˙ ă˙
Ă
˙ ă˙
Ă
‚a
A‚
İa
Aİ
Ža
AŽ
đa
Ađ
``
Ā
ā
Źa
AŹ
A
„a
„
A
fl afl
Ÿ
AŸ
a
‰a
A‰
——
Aa
A
˛ a˛
A
fi afi
A
ffl affl
˚
Ā˚
ā
“
A“
a
A
a
Aa
››
Aa
““
Aa
¯¯
A
”a
”
Aa
ˆˆ
Aa
˙˙
Aa
‹‹
A
– a–
A
ff aff
A
» a»
Aa
˚˚
A
«a
«
Aa
˜˜
Aa
¨¨
A
—a
—
Aa
ˇˇ
A
a
&&
\textadvancing{A}\textadvancing{a}
\textbottomtiebar{A}\textbottomtiebar{a}
\textbrevemacron{A}\textbrevemacron{a}
\textcircumacute{A}\textcircumacute{a}
\textcircumdot{A}\textcircumdot{a}
\textdotacute{A}\textdotacute{a}
\textdotbreve{A}\textdotbreve{a}
\textdotbreve{A}\textdotbreve{a}
\textdoublegrave{A}\textdoublegrave{a}
\textdoublevbaraccent{A}\textdoublevbaraccent{a}
\textgravecircum{A}\textgravecircum{a}
\textgravedot{A}\textgravedot{a}
\textgravemacron{A}\textgravemacron{a}
\textgravemid{A}\textgravemid{a}
\textinvsubbridge{A}\textinvsubbridge{a}
\textlowering{A}\textlowering{a}
\textmidacute{A}\textmidacute{a}
\textovercross{A}\textovercross{a}
\textoverw{A}\textoverw{a}
\textpolhook{A}\textpolhook{a}
\textraising{A}\textraising{a}
\textretracting{A}\textretracting{a}
\textringmacron{A}\textringmacron{a}
\textroundcap{A}\textroundcap{a}
\textseagull{A}\textseagull{a}
\textsubacute{A}\textsubacute{a}
\textsubarch{A}\textsubarch{a}
\textsubbar{A}\textsubbar{a}
\textsubbridge{A}\textsubbridge{a}
\textsubcircum{A}\textsubcircum{a}
\textsubdot{A}\textsubdot{a}
\textsubgrave{A}\textsubgrave{a}
\textsublhalfring{A}\textsublhalfring{a}
\textsubplus{A}\textsubplus{a}
\textsubrhalfring{A}\textsubrhalfring{a}
\textsubring{A}\textsubring{a}
\textsubsquare{A}\textsubsquare{a}
\textsubtilde{A}\textsubtilde{a}
\textsubumlaut{A}\textsubumlaut{a}
\textsubw{A}\textsubw{a}
\textsubwedge{A}\textsubwedge{a}
\textsuperimposetilde{A}\textsuperimposetilde{a}
(continued on next page)
14
(continued from previous page)
Aa
"
˜" ˜
Ȧ
ȧ
>>
Aa
IJa
AIJ
\textsyllabic{A}\textsyllabic{a}
\texttildedot{A}\texttildedot{a}
\texttoptiebar{A}\texttoptiebar{a}
\textvbaraccent{A}\textvbaraccent{a}
tipa defines shortcut sequences for many of the above. See the tipa documentation
for more information.
Table 20: extraipa Text-mode Accents
””
A
” a”
Ŕ Ŕ
Ãã
.. .
Ãã.
˜ ã˜
Ã
A»a»
ˇˇ
A»a»
˚˚
a
–A
ˇ–ˇ
a
–A
”–˚
”
˚
Aa
A
–ˇ»–aˇ»
\partvoiceless{A}\partvoiceless{a}
\crtilde{A}\crtilde{a}
–A»–a»
˚˚
Āā
\dottedtilde{A}\dottedtilde{a}
Ȧȧ
\spreadlips{A}\spreadlips{a}
\doubletilde{A}\doubletilde{a}
\finpartvoice{A}\finpartvoice{a}
\finpartvoiceless{A}\finpartvoiceless{a}
\inipartvoice{A}\inipartvoice{a}
\inipartvoiceless{A}\inipartvoiceless{a}
\overbridge{A}\overbridge{a}
\partvoice{A}\partvoice{a}
Aa
^^
Aa
¯¯
Aa
"" ""
Aa
¡¡
Aa
¿¿
A
a
Ţ Ţ
\subcorner{A}\subcorner{a}
\subdoublebar{A}\subdoublebar{a}
\subdoublevert{A}\subdoublevert{a}
\sublptr{A}\sublptr{a}
\subrptr{A}\subrptr{a}
\whistle{A}\whistle{a}
\bibridge{A}\bibridge{a}
\sliding{A}\sliding{a}
Table 21: wsuipa Text-mode Accents
A
g ag
A
 a
\dental{A}\dental{a}
\underarch{A}\underarch{a}
Table 22: phonetic Text-mode Accents
Aa
\hill{A}\hill{a}
A
a
\rc{A}\rc{a}
Aa
˚
{˚
A
a{
\od{A}\od{a}
\ohill{A}\ohill{a}
Aa
A
a
.. ..
\syl{A}\syl{a}
\td{A}\td{a}
{ {
Aa
˜˜
\ut{A}\ut{a}
The phonetic package provides a few additional macros for linguistic accents.
\acbar and \acarc compose characters with multiple accents; for example,
\acbar{\’}{a} produces “´
ā” and \acarc{\"}{e} produces “¨ē”. \labvel joins
_
two characters with an arc: \labvel{mn} → “mn”.
\upbar is intended to go
between characters as in “x\upbar{}y’’ → “x y”. Lastly, \uplett behaves like
\textsuperscript but uses a smaller font. Contrast “p\uplett{h}’’ → “ph ”
with “p\textsuperscript{h}’’ → “ph ”.
15
Table 23: metre Text-mode Accents
Áá
Ăă
Ãã
Ää
Àà
Āā
\acutus{A}\acutus{a}
\breve{A}\breve{a}
\circumflexus{A}\circumflexus{a}
\diaeresis{A}\diaeresis{a}
\gravis{A}\gravis{a}
\macron{A}\macron{a}
Table 24: t4phonet Text-mode Accents
AŸ Ÿa
A¿ ¿a
A¼ ¼a
\textdoublegrave{A}\textdoublegrave{a}
\textvbaraccent{A}\textvbaraccent{a}
\textdoublevbaraccent{A}\textdoublevbaraccent{a}
The idea behind the t4phonet package’s text-mode accents is to provide an interface
to some of the accents in the T4 font encoding (accents marked with “‡” in Table 18
on page 13) but using the same names as the tipa accents presented in Table 19 on
page 13.
Table 25: arcs Text-mode Accents
__
Aa
\overarc{A}\overarc{a}
Aa
^^
\underarc{A}\underarc{a}
The accents shown above scale only to a few characters wide. An optional macro
argument alters the effective width of the accented characters. See the arcs documentation for more information.
Table 26: semtrans Accents
Aa
¨¨
Aa
˘˘
\D{A}\D{a}
\U{A}\U{a}
\T{A}\T{a}∗
aA
\T is not actually an accent but a command that rotates its argument 180° using
the graphicx package’s \rotatebox command.
Table 27: wsuipa Diacritics
s
k
u
m
p
\ain
\corner
\downp
\downt
\halflength
v
n
q
{
z
\leftp
\leftt
\length
\midtilde
\open
x
~
w
o
i
\overring
\polishhook
\rightp
\rightt
\secstress
h
j
r
y
|
\stress
\syllabic
\underdots
\underring
\undertilde
}
t
l
\underwedge
\upp
\upt
The wsuipa package defines all of the above as ordinary characters, not as accents.
However, it does provide \diatop and \diaunder commands, which are used to
compose diacritics with other characters. For example, \diatop[\overring|a]
produces “x
a ”, and \diaunder[\underdots|a] produces “r
a”. See the wsuipa documentation for more information.
16
Table 28: textcomp Diacritics
˝
´
˘
\textacutedbl
\textasciiacute
\textasciibreve
ˇ
¨
`
¯

\textasciicaron
\textasciidieresis
\textasciigrave
\textasciimacron
\textgravedbl
The textcomp package defines all of the above as ordinary characters, not as accents.
Table 29: textcomp Currency Symbols
฿
¢

₡
¤
\textbaht
\textcent
\textcentoldstyle
\textcolonmonetary
\textcurrency
∗
$

₫
€
ƒ
\textdollar∗
\textdollaroldstyle
\textdong
\texteuro
\textflorin

₤
₦
‘
£
\textguarani
\textlira
\textnaira
\textpeso
\textsterling∗
₩
¥
\textwon
\textyen
It’s generally preferable to use the corresponding symbol from Table 3 on page 8
because the symbols in that table work properly in both text mode and math mode.
Table 30: marvosym Currency Symbols
¢

\Denarius
\Ecommerce
e
d
\EUR
\EURcr
D
c
\EURdig
\EURhv
e
¦
\EURtm
\EyesDollar
£
¡
\Pfund
\Shilling
The different euro signs are meant to be visually compatible with different fonts—
Courier (\EURcr), Helvetica (\EURhv), Times Roman (\EURtm), and the marvosym
digits listed in Table 182 (\EURdig). The mathdesign package redefines \texteuro
to be visually compatible with one of three additional fonts: Utopia (€), Charter (€), or Garamond (€).
Table 31: wasysym Currency Symbols
¢
\cent
¤
\currency
Table 32: eurosym Euro Signs
A
C
\geneuro
B
C
\geneuronarrow
C
C
\geneurowide
e
\officialeuro
\euro is automatically mapped to one of the above—by default, \officialeuro—
based on a eurosym package option. See the eurosym documentation for more
information. The \geneuro. . . characters are generated from the current body
font’s “C” character and therefore may not appear exactly as shown.
17
Table 33: textcomp Legal Symbols
℗
«
\textcircledP
\textcopyleft
c
r
©
®
\textcopyright
\textregistered
℠
™
TM
\textservicemark
\texttrademark
Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=tradesyms for solur
tions to common problems that occur when using these symbols (e.g., getting a “”
when you expected to get a “®”).
Table 34: cclicenses Creative Commons License Icons
∗
BY:
$
\ccby
\
\cc
\ccnc∗
=
\ccnd
C
CC
\ccsa∗
These symbols utilize the rotating package and therefore display improperly in most
DVI viewers.
Table 35: textcomp Old-style Numerals




\textzerooldstyle
\textoneoldstyle
\texttwooldstyle
\textthreeoldstyle




\textfouroldstyle
\textfiveoldstyle
\textsixoldstyle
\textsevenoldstyle


\texteightoldstyle
\textnineoldstyle
Rather than use the bulky \textoneoldstyle, \texttwooldstyle, etc. commands
shown above, consider using \oldstylenums{. . .} to typeset an old-style number.
18
Table 36: Miscellaneous textcomp Symbols
∗
‖
○
␢
¦
•
†
‡

œ
℮
‽
•
♪
№
◦
\textasteriskcentered
\textbardbl
\textbigcircle
\textblank
\textbrokenbar
\textbullet
\textdagger∗
\textdaggerdbl∗
\textdblhyphen
\textdblhyphenchar
\textdiscount
\textestimated
\textinterrobang
\textinterrobangdown
\textmusicalnote
\textnumero
\textopenbullet
a
o
ª
º
¶
·
‱
‰
¶
'
‚
„
“
※
§

~
\textordfeminine
\textordmasculine
\textparagraph∗
\textperiodcentered
\textpertenthousand
\textperthousand
\textpilcrow
\textquotesingle
\textquotestraightbase
\textquotestraightdblbase
\textrecipe
\textreferencemark
\textsection∗
\textthreequartersemdash
\texttildelow
\texttwelveudash
Where two symbols are present, the left one is the “faked” symbol that LATEX 2ε
provides by default, and the right one is the “true” symbol that textcomp makes
available.
∗
It’s generally preferable to use the corresponding symbol from Table 3 on page 8
because the symbols in that table work properly in both text mode and math mode.
Table 37: Miscellaneous wasysym Text-mode Symbols
h
\permil
19
3
Mathematical symbols
Most, but not all, of the symbols in this section are math-mode only. That is, they yield a “Missing $
inserted” error message if not used within $. . .$, \[. . .\], or another math-mode environment. Operators
marked as “variable-sized” are taller in displayed formulas, shorter in in-text formulas, and possibly shorter
still when used in various levels of superscripts or subscripts.
Alphanumeric symbols (e.g., “L ” and “š”) are usually produced using one of the math alphabets in
Table 196 rather than with an explicit symbol command. Look there first if you need a symbol for a transform,
number set, or some other alphanumeric.
Although there have been many requests on comp.text.tex for a contradiction symbol, the ensuing discussion invariably reveals innumerable ways to represent contradiction in a proof, including “” (\blitza),
“⇒⇐” (\Rightarrow\Leftarrow), “⊥” (\bot), “=” (\nleftrightarrow), and “※” (\textreferencemark).
Because of the lack of notational consensus, it is probably better to spell out “Contradiction!” than to use a
symbol for this purpose. Similarly, discussions on comp.text.tex have revealed that there are a variety of
ways to indicate the mathematical notion of “is defined as”. Common candidates include “,” (\triangleq),
def
“≡” (\equiv), “B” (\coloneqq), and “ =” (\stackrel{\text{\tiny def}}{=}). See also the
` example of
\equalsfill on page 95. Depending upon the context, disjoint union may be represented as “ ” (\coprod),
· (\dotcup), “⊕” (\oplus), or any of a number of other symbols.1 Finally, the average
“t” (\sqcup), “∪”
value of a variable x is written by some people as “x” (\overline{x}), by some people as “hxi” (\langle x
\rangle), and by some people as “x” or “∅x” (\diameter x or \varnothing x). The moral of the story is
that you should be careful always to explain your notation to avoid confusing your readers.
Table 38: Math-Mode Versions of Text Symbols
$
...
\mathdollar
\mathellipsis
¶
§
\mathparagraph
\mathsection
£
\mathsterling
\mathunderscore
It’s generally preferable to use the corresponding symbol from Table 3 on page 8
because the symbols in that table work properly in both text mode and math mode.
Table 39: cmll Unary Operators
!
˜
∗
\oc∗
\shift
ˆ
´
\shneg
\shpos
?
\wn∗
\oc and \wn differ from “!” and “?” in terms of their math-mode spacing: $A=!B$
produces “A =!B”, for example, while $A=\oc B$ produces “A = !B”.
Table 40: Binary Operators
q
∗
5
4
•
∩
·
◦
∗
1 Bob
\amalg
\ast
\bigcirc
\bigtriangledown
\bigtriangleup
\bullet
\cap
\cdot
\circ
∪
†
‡
÷
C
∓
\cup
\dagger
\ddagger
\diamond
\div
\lhd∗
\mp
\odot
\ominus
⊕
⊗
±
B
\
u
t
?
\oplus
\oslash
\otimes
\pm
\rhd∗
\setminus
\sqcap
\sqcup
\star
×
/
.
E
D
]
∨
∧
o
\times
\triangleleft
\triangleright
\unlhd∗
\unrhd∗
\uplus
\vee
\wedge
\wr
Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym.
Tennent listed these and other disjoint-union symbol possibilities in a November 2007 post to comp.text.tex.
20
Table 41: AMS Binary Operators
Z
\barwedge
\boxdot
\boxminus
\boxplus
\boxtimes
\Cap
\centerdot
\circledast
e
~
}

d
g
f
>
u
[
\circledcirc
\circleddash
\Cup
\curlyvee
\curlywedge
\divideontimes
\dotplus
\doublebarwedge
|
h
n
i
o
r
Y
\intercal
\leftthreetimes
\ltimes
\rightthreetimes
\rtimes
\smallsetminus
\veebar
Table 42: stmaryrd Binary Operators
N
O
i
k
j
l
.
/
'
&
)
#
(
\baro
\bbslash
\binampersand
\bindnasrepma
\boxast
\boxbar
\boxbox
\boxbslash
\boxcircle
\boxdot
\boxempty
\boxslash
\curlyveedownarrow
\curlyveeuparrow
\curlywedgedownarrow
\curlywedgeuparrow
\fatbslash
\fatsemi
\fatslash
9
2
!
`
:
@
;
=
<
>
?
3
8
,
\interleave
\leftslice
\merge
\minuso
\moo
\nplus
\obar
\oblong
\obslash
\ogreaterthan
\olessthan
\ovee
\owedge
\rightslice
\sslash
\talloblong
\varbigcirc
\varcurlyvee
\varcurlywedge
5
4
6
7
"
\varoast
\varobar
\varobslash
\varocircle
\varodot
\varogreaterthan
\varolessthan
\varominus
\varoplus
\varoslash
\varotimes
\varovee
\varowedge
\vartimes
\Ydown
\Yleft
\Yright
\Yup
Table 43: wasysym Binary Operators
C
\lhd
\LHD
#
B
\ocircle
\rhd
E
\RHD
\unlhd
D
\unrhd
Table 44: txfonts/pxfonts Binary Operators
V
W
U
\circledbar
\circledbslash
\circledvee
T
M
\circledwedge
\invamp
\medbullet
21
}
|
\medcirc
\sqcapplus
\sqcupplus
Table 45: mathabx Binary Operators
X
X
Y
O
\ast
\Asterisk
\barwedge
\bigstar
\bigvarstar
\blackdiamond
\cap
\circplus
\coasterisk
\coAsterisk
\convolution
\cup
\curlyvee
N
Z
\
]
\curlywedge
\divdot
\divideontimes
\dotdiv
\dotplus
\dottimes
\doublebarwedge
\doublecap
\doublecup
\ltimes
\pluscirc
\rtimes
\sqbullet
[
\
^
_
]
Z
_
Y
[
^
\sqcap
\sqcup
\sqdoublecap
\sqdoublecup
\square
\squplus
\udot
\uplus
\varstar
\vee
\veebar
\veedoublebar
\wedge
Many of the above glyphs go by multiple names. \centerdot is equivalent to
\sqbullet, and \ast is equivalent to *. \asterisk produces the same glyph as
\ast, but as an ordinary symbol, not a binary operator. Similarly, \bigast produces a large-operator version of the \Asterisk binary operator, and \bigcoast
produces a large-operator version of the \coAsterisk binary operator.
22
Table 46: MnSymbol Binary Operators
∐
∗
&
●
∩
⩀
?
⋅
○
¾
¼
∪
⊍
⊎
⋎
5
⋏
4
÷
⋒
⋓
7
6
⩎
⩏
⩔
⩕
∵
+
"
ˆ
⌜
⌞
⋋
*
⋉
∖
◯
∕
∣
−
∓
‰
‹
+
±
⌝
⌟
\amalg
\ast
\backslashdiv
\bowtie
\bullet
\cap
\capdot
\capplus
\cdot
\circ
\closedcurlyvee
\closedcurlywedge
\cup
\cupdot
\cupplus
\curlyvee
\curlyveedot
\curlywedge
\curlywedgedot
\ddotdot
\diamonddots
\div
\dotmedvert
\dotminus
\doublecap
\doublecup
\doublecurlyvee
\doublecurlywedge
\doublesqcap
\doublesqcup
\doublevee
\doublewedge
\downtherefore
\downY
\dtimes
\fivedots
\hbipropto
\hdotdot
\lefthalfcap
\lefthalfcup
\lefttherefore
\leftthreetimes
\leftY
\ltimes
\medbackslash
\medcircle
\medslash
\medvert
\medvertdot
\minus
\minusdot
\mp
\neswbipropto
\nwsebipropto
\plus
\pm
\righthalfcap
\righthalfcup
⋌
(
⋊
∏
⊓
E
G
⊔
D
F
∷
×
∴
)
$
Š
∶
∨
/
⧖
∧
.
≀
\righttherefore
\rightthreetimes
\rightY
\rtimes
\slashdiv
\smallprod
\sqcap
\sqcapdot
\sqcapplus
\sqcup
\sqcupdot
\sqcupplus
\squaredots
\times
\udotdot
\uptherefore
\upY
\utimes
\vbipropto
\vdotdot
\vee
\veedot
\vertbowtie
\vertdiv
\wedge
\wedgedot
\wreath
MnSymbol defines \setminus and \smallsetminus as synonyms
\medbackslash; \Join as a synonym for \bowtie; \wr as a synonym
\wreath; \shortmid as a synonym for \medvert; \Cap as a synonym
\doublecap; \Cup as a synonym for \doublecup; and, \uplus as a synonym
\cupplus.
for
for
for
for
Table 47: mathdesign Binary Operators
_
\dtimes
]
\udtimes
^
\utimes
The mathdesign package additionally provides versions of each of the binary operators shown in Table 41 on page 21.
Table 48: cmll Binary Operators
`
∗
&
\parr
\with∗
\with differs from “&” in terms of its math-mode spacing: $A \& B$ produces
“A&B”, for example, while $A \with B$ produces “A & B”.
23
Table 49: ulsy Geometric Binary Operators

ž
Ÿ
œ
f
n
k
e
g
c
d
h
a
`
\odplus
Table 50: mathabx Geometric Binary Operators
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\blacktriangleup
\boxasterisk
\boxbackslash
\boxbot
\boxcirc
\boxcoasterisk
\boxdiv
\boxdot
\boxleft
\boxminus
\boxplus
i
m
b
j
o
l
f
n
k
e
g
c
d
h
\boxright
\boxslash
\boxtimes
\boxtop
\boxtriangleup
\boxvoid
\oasterisk
\obackslash
\obot
\ocirc
\ocoasterisk
\odiv
\odot
\oleft
a
`
i
m
b
j
o
l
™
š
›
˜
\ominus
\oplus
\oright
\oslash
\otimes
\otop
\otriangleup
\ovoid
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
Table 51: MnSymbol Geometric Binary Operators
⧅
⧈
⊡
⊟
⊞
⧄
⊠
q
{

⟐
x
|
z
}
y
Â
◆
∎
\boxbackslash
\boxbox
\boxdot
\boxminus
\boxplus
\boxslash
\boxtimes
\boxvert
\diamondbackslash
\diamonddiamond
\diamonddot
\diamondminus
\diamondplus
\diamondslash
\diamondtimes
\diamondvert
\downslice
\filleddiamond
\filledmedsquare
▼
◀
▶
▲
◾
★
▾
◂
▸
▴
◇
◻
☆
▽
◁
▷
△
⊛
⦸
\filledmedtriangledown
\filledmedtriangleleft
\filledmedtriangleright
\filledmedtriangleup
\filledsquare
\filledstar
\filledtriangledown
\filledtriangleleft
\filledtriangleright
\filledtriangleup
\meddiamond
\medsquare
\medstar
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\oast
\obackslash
⊚
⊙
⊖
⊕
⊘
⍟
⊗
d
⦶
„
◇
◽
☆
▿
◃
▹
▵
⋆
À
\ocirc
\odot
\ominus
\oplus
\oslash
\ostar
\otimes
\otriangle
\overt
\pentagram
\smalldiamond
\smallsquare
\smallstar
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\thinstar
\upslice
MnSymbol defines \blacksquare as a synonym for \filledmedsquare; \square
and \Box as synonyms for \medsquare; \diamond as a synonym for \smalldiamond;
\Diamond as a synonym for \meddiamond; \star as a synonym for \thinstar;
\circledast as a synonym for \oast; \circledcirc as a synonym for \ocirc;
and, \circleddash as a synonym for \ominus.
24
T \
S [
JK
LM
Table 52: Variable-sized Math Operators
V^
NO
\bigwedge
\bigotimes
\bigcap
F G
`a
\bigcup
\bigsqcup
\coprod
Z
]
R
U
\biguplus
\int
\bigodot
I
H
W _
\bigvee
\oint
\bigoplus
QY
\prod
PX
\sum
Table 53: AMS Variable-sized Math Operators
ZZ
ZZZ
RR
RRR
\iint
\iiint
RRRR
em
bj
ck
ZZZZ
\iiiint
R
···
R
Z
Z
···
\idotsint
Table 54: stmaryrd Variable-sized Math
g o
\bigbox
\biginterleave
\bignplus
\bigcurlyvee
f n
\bigcurlywedge
\bigparallel
Operators
\bigsqcap
`h
\bigtriangledown
ai
\bigtriangleup
Table 55: wasysym Variable-sized Math Operators
r w
r w
! "
\int†
∗
\varint
u z
# $
\iint
∗
\varoint
\iiint
\oiint
None of the preceding symbols are defined when wasysym is passed the nointegrals
option.
∗
Not defined when wasysym is passed the integrals option.
†
Defined only when wasysym is passed the integrals option. Otherwise, the default
LATEX \int glyph (as shown in Table 52) is used.
25
Table 56: mathabx Variable-sized Math Operators
œ¬
–¦
›«
Öö
Þþ
Ûû
Õõ
×÷
Óó
Ôô
Øø
Ññ
Ðð
Ùù
\bigcurlyvee
\bigsqcap
\bigcurlywedge
\bigboxasterisk
\bigboxbackslash
\bigboxbot
\bigboxcirc
\bigboxcoasterisk
\bigboxdiv
\bigboxdot
\bigboxleft
\bigboxminus
\bigboxplus
\bigboxright
Ýý
Òò
Úú
ßÿ
Üü
’ ¢
Ææ
Îî
Ëë
Åå
Çç
Ãã
Èè
Áá
\bigboxslash
\bigboxtimes
\bigboxtop
\bigboxtriangleup
\bigboxvoid
\bigcomplementop
\bigoasterisk
\bigobackslash
\bigobot
\bigocirc
\bigocoasterisk
\bigodiv
\bigoleft
\bigominus
26
Éé
Íí
Êê
Ïï
Ìì
 ˜¨
‘¡
µ½
´ ¼
³ »
· ¿
¶ ¾
\bigoright
\bigoslash
\bigotop
\bigotriangleup
\bigovoid
\bigplus
\bigsquplus
\bigtimes
\iiint
\iint
\int
\oiint
\oint
Table 57: txfonts/pxfonts Variable-sized Math Operators
>
?
\bigsqcapplus
\bigsqcupplus
% &
#
$
!
"
L
M
D
E
)
*
H
I
@
A
\ointclockwise
\ointctrclockwise
R S
\fint
' (
P Q
\idotsint
\iiiint
\sqint
N O
\iint
B C
\oiiintclockwise
J K
\oiiintctrclockwise
\oiiint
\oiintclockwise
-
.
+
,
\oiint
27
\varoiiintclockwise
\varoiiintctrclockwise
\varoiintclockwise
\varoiintctrclockwise
\varointclockwise
\oiintctrclockwise
\sqiint
F G
\iiint
\sqiiint
\varointctrclockwise
\varprod
Table 58: esint Variable-sized Math Operators
¯
˙
\dotsint
ffl
ˇ
˝
˜
%
#
‚
\fint
˘
\iiiint
˚
\iiint
¨
\iint
&
\landdownint
$
\landupint
ı
”
›
!
ff
fl
‹
\oiint
28

\ointclockwise
‰
\ointctrclockwise
„
\sqiint
“
\sqint
"
\varoiint
fi
\varointclockwise
ffi
\varointctrclockwise
Table 59: MnSymbol Variable-sized Math Operators
⋂
⋂
\bigcap
⊖
⊖
\bigominus
∁
∁
\complement
⩀
⩀
\bigcapdot
⊕
⊕
\bigoplus
∐
∐
\coprod
$
%
\bigcapplus
⊘
⊘
\bigoslash
∫…∫
∫…∫
\idotsint
◯
◯
\bigcircle
⍟
⍟
\bigostar
⨌
⨌
\iiiint
⋃
⋃
\bigcup
⊗
⊗
\bigotimes
∭
∭
\iiint
⊍
⊍
\bigcupdot
F
G
\bigotriangle
∬
∬
\iint
⊎
⊎
\bigcupplus∗
⦶
⦶
\bigovert
∫
∫
\int
⋎
⋎
\bigcurlyvee
+
+
\bigplus
⨚
⨚
\landdownint
\bigcurlyveedot
⊓
⊓
\bigsqcap
⨙
⨙
\landupint
⋏
⋏
\bigcurlywedge
,
-
\bigsqcapdot
∲
∲
\lcircleleftint
\bigcurlywedgedot
0
1
\bigsqcapplus
∲
∲
\lcirclerightint
\bigdoublecurlyvee
⊔
⊔
\bigsqcup
∯
∯
\oiint
\bigdoublecurlywedge
.
/
\bigsqcupdot
∮
∮
\oint
⩔
⩔
\bigdoublevee
2
3
\bigsqcupplus
∏
∏
\prod
⩕
⩕
\bigdoublewedge
⨉
⨉
\bigtimes
∳
∳
\rcircleleftint
⊛
⊛
\bigoast
⋁
⋁
\bigvee
∳
∳
\rcirclerightint
⦸
⦸
\bigobackslash
\bigveedot
⨏
⨏
\strokedint
⊚
⊚
\bigocirc
⋀
⋀
\bigwedge
∑
∑
\sum
⊙
⊙
\bigodot
\bigwedgedot
⨋
⨋
\sumint
∗
MnSymbol defines \biguplus as a synonym for \bigcupplus.
Table 60: mathdesign Variable-sized Math Operators
€

\intclockwise
ˆ ‰
†
\oiiint
„
…
‚
ƒ
\ointclockwise
\ointctrclockwise
‡
\oiint
The mathdesign package provides three versions of each integral—in
fact,R of evR
ery symbol—to accompany different text fonts: Utopia ( ), Garamond ( ), and
R
Charter ( ).
29
Table 61: cmll Large Math Operators
˙
˘
\bigparr
\bigwith
Table 62: Binary Relations
≈
./
a
∗
≡
_
Z
|
|=
k
\approx
\asymp
\bowtie
\cong
\dashv
\doteq
⊥
≺
∝
∼
'
\equiv
\frown
\Join∗
\mid
\models
\parallel
^
`
\perp
\prec
\preceq
\propto
\sim
\simeq
\smile
\succ
\succeq
\vdash
Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
mathabx, txfonts, pxfonts, or wasysym.
Table 63: AMS Binary Relations
u

v
w
∵
G
m
l
$
2
3
+
\approxeq
\backepsilon
\backsim
\backsimeq
\because
\between
\Bumpeq
\bumpeq
\circeq
\curlyeqprec
\curlyeqsucc
\doteqdot
P
;
(
t
w
4
:
p
q
a
`
\eqcirc
\fallingdotseq
\multimap
\pitchfork
\precapprox
\preccurlyeq
\precsim
\risingdotseq
\shortmid
\shortparallel
\smallfrown
\smallsmile
v
<
%
∴
≈
∼
∝
\succapprox
\succcurlyeq
\succsim
\therefore
\thickapprox
\thicksim
\varpropto
\Vdash
\vDash
\Vvdash
Table 64: AMS Negated Binary Relations
∦
⊀
.
\ncong
\nmid
\nparallel
\nprec
\npreceq
\nshortmid
/
/
2
0
\nshortparallel
\nsim
\nsucc
\nsucceq
\nvDash
\nvdash
3
\nVDash
\precnapprox
\precnsim
\succnapprox
\succnsim
Table 65: stmaryrd Binary Relations
A
\inplus
B
\niplus
Table 66: wasysym Binary Relations
Z
\invneg
\Join
{
\leadsto
\logof
30
\wasypropto
Table 67: txfonts/pxfonts Binary Relations
S
R
D
H
F
B
I
E
C
G
h
∗
\circledgtr
\circledless
\colonapprox
\Colonapprox
\coloneq
\Coloneq
\Coloneqq
\coloneqq∗
\Colonsim
\colonsim
\Eqcolon
\eqcolon
\eqqcolon
\Eqqcolon
\eqsim
X
\
(
•
˜
—
–
[
\lJoin
\lrtimes
\multimap
\multimapboth
\multimapbothvert
\multimapdot
\multimapdotboth
\multimapdotbothA
\multimapdotbothAvert
\multimapdotbothB
\multimapdotbothBvert
\multimapdotbothvert
\multimapdotinv
\multimapinv
\openJoin
]
y
Y
K
J
L
∥
\opentimes
\Perp
\preceqq
\precneqq
\rJoin
\strictfi
\strictif
\strictiff
\succeqq
\succneqq
\varparallel
\varparallelinv
\VvDash
As an alternative to using txfonts/pxfonts, a “:=” symbol can be constructed with
“\mathrel{\mathop:}=”.
Table 68: txfonts/pxfonts Negated Binary Relations
6
*
+
(
)
.
7
\napproxeq
\nasymp
\nbacksim
\nbacksimeq
\nbumpeq
\nBumpeq
\nequiv
\nprecapprox
$
9
;
8
%
:
\npreccurlyeq
\npreceqq
\nprecsim
\nsimeq
\nsuccapprox
\nsucccurlyeq
\nsucceqq
\nsuccsim
5
h
g
1
\nthickapprox
\ntwoheadleftarrow
\ntwoheadrightarrow
\nvarparallel
\nvarparallelinv
\nVdash
Table 69: mathabx Binary Relations
¶
·
)
)
-
\between
\botdoteq
\Bumpedeq
\bumpedeq
\circeq
\coloneq
\corresponds
\curlyeqprec
\curlyeqsucc
\DashV
\Dashv
\dashVv
Ï
Î
Æ
¤
Ì
À
\divides
\dotseq
\eqbumped
\eqcirc
\eqcolon
\fallingdotseq
\ggcurly
\llcurly
\precapprox
\preccurlyeq
\precdot
\precsim
31
Ç
¥
Í
Á
6
(
,
(
,
\risingdotseq
\succapprox
\succcurlyeq
\succdot
\succsim
\therefore
\topdoteq
\vDash
\Vdash
\VDash
\Vvdash
Table 70: mathabx Negated Binary Relations
¸
¹
+
/
'
+
/
\napprox
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\nDashv
\ndashV
\ndashv
\nDashV
\ndashVv
\neq
\notasymp
\notdivides
\notequiv
M
¢
È
¦
ª
Â
£
É
§
«
Ã
\notperp
\nprec
\nprecapprox
\npreccurlyeq
\npreceq
\nprecsim
\nsim
\nsimeq
\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsuccsim
*
*
.
&
.
Ê
¬
Ä
Ë
­
Å
\nvDash
\nVDash
\nVdash
\nvdash
\nVvash
\precnapprox
\precneq
\precnsim
\succnapprox
\succneq
\succnsim
The \changenotsign command toggles the behavior of \not to produce either a
vertical or a diagonal slash through a binary operator. Thus, “$a \not= b$” can
be made to produce either “a = b” or “a = b”.
Table 71: MnSymbol Binary Relations
≈
≊
≌
∽
⋍
”
≏
≎
≗
Ü
½
»
≅
⋞
⋟
≐
≑
{
⫝
ã
ó

⊤
⍑
\approx
\approxeq
\backapprox
\backapproxeq
\backcong
\backeqsim
\backsim
\backsimeq
\backtriplesim
\between
\bumpeq
\Bumpeq
\circeq
\closedequal
\closedprec
\closedsucc
\cong
\curlyeqprec
\curlyeqsucc
\doteq
\Doteq
\downfootline
\downfree
\downmodels
\downModels
\downpropto
\downvdash
\downVdash
\eqbump
≖
⩦
≂
=
Ý
≡
Þ
≒
≙

z
‚
â
ò
∝
Ð
Ô
⪦
⊣
ê
|
„
ä
ô
Ò
Ö
Ü
ì
}
\eqcirc
\eqdot
\eqsim
\equal
\equalclosed
\equiv
\equivclosed
\fallingdotseq
\hateq
\hcrossing
\leftfootline
\leftfree
\leftmodels
\leftModels
\leftpropto
\leftrightline
\Leftrightline
\leftslice
\leftvdash
\leftVdash
\nefootline
\nefree
\nemodels
\neModels
\neswline
\Neswline
\nevdash
\neVdash
\nwfootline
…
å
õ
“
Ó
×
Ý
í
≺
⪷
≼
⪯
≾
x
€
⊧
⊫
Ž
⪧
⊢
⊩
≓

‡
ç
÷
•
ß
ï
32
\nwfree
\nwmodels
\nwModels
\nwsecrossing
\nwseline
\Nwseline
\nwvdash
\nwVdash
\prec
\precapprox
\preccurlyeq
\preceq
\precsim
\rightfootline
\rightfree
\rightmodels
\rightModels
\rightpropto
\rightslice
\rightvdash
\rightVdash
\risingdotseq
\sefootline
\sefree
\semodels
\seModels
\separated
\sevdash
\seVdash
∥
∼
≃
≻
⪸
≽
⪰
≿
~
†
æ
ö
Þ
î
≋
∣
∥
y

á
ñ

⊥
⍊
’
⊪
\shortparallel
\sim
\simeq
\succ
\succapprox
\succcurlyeq
\succeq
\succsim
\swfootline
\swfree
\swmodels
\swModels
\swvdash
\swVdash
\triplesim
\updownline
\Updownline
\upfootline
\upfree
\upmodels
\upModels
\uppropto
\upvdash
\upVdash
\vcrossing
\Vvdash
MnSymbol additionally defines synonyms for some of the preceding symbols:
⊣
Ó
Ò
Ò
≑
⊧
∥
⊥
∝
Ð
Ô
∝
⊧
⊫
⊢
⊩
\dashv
\diagdown
\diagup
\divides
\doteqdot
\models
\parallel
\perp
\propto
\relbar
\Relbar
\varpropto
\vDash
\VDash
\vdash
\Vdash
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\leftvdash)
\nwseline)
\neswline)
\updownline)
\Doteq)
\rightmodels)
\Updownline)
\upvdash)
\leftpropto)
\leftrightline)
\Leftrightline)
\leftpropto)
\rightmodels)
\rightModels)
\rightvdash)
\rightVdash)
Table 72: MnSymbol Negated Binary Relations
≉
≊̸
̸
̸
≌̸
̸
∽̸
⋍̸
̸
≏̸
≎̸
≗̸
̸
≇
⋞̸
⋟̸
≐̸
≑̸
̸
⫝̸
̸
̸
⊤̸
⍑̸
̸
≖̸
⩦̸
\napprox
\napproxeq
\nbackapprox
\nbackapproxeq
\nbackcong
\nbackeqsim
\nbacksim
\nbacksimeq
\nbacktriplesim
\nbumpeq
\nBumpeq
\ncirceq
\nclosedequal
\ncong
\ncurlyeqprec
\ncurlyeqsucc
\ndoteq
\nDoteq
\ndownfootline
\ndownfree
\ndownmodels
\ndownModels
\ndownvdash
\ndownVdash
\neqbump
\neqcirc
\neqdot
≂̸
≠
̸
≢
̸
‘
≒̸
≙̸
̸
̸
̸
̸
̸
̸
⊣̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
\neqsim
\nequal
\nequalclosed
\nequiv
\nequivclosed
\neswcrossing
\nfallingdotseq
\nhateq
\nleftfootline
\nleftfree
\nleftmodels
\nleftModels
\nleftrightline
\nLeftrightline
\nleftvdash
\nleftVdash
\nnefootline
\nnefree
\nnemodels
\nneModels
\nneswline
\nNeswline
\nnevdash
\nneVdash
\nnwfootline
\nnwfree
\nnwmodels
̸
̸
̸
̸
̸
⊀
⪷̸
⋠
⪯̸
≾̸
̸
̸
⊭
⊯
⊬
⊮
≓̸
̸
̸
̸
̸
̸
̸
∤
∦
≁
≄
\nnwModels
\nnwseline
\nNwseline
\nnwvdash
\nnwVdash
\nprec
\nprecapprox
\npreccurlyeq
\npreceq
\nprecsim
\nrightfootline
\nrightfree
\nrightmodels
\nrightModels
\nrightvdash
\nrightVdash
\nrisingdotseq
\nsefootline
\nsefree
\nsemodels
\nseModels
\nsevdash
\nseVdash
\nshortmid
\nshortparallel
\nsim
\nsimeq
⊁
⪸̸
⋡
⪰̸
≿̸
̸
̸
̸
̸
̸
̸
≋̸
∤
∦
̸
̸
̸
̸
⊥̸
⍊̸
⪹
⋨
⪺
⋩
\nsucc
\nsuccapprox
\nsucccurlyeq
\nsucceq
\nsuccsim
\nswfootline
\nswfree
\nswmodels
\nswModels
\nswvdash
\nswVdash
\ntriplesim
\nupdownline
\nUpdownline
\nupfootline
\nupfree
\nupmodels
\nupModels
\nupvdash
\nupVdash
\precnapprox
\precnsim
\succnapprox
\succnsim
MnSymbol additionally defines synonyms for some of the preceding symbols:
33
⊣̸
̸
̸
∤
≠
≠
∤
⊭
∦
⊥̸
̸
̸
⊭
⊬
⊮
⊯
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
\ndashv
\ndiagdown
\ndiagup
\ndivides
\ne
\neq
\nmid
\nmodels
\nparallel
\nperp
\nrelbar
\nRelbar
\nvDash
\nvdash
\nVdash
\nVDash
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\nleftvdash)
\nnwseline)
\nneswline)
\nupdownline)
\nequal)
\nequal)
\nupdownline)
\nrightmodels)
\nUpdownline)
\nupvdash)
\nleftrightline)
\nLeftrightline)
\nrightmodels)
\nrightvdash)
\nrightVdash)
\nrightModels)
Table 73: mathtools Binary Relations
::≈
:≈
:=
::=
::−
\Colonapprox
\colonapprox
\coloneqq
\Coloneqq
\Coloneq
:−
:∼
::∼
::
−:
\coloneq
\colonsim
\Colonsim
\dblcolon
\eqcolon
−::
=:
=::
\Eqcolon
\eqqcolon
\Eqqcolon
Similar symbols can be defined using mathtools’s \vcentcolon, which produces a
colon centered on the font’s math axis:
=:=
“=:=”
vs.
=: =
“=\vcentcolon=”
Table 74: turnstile Binary Relations
def
def
\dddtstile{abc}{def}
def
abc
\nntstile{abc}{def}
\ddststile{abc}{def}
def
abc
\nnttstile{abc}{def}
\ddtstile{abc}{def}
def
abc
\nsdtstile{abc}{def}
\ddttstile{abc}{def}
def
abc
\nsststile{abc}{def}
def
abc
\dndtstile{abc}{def}
def
abc
\nststile{abc}{def}
def
abc
\dnststile{abc}{def}
def
abc
\nsttstile{abc}{def}
def
abc
\dntstile{abc}{def}
abc
def
abc
def
abc
def
abc
abc
def
abc
def
abc
\stdtstile{abc}{def}
\stststile{abc}{def}
\sttstile{abc}{def}
\stttstile{abc}{def}
def
abc
\tddtstile{abc}{def}
def
def
abc
abc
def
abc
\tdststile{abc}{def}
def
\ntdtstile{abc}{def}
abc
\tdtstile{abc}{def}
(continued on next page)
34
(continued from previous page)
def
def
abc
\dnttstile{abc}{def}
def
abc
\dsdtstile{abc}{def}
def
abc
\dsststile{abc}{def}
def
abc
\dststile{abc}{def}
def
abc
\dsttstile{abc}{def}
abc
def
abc
def
abc
abc
abc
def
\tndtstile{abc}{def}
\ntttstile{abc}{def}
def
abc
\tnststile{abc}{def}
\sddtstile{abc}{def}
def
abc
\tntstile{abc}{def}
\sdststile{abc}{def}
def
abc
\tnttstile{abc}{def}
\sdtstile{abc}{def}
def
abc
\tsdtstile{abc}{def}
\sdttstile{abc}{def}
def
abc
\tsststile{abc}{def}
def
\dtdtstile{abc}{def}
abc
def
\dtststile{abc}{def}
abc
\tdttstile{abc}{def}
def
abc
def
abc
abc
\nttstile{abc}{def}
def
def
abc
def
def
\ntststile{abc}{def}
\dttstile{abc}{def}
def
abc
\sndtstile{abc}{def}
def
abc
\tststile{abc}{def}
\dtttstile{abc}{def}
def
abc
\snststile{abc}{def}
def
abc
\tsttstile{abc}{def}
\nddtstile{abc}{def}
def
abc
\sntstile{abc}{def}
\ndststile{abc}{def}
def
abc
\snttstile{abc}{def}
\ndtstile{abc}{def}
def
abc
\ssdtstile{abc}{def}
\ndttstile{abc}{def}
def
abc
\ssststile{abc}{def}
def
abc
\nndtstile{abc}{def}
def
abc
\sststile{abc}{def}
def
abc
\nnststile{abc}{def}
def
abc
\ssttstile{abc}{def}
abc
def
abc
def
abc
def
abc
def
abc
def
abc
def
abc
def
abc
def
abc
def
abc
\ttdtstile{abc}{def}
\ttststile{abc}{def}
\tttstile{abc}{def}
\ttttstile{abc}{def}
Each of the above takes an optional argument that controls the size of the upper
and lower expressions. See the turnstile documentation for more information.
Table 75: trsym Binary Relations
\InversTransformHoriz
\InversTransformVert
\TransformHoriz
\TransformVert
Table 76: trfsigns Binary Relations
c
\dfourier
c
\fourier
c s \laplace
c .... s \ztransf
....
....
s
s ....
35
c
c
c
c
\Dfourier
\Fourier
\Laplace
\Ztransf
Table 77: cmll Binary Relations
¨
˚
˝
ˇ
\coh
\incoh
\scoh
\sincoh
Table 78: Subset and Superset Relations
@
v
A
∗
\sqsubset∗
\sqsubseteq
\sqsupset∗
w
⊂
⊆
\sqsupseteq
\subset
\subseteq
⊃
⊇
\supset
\supseteq
Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
mathabx, txfonts, pxfonts, or wasysym.
Table 79: AMS Subset and Superset Relations
\nsubseteq
\nsupseteq
\nsupseteqq
\sqsubset
\sqsupset
\Subset
*
+
#
@
A
b
j
(
$
c
k
)
\subseteqq
\subsetneq
\subsetneqq
\Supset
\supseteqq
\supsetneq
%
&
!
'
\supsetneqq
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq
Table 80: stmaryrd Subset and Superset Relations
D
F
\subsetplus
\subsetpluseq
E
G
\supsetplus
\supsetpluseq
Table 81: wasysym Subset and Superset Relations
@
A
\sqsubset
\sqsupset
Table 82: txfonts/pxfonts Subset and Superset Relations
a
@
b
\nsqsubset
\nsqsubseteq
\nsqsupset
A
>
"
\nsqsupseteq
\nSubset
\nsubseteqq
36
?
\nSupset
‚
–
†
Ž
ƒ
—
‡

‚
–
†
Ž
Table 83: mathabx Subset and Superset Relations
\nsqsubset
\nsqSubset
\nsqsubseteq
\nsqsubseteqq
\nsqsupset
\nsqSupset
\nsqsupseteq
\nsqsupseteqq
\nsubset
\nSubset
\nsubseteq
\nsubseteqq
ƒ
—
‡

€
”
„
Œ
ˆ

•

…

‰
‘
\nsupset
\nSupset
\nsupseteq
\nsupseteqq
\sqsubset
\sqSubset
\sqsubseteq
\sqsubseteqq
\sqsubsetneq
\sqsubsetneqq
\sqSupset
\sqsupset
\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\subset
\Subset
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\supset
\Supset
€
”
„
Œ
ˆ


•
…

‰
‘
\supseteq
\supseteqq
\supsetneq
\supsetneqq
\varsqsubsetneq
\varsqsubsetneqq
\varsqsupsetneq
\varsqsupsetneqq
\varsubsetneq
\varsubsetneqq
\varsupsetneq
\varsupsetneqq
Š
’
‹
“
Š
’
‹
“
Table 84: MnSymbol Subset and Superset Relations
̸
⊏̸
⋢
̸
̸
⊐̸
⋣
̸
⋐̸
⊄
\nSqsubset
\nsqsubset
\nsqsubseteq
\nsqsubseteqq
\nSqsupset
\nsqsupset
\nsqsupseteq
\nsqsupseteqq
\nSubset
\nsubset
⊈
⫅̸
⋑̸
⊅
⊉
⫆̸
^
⊏
⊑
\
⋤
ö
_
⊐
⊒
]
⋥
÷
⋐
⊂
\nsubseteq
\nsubseteqq
\nSupset
\nsupset
\nsupseteq
\nsupseteqq
\Sqsubset
\sqsubset
\sqsubseteq
\sqsubseteqq
\sqsubsetneq
\sqsubsetneqq
\Sqsupset
\sqsupset
\sqsupseteq
\sqsupseteqq
\sqsupsetneq
\sqsupsetneqq
\Subset
\subset
⊆
⫅
⊊
⫋
⋑
⊃
⊇
⫆
⊋
⫌
\subseteq
\subseteqq
\subsetneq
\subsetneqq
\Supset
\supset
\supseteq
\supseteqq
\supsetneq
\supsetneqq
MnSymbol additionally defines \varsubsetneq as a synonym for \subsetneq,
\varsubsetneqq as a synonym for \subsetneqq, \varsupsetneq as a synonym
for \supsetneq, and \varsupsetneqq as a synonym for \supsetneqq.
Table 85: Inequalities
≥
\geq
\gg
≤
\leq
\ll
,
\neq
Table 86: AMS Inequalities
1
\eqslantgtr
m
\gtrdot
Q
\lesseqgtr
\ngeq
0
\eqslantless
R
\gtreqless
S
\lesseqqgtr
\ngeqq
=
\geqq
T
\gtreqqless
≶
\lessgtr
\ngeqslant
>
\geqslant
≷
\gtrless
.
\lesssim
≯
\ngtr
≫
\ggg
&
\gtrsim
≪
\lll
\nleq
\gnapprox
\gvertneqq
\lnapprox
\nleqq
\gneq
5
\leqq
\lneq
\nleqslant
\gneqq
6
\leqslant
\lneqq
≮
\nless
\gnsim
/
\lessapprox
\lnsim
'
\gtrapprox
l
\lessdot
\lvertneqq
37
Table 87: wasysym Inequalities
?
>
\apprge
\apprle
Table 88: txfonts/pxfonts Inequalities
4
#
&
\ngg
\ngtrapprox
\ngtrless
!
"
'
\ngtrsim
\nlessapprox
\nlessgtr
3
\nlesssim
\nll
Table 89: mathabx Inequalities
·
\eqslantgtr
½
\gtreqless
À
\lesssim
£
\ngtr
¶
\eqslantless
¿
\gtreqqless
!
\ll
É
\ngtrapprox
¥
\geq
»
\gtrless
Î
\lll
Ã
\ngtrsim
¯
\geqq
Á
\gtrsim
Ê
\lnapprox
¦
\nleq
"
\gg
µ
\gvertneqq
¬
\lneq
°
\nleqq
Ï
\ggg
¤
\leq
²
\lneqq
¢
\nless
Ë
\gnapprox
®
\leqq
Ä
\lnsim
È
\nlessapprox
­
\gneq
Æ
\lessapprox
´
\lvertneqq
Â
\nlesssim
³
\gneqq
Ì
\lessdot
¹
\neqslantgtr
«
\nvargeq
Å
\gnsim
¼
\lesseqgtr
¸
\neqslantless
ª
\nvarleq
Ç
\gtrapprox
¾
\lesseqqgtr
§
\ngeq
©
\vargeq
Í
\gtrdot
º
\lessgtr
±
\ngeqq
¨
\varleq
mathabx defines \leqslant and \le as synonyms for \leq, \geqslant and \ge as
synonyms for \geq, \nleqslant as a synonym for \nleq, and \ngeqslant as a
synonym for \ngeq.
38
Table 90: MnSymbol Inequalities
⪖
\eqslantgtr
⪌
\gtreqqless
≲
\lesssim
⋛̸
\ngtreqless
⪕
\eqslantless
≷
\gtrless
≪
\ll
̸
\ngtreqlessslant
≥
\geq
ó
\gtrneqqless
⋘
\lll
⪌̸
\ngtreqqless
⊵
u
≧
⩾
⪀
≫
⋙
⪊
≩
≵
>
\geqclosed
\geqdot
\geqq
\geqslant
\geqslantdot
\gg
\ggg
\gnapprox
\gneqq
\gnsim
\gtr
≳
≤
⊴
t
≦
⩽
⩿
<
⪅
⊲
⋖
\gtrsim
\leq
\leqclosed
\leqdot
\leqq
\leqslant
\leqslantdot
\less
\lessapprox
\lessclosed
\lessdot
⪉
≨
≴
⪖̸
⪕̸
≱
⋭
̸
≧̸
≱
⪀̸
\lnapprox
\lneqq
\lnsim
\neqslantgtr
\neqslantless
\ngeq
\ngeqclosed
\ngeqdot
\ngeqq
\ngeqslant
\ngeqslantdot
≹
≰
⋬
̸
≦̸
≰
⩿̸
≮
⋪
⋖̸
⋚̸
\ngtrless
\nleq
\nleqclosed
\nleqdot
\nleqq
\nleqslant
\nleqslantdot
\nless
\nlessclosed
\nlessdot
\nlesseqgtr
⪆
\gtrapprox
⋚
\lesseqgtr
≫̸
\ngg
̸
\nlesseqgtrslant
⊳
\gtrclosed
N
\lesseqgtrslant
⋙̸
\nggg
⪋̸
\nlesseqqgtr
⋗
⋛
\gtrdot
\gtreqless
⪋
≶
\lesseqqgtr
\lessgtr
≯
⋫
\ngtr
\ngtrclosed
≸
≪̸
\nlessgtr
\nll
O
\gtreqlessslant
ò
\lessneqqgtr
⋗̸
\ngtrdot
⋘̸
\nlll
MnSymbol additionally defines synonyms for some of the preceding symbols:
⋙
≩
⊲
⋘
≨
⋬
⋪
⋭
⋫
⊳
⊴
⊵
⊴
⊵
⊲
⊳
\gggtr
\gvertneqq
\lhd
\llless
\lvertneqq
\ntrianglelefteq
\ntriangleleft
\ntrianglerighteq
\ntriangleright
\rhd
\trianglelefteq
\trianglerighteq
\unlhd
\unrhd
\vartriangleleft
\vartriangleright
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\ggg)
\gneqq)
\lessclosed)
\lll)
\lneqq)
\nleqclosed)
\nlessclosed)
\ngeqclosed)
\ngtrclosed)
\gtrclosed)
\leqclosed)
\geqclosed)
\leqclosed)
\geqclosed)
\lessclosed)
\gtrclosed)
Table 91: AMS Triangle Relations
J
I
6
\blacktriangleleft
\blacktriangleright
\ntriangleleft
5
7
4
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
39
E
,
D
\trianglelefteq
\triangleq
\trianglerighteq
C
B
\vartriangleleft
\vartriangleright
Table 92: stmaryrd Triangle Relations
P
R
\trianglelefteqslant
\ntrianglelefteqslant
Q
S
\trianglerighteqslant
\ntrianglerighteqslant
Table 93: mathabx Triangle Relations
š
ž
›
\ntriangleleft
\ntrianglelefteq
\ntriangleright
Ÿ
˜
œ
™

˜
\ntrianglerighteq
\triangleleft
\trianglelefteq
\triangleright
\trianglerighteq
\vartriangleleft
™
\vartriangleright
Table 94: MnSymbol Triangle Relations
▼
◀
▶
▲
▾
◂
▸
▴
▽
◁
▷
\filledmedtriangledown
\filledmedtriangleleft
\filledmedtriangleright
\filledmedtriangleup
\filledtriangledown
\filledtriangleleft
\filledtriangleright
\filledtriangleup
\largetriangledown
\largetriangleleft
\largetriangleright
△
▽
◁
▷
△
≜̸
⋪
⋬
⋫
⋭
d
\largetriangleup
\medtriangledown
\medtriangleleft
\medtriangleright
\medtriangleup
\ntriangleeq
\ntriangleleft
\ntrianglelefteq
\ntriangleright
\ntrianglerighteq
\otriangle
▿
◃
▹
▵
≜
⊴
⊵
⊲
⊳
\smalltriangledown
\smalltriangleleft
\smalltriangleright
\smalltriangleup
\triangleeq
\trianglelefteq
\trianglerighteq
\vartriangleleft
\vartriangleright
MnSymbol additionally defines synonyms for many of the preceding symbols: \triangleq is a synonym for \triangleeq; \lhd and \lessclosed
are synonyms for \vartriangleleft; \rhd and \gtrclosed are synonyms for \vartriangleright;
\unlhd and \leqclosed are synonyms for \trianglelefteq; \unrhd and \geqclosed are synonyms
for
\trianglerighteq;
\blacktriangledown,
\blacktriangleleft,
\blacktriangleright, and \blacktriangle [sic] are synonyms for,
respectively,
\filledmedtriangledown,
\filledmedtriangleleft,
\filledmedtriangleright, and \filledmedtriangleup; \triangleright
is a synonym for \medtriangleright; \triangle, \vartriangle, and
\bigtriangleup are synonyms for \medtriangleup; \triangleleft is a
synonym for \medtriangleleft; \triangledown and \bigtriangledown are synonyms for \medtriangledown; \nlessclosed is a synonym for \ntriangleleft;
\ngtrclosed is a synonym for \ntriangleright; \nleqclosed is a synonym for
\ntrianglelefteq; and \ngeqclosed is a synonym for \ntrianglerighteq.
The title “Triangle Relations” is a bit of a misnomer here as only \triangleeq
and \ntriangleeq are defined as TEX relations (class 3 symbols).
The
\largetriangle. . . symbols are defined as TEX “ordinary” characters (class 0)
and all of the remaining characters are defined as TEX binary operators (class 2).
40
Table 95: Arrows
⇓
↓
←,→
{
←
⇐
⇔
↔
←−
⇐=
←→
⇐⇒
7−→
=⇒
−→
7→
%
\Downarrow
\downarrow
\hookleftarrow
\hookrightarrow
\leadsto∗
\leftarrow
\Leftarrow
\Leftrightarrow
\leftrightarrow
⇒
→
&
.
↑
⇑
l
m
\longleftarrow
\Longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longmapsto
\Longrightarrow
\longrightarrow
\mapsto
\nearrow†
\nwarrow
\Rightarrow
\rightarrow
\searrow
\swarrow
\uparrow
\Uparrow
\updownarrow
\Updownarrow
∗
Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym.
†
See the note beneath Table 157 for information about how to put a diagonal arrow
*0
~ ”) .
across a mathematical expression (as in “
∇
·B
Table 96: Harpoons
)
(
+
*
\leftharpoondown
\leftharpoonup
\rightharpoondown
\rightharpoonup
*
)
\rightleftharpoons
Table 97: textcomp Text-mode Arrows
↓
←
\textdownarrow
\textleftarrow
→
↑
\textrightarrow
\textuparrow
Table 98: AMS Arrows
x
y
c
d
⇔
!
W
"
#
\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\dashleftarrow
\dashrightarrow
\downdownarrows
\leftarrowtail
\leftleftarrows
\leftrightarrows
\leftrightsquigarrow
\Lleftarrow
\looparrowleft
\looparrowright
\Lsh
\rightarrowtail
⇒
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\Rsh
\twoheadleftarrow
\twoheadrightarrow
\upuparrows
Table 99: AMS Negated Arrows
:
8
\nLeftarrow
\nleftarrow
<
=
\nLeftrightarrow
\nleftrightarrow
\nRightarrow
\nrightarrow
;
9
Table 100: AMS Harpoons
\downharpoonleft
\downharpoonright
\leftrightharpoons
\rightleftharpoons
41
\upharpoonleft
\upharpoonright
Table 101: stmaryrd Arrows
^
]
⇐=\
←−[
=⇒
\leftarrowtriangle
\leftrightarroweq
\leftrightarrowtriangle
\lightning
\Longmapsfrom
\longmapsfrom
\Longmapsto
⇐\
←[
⇒
1
0
_
\Mapsfrom
\mapsfrom
\Mapsto
\nnearrow
\nnwarrow
\rightarrowtriangle
\shortdownarrow
%
$
\shortleftarrow
\shortrightarrow
\shortuparrow
\ssearrow
\sswarrow
Table 102: txfonts/pxfonts Arrows
‹
ƒ
‚
Š
‰

€
ˆ
”
ö
÷
ó
õ
ô
ð
ò
ñ
ê
Ó
ÿ
×
ë
\boxdotLeft
\boxdotleft
\boxdotright
\boxdotRight
\boxLeft
\boxleft
\boxright
\boxRight
\circleddotleft
“
’
‘
e

‡
†
Ž

\circleddotright
\circleleft
\circleright
\dashleftrightarrow
\DiamonddotLeft
\Diamonddotleft
\Diamonddotright
\DiamonddotRight
\DiamondLeft
…
„
Œ
f
t
v
V
u
w
\Diamondleft
\Diamondright
\DiamondRight
\leftsquigarrow
\Nearrow
\Nwarrow
\Rrightarrow
\Searrow
\Swarrow
Table 103: mathabx Arrows
\circlearrowleft
\circlearrowright
\curvearrowbotleft
\curvearrowbotleftright
\curvearrowbotright
\curvearrowleft
\curvearrowleftright
\curvearrowright
\dlsh
\downdownarrows
\downtouparrow
\downuparrows
\drsh
Ð
Ð
Ø
Ô
ú
ø
ü
î
ï
ì
í
è
Õ
\leftarrow
\leftleftarrows
\leftrightarrow
\leftrightarrows
\leftrightsquigarrow
\leftsquigarrow
\lefttorightarrow
\looparrowdownleft
\looparrowdownright
\looparrowleft
\looparrowright
\Lsh
\nearrow
Ô
æ
Ñ
Õ
Ñ
ù
ý
é
×
Ö
Ö
þ
Ò
\nwarrow
\restriction
\rightarrow
\rightleftarrows
\rightrightarrows
\rightsquigarrow
\righttoleftarrow
\Rsh
\searrow
\swarrow
\updownarrows
\uptodownarrow
\upuparrows
Table 104: mathabx Negated Arrows
ö
Ú
\nLeftarrow
\nleftarrow
Ü
ø
\nleftrightarrow
\nLeftrightarrow
42
Û
÷
\nrightarrow
\nRightarrow
Þ
ß
Û
å
ç
ë
Ü
â
Table 105: mathabx Harpoons
\barleftharpoon
\barrightharpoon
\downdownharpoons
\downharpoonleft
\downharpoonright
\downupharpoons
\leftbarharpoon
\leftharpoondown
à
Ø
à
è
Ý
ã
á
á
\leftharpoonup
\leftleftharpoons
\leftrightharpoon
\leftrightharpoons
\rightbarharpoon
\rightharpoondown
\rightharpoonup
\rightleftharpoon
é
Ù
ê
ä
æ
Ú
\rightleftharpoons
\rightrightharpoons
\updownharpoons
\upharpoonleft
\upharpoonright
\upupharpoons
Table 106: MnSymbol Arrows
Ë
È
Ì
Í
Ê
Ï
Î
É
⇣
⇠
d
e
⇢
g
f
⇡
⇓
↓
#
⇊
£
↧
«

ÿ
⤾
⟳
↻
⤸
º
¼
½
↷
¿
¾
¹
⇐
←
\curvearrowdownup
\curvearrowleftright
\curvearrownesw
\curvearrownwse
\curvearrowrightleft
\curvearrowsenw
\curvearrowswne
\curvearrowupdown
\dasheddownarrow
\dashedleftarrow
\dashednearrow
\dashednwarrow
\dashedrightarrow
\dashedsearrow
\dashedswarrow
\dasheduparrow
\Downarrow
\downarrow
\downarrowtail
\downdownarrows
\downlsquigarrow
\downmapsto
\downrsquigarrow
\downuparrows
\lcirclearrowdown
\lcirclearrowleft
\lcirclearrowright
\lcirclearrowup
\lcurvearrowdown
\lcurvearrowleft
\lcurvearrowne
\lcurvearrownw
\lcurvearrowright
\lcurvearrowse
\lcurvearrowsw
\lcurvearrowup
\Leftarrow
\leftarrow
←Ð
⇐Ô
←→
⇐⇒
z→
Ð→
Ô⇒
↫
↬
↰
↗
⇗
$
¤
,
”
¬
⤡
š
↖
⇖
%
¥
•
­
⤢
›
∲
∲
∳
∳
∲
∲
∳
∳
\longleftarrow
\Longleftarrow
\longleftrightarrow
\Longleftrightarrow
\longmapsto
\longrightarrow
\Longrightarrow
\looparrowleft
\looparrowright
\Lsh
\nearrow
\Nearrow
\nearrowtail
\nelsquigarrow
\nemapsto
\nenearrows
\nersquigarrow
\neswarrow
\Neswarrow
\neswarrows
\nwarrow
\Nwarrow
\nwarrowtail
\nwlsquigarrow
\nwmapsto
\nwnwarrows
\nwrsquigarrow
\nwsearrow
\Nwsearrow
\nwsearrows
\partialvardlcircleleftint∗
\partialvardlcirclerightint∗
\partialvardrcircleleftint∗
\partialvardrcirclerightint∗
\partialvartlcircleleftint∗
\partialvartlcirclerightint∗
\partialvartrcircleleftint∗
\partialvartrcirclerightint∗
⤦
9
→
⇒
↣
⇄
↝
↦
⇉
¨
⇛
↱
↘
⇘
'
§
/
Ÿ
¯
—
³
↭
´
µ
²
·
¶
±
↙
⇙
&
¦
.
ž
®
–
↡
↞
\rhookswarrow
\rhookuparrow
\rightarrow
\Rightarrow
\rightarrowtail
\rightleftarrows
\rightlsquigarrow
\rightmapsto
\rightrightarrows
\rightrsquigarrow
\Rrightarrow
\Rsh
\searrow
\Searrow
\searrowtail
\selsquigarrow
\semapsto
\senwarrows
\sersquigarrow
\sesearrows
\squigarrowdownup
\squigarrowleftright
\squigarrownesw
\squigarrownwse
\squigarrowrightleft
\squigarrowsenw
\squigarrowswne
\squigarrowupdown
\swarrow
\Swarrow
\swarrowtail
\swlsquigarrow
\swmapsto
\swnearrows
\swrsquigarrow
\swswarrows
\twoheaddownarrow
\twoheadleftarrow
(continued on next page)
43
(continued from previous page)
↢
⇇
¢
↤
↔
⇔
⇆
↜
3
2
4
⤣
↪
⤥
6
1
☇
⇚
\leftarrowtail
\leftleftarrows
\leftlsquigarrow
\leftmapsto
\leftrightarrow
\Leftrightarrow
\leftrightarrows
\leftrsquigarrow
\lhookdownarrow
\lhookleftarrow
\lhooknearrow
\lhooknwarrow
\lhookrightarrow
\lhooksearrow
\lhookswarrow
\lhookuparrow
\lightning
\Lleftarrow
û
⟲
⤿
↺
⤹
↶
Ä
Å
À
Ç
Æ
Á
;
↩
⤤
=
8
?
↠
↟
↑
⇑
!
↕
⇕
™
¡
↥
©
⇈
\rcirclearrowdown
\rcirclearrowleft
\rcirclearrowright
\rcirclearrowup
\rcurvearrowdown
\rcurvearrowleft
\rcurvearrowne
\rcurvearrownw
\rcurvearrowright
\rcurvearrowse
\rcurvearrowsw
\rcurvearrowup
\rhookdownarrow
\rhookleftarrow
\rhooknearrow
\rhooknwarrow
\rhookrightarrow
\rhooksearrow
\twoheadnearrow
\twoheadnwarrow
\twoheadrightarrow
\twoheadsearrow
\twoheadswarrow
\twoheaduparrow
\uparrow
\Uparrow
\uparrowtail
\updownarrow
\Updownarrow
\updownarrows
\uplsquigarrow
\upmapsto
\uprsquigarrow
\upuparrows
MnSymbol additionally defines synonyms for some of the preceding symbols:
↺
↻
↶
↷
⇠
⇢
↩
↪
↝
↭
↦
↝
∗
\circlearrowleft
\circlearrowright
\curvearrowleft
\curvearrowright
\dashleftarrow
\dashrightarrow
\hookleftarrow
\hookrightarrow
\leadsto
\leftrightsquigarrow
\mapsto
\rightsquigarrow
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
\rcirclearrowup)
\lcirclearrowup)
\rcurvearrowleft)
\lcurvearrowright)
\dashedleftarrow)
\dashedrightarrow)
\rhookleftarrow)
\lhookrightarrow)
\rightlsquigarrow)
\squigarrowleftright)
\rightmapsto)
\rightlsquigarrow)
The \partialvar. . . int macros are intended to be used internally by MnSymbol
to produce various types of integrals.
Table 107: MnSymbol Negated Arrows
̸
̸
̸
̸
̸
̸
̸
̸
⇣̸
⇠̸
\ncurvearrowdownup
\ncurvearrowleftright
\ncurvearrownesw
\ncurvearrownwse
\ncurvearrowrightleft
\ncurvearrowsenw
\ncurvearrowswne
\ncurvearrowupdown
\ndasheddownarrow
\ndashedleftarrow
⤣̸
↪̸
⤥̸
̸
̸
⇚̸
↗̸
⇗̸
̸
̸
\nlhooknwarrow
\nlhookrightarrow
\nlhooksearrow
\nlhookswarrow
\nlhookuparrow
\nLleftarrow
\nnearrow
\nNearrow
\nnearrowtail
\nnelsquigarrow
⇄̸
↝̸
↦̸
⇉̸
̸
⇛̸
⇘̸
↘̸
̸
̸
\nrightleftarrows
\nrightlsquigarrow
\nrightmapsto
\nrightrightarrows
\nrightrsquigarrow
\nRrightarrow
\nSearrow
\nsearrow
\nsearrowtail
\nselsquigarrow
(continued on next page)
44
(continued from previous page)
̸
̸
⇢̸
̸
̸
⇡̸
↓̸
⇓̸
̸
⇊̸
̸
↧̸
̸
̸
̸
⤾̸
⟳̸
↻̸
⤸̸
̸
̸
̸
↷̸
̸
̸
̸
⇍
↚
↢̸
⇇̸
̸
↤̸
↮
⇎
⇆̸
↜̸
̸
̸
̸
\ndashednearrow
\ndashednwarrow
\ndashedrightarrow
\ndashedsearrow
\ndashedswarrow
\ndasheduparrow
\ndownarrow
\nDownarrow
\ndownarrowtail
\ndowndownarrows
\ndownlsquigarrow
\ndownmapsto
\ndownrsquigarrow
\ndownuparrows
\nlcirclearrowdown
\nlcirclearrowleft
\nlcirclearrowright
\nlcirclearrowup
\nlcurvearrowdown
\nlcurvearrowleft
\nlcurvearrowne
\nlcurvearrownw
\nlcurvearrowright
\nlcurvearrowse
\nlcurvearrowsw
\nlcurvearrowup
\nLeftarrow
\nleftarrow
\nleftarrowtail
\nleftleftarrows
\nleftlsquigarrow
\nleftmapsto
\nleftrightarrow
\nLeftrightarrow
\nleftrightarrows
\nleftrsquigarrow
\nlhookdownarrow
\nlhookleftarrow
\nlhooknearrow
̸
̸
̸
̸
⤡̸
̸
⇖̸
↖̸
̸
̸
̸
̸
̸
⤢̸
̸
̸
̸
⟲̸
⤿̸
↺̸
⤹̸
↶̸
̸
̸
̸
̸
̸
̸
̸
↩̸
⤤̸
̸
̸
̸
⤦̸
̸
↛
⇏
↣̸
\nnemapsto
\nnenearrows
\nnersquigarrow
\nNeswarrow
\nneswarrow
\nneswarrows
\nNwarrow
\nnwarrow
\nnwarrowtail
\nnwlsquigarrow
\nnwmapsto
\nnwnwarrows
\nnwrsquigarrow
\nnwsearrow
\nNwsearrow
\nnwsearrows
\nrcirclearrowdown
\nrcirclearrowleft
\nrcirclearrowright
\nrcirclearrowup
\nrcurvearrowdown
\nrcurvearrowleft
\nrcurvearrowne
\nrcurvearrownw
\nrcurvearrowright
\nrcurvearrowse
\nrcurvearrowsw
\nrcurvearrowup
\nrhookdownarrow
\nrhookleftarrow
\nrhooknearrow
\nrhooknwarrow
\nrhookrightarrow
\nrhooksearrow
\nrhookswarrow
\nrhookuparrow
\nrightarrow
\nRightarrow
\nrightarrowtail
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
↙̸
⇙̸
̸
̸
̸
̸
̸
̸
↡̸
↞̸
̸
̸
↠̸
̸
̸
↟̸
↑̸
⇑̸
̸
↕̸
⇕̸
̸
̸
↥̸
̸
⇈̸
\nsemapsto
\nsenwarrows
\nsersquigarrow
\nsesearrows
\nsquigarrowdownup
\nsquigarrowleftright
\nsquigarrownesw
\nsquigarrownwse
\nsquigarrowrightleft
\nsquigarrowsenw
\nsquigarrowswne
\nsquigarrowupdown
\nswarrow
\nSwarrow
\nswarrowtail
\nswlsquigarrow
\nswmapsto
\nswnearrows
\nswrsquigarrow
\nswswarrows
\ntwoheaddownarrow
\ntwoheadleftarrow
\ntwoheadnearrow
\ntwoheadnwarrow
\ntwoheadrightarrow
\ntwoheadsearrow
\ntwoheadswarrow
\ntwoheaduparrow
\nuparrow
\nUparrow
\nuparrowtail
\nupdownarrow
\nUpdownarrow
\nupdownarrows
\nuplsquigarrow
\nupmapsto
\nuprsquigarrow
\nupuparrows
MnSymbol additionally defines synonyms for some of the preceding symbols:
45
↺̸
↻̸
↶̸
↷̸
⇢̸
⇠̸
⇢̸
↚
↩̸
↪̸
↝̸
̸
↦̸
↝̸
↛
\ncirclearrowleft
\ncirclearrowright
\ncurvearrowleft
\ncurvearrowright
\ndasharrow
\ndashleftarrow
\ndashrightarrow
\ngets
\nhookleftarrow
\nhookrightarrow
\nleadsto
\nleftrightsquigarrow
\nmapsto
\nrightsquigarrow
\nto
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
(same
as
as
as
as
as
as
as
as
as
as
as
as
as
as
as
\nrcirclearrowup)
\nlcirclearrowup)
\nrcurvearrowleft)
\nlcurvearrowright)
\ndashedrightarrow)
\ndashedleftarrow)
\ndashedrightarrow)
\nleftarrow)
\nrhookleftarrow)
\nlhookrightarrow)
\nrightlsquigarrow)
\nsquigarrowleftright)
\nrightmapsto)
\nrightlsquigarrow)
\nrightarrow)
Table 108: MnSymbol Harpoons
⇂
⇃
⥯
↽
↼
⥊
⇋
⥋
D
L
R
\downharpoonccw∗
\downharpooncw∗
\downupharpoons
\leftharpoonccw∗
\leftharpooncw∗
\leftrightharpoondownup
\leftrightharpoons
\leftrightharpoonupdown
\neharpoonccw
\neharpooncw
\neswharpoonnwse
∗
Z
V
E
M
S
_
W
⇀
⇁
⇌
G
\neswharpoons
\neswharpoonsenw
\nwharpoonccw
\nwharpooncw
\nwseharpoonnesw
\nwseharpoons
\nwseharpoonswne
\rightharpoonccw∗
\rightharpooncw∗
\rightleftharpoons
\seharpoonccw
O
[
F
N
^
Q
U
⥮
↿
↾
\seharpooncw
\senwharpoons
\swharpoonccw
\swharpooncw
\swneharpoons
\updownharpoonleftright
\updownharpoonrightleft
\updownharpoons
\upharpoonccw∗
\upharpooncw∗
Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix can be replaced with “down”. (In addition, \upharpooncw can be written as
\restriction.)
Table 109: MnSymbol Negated Harpoons
⇂̸
⇃̸
⥯̸
↽̸
↼̸
⥊̸
⇋̸
⥋̸
̸
̸
̸
∗
\ndownharpoonccw
\ndownharpooncw∗
\ndownupharpoons
\nleftharpoonccw∗
\nleftharpooncw∗
\nleftrightharpoondownup
\nleftrightharpoons
\nleftrightharpoonupdown
\nneharpoonccw
\nneharpooncw
\nneswharpoonnwse
∗
̸
̸
̸
̸
̸
̸
̸
⇀̸
⇁̸
⇌̸
̸
\nneswharpoons
\nneswharpoonsenw
\nnwharpoonccw
\nnwharpooncw
\nnwseharpoonnesw
\nnwseharpoons
\nnwseharpoonswne
\nrightharpoonccw∗
\nrightharpooncw∗
\nrightleftharpoons
\nseharpoonccw
̸
̸
̸
̸
̸
̸
̸
⥮̸
↿̸
↾̸
\nseharpooncw
\nsenwharpoons
\nswharpoonccw
\nswharpooncw
\nswneharpoons
\nupdownharpoonleftright
\nupdownharpoonrightleft
\nupdownharpoons
\nupharpoonccw∗
\nupharpooncw∗
Where marked, the “ccw” suffix can be replaced with “up” and the “cw” suffix
can be replaced with “down”. (In addition, \nupharpooncw can be written as
\nrestriction.)
46
Table 110: chemarrow Arrows
A
\chemarrow
Table 111: fge Arrows
!
\fgerightarrow
"
\fgeuparrow
Table 112: MnSymbol Spoons
s
⫰
r
⟜
̸
⫰̸
t
l
̸
⟜̸
̸
∗
\downfilledspoon
\downspoon
\leftfilledspoon
\leftspoon
\ndownfilledspoon
\ndownspoon
\nefilledspoon
\nespoon
\nleftfilledspoon
\nleftspoon
\nnefilledspoon
̸
̸
̸
̸
⊸̸
̸
̸
̸
̸
̸
⫯̸
\nnespoon
\nnwfilledspoon
\nnwspoon
\nrightfilledspoon
\nrightspoon∗
\nsefilledspoon
\nsespoon
\nswfilledspoon
\nswspoon
\nupfilledspoon
\nupspoon
u
m
p
⊸
w
o
v
n
q
⫯
\nwfilledspoon
\nwspoon
\rightfilledspoon
\rightspoon∗
\sefilledspoon
\sespoon
\swfilledspoon
\swspoon
\upfilledspoon
\upspoon
MnSymbol defines \multimap as a synonym for \rightspoon and \nmultimap as
a synonym for \nrightspoon.
Table 113: MnSymbol Pitchforks
⫛
Š
⫛̸
Œ
̸
̸
∗
\downpitchfork
\leftpitchfork
\ndownpitchfork
\nepitchfork
\nleftpitchfork
\nnepitchfork
̸
̸
̸
̸
⋔̸

\nnwpitchfork
\nrightpitchfork
\nsepitchfork
\nswpitchfork
\nuppitchfork
\nwpitchfork
ˆ

Ž
⋔
\rightpitchfork
\sepitchfork
\swpitchfork
\uppitchfork
MnSymbol defines \pitchfork as a synonym for \uppitchfork and \npitchfork
as a synonym for \nuppitchfork.
47
Table 114: MnSymbol Smiles and Frowns
%
$
#
"
⌢
!
'
)
̸
̸
̸
̸
̸
̸
⌢̸
̸
̸
̸
̸
⌣̸
∗
̸
̸
≭
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
̸
⌣
\doublefrown
\doublefrowneq
\doublesmile
\doublesmileeq
\eqfrown
\eqsmile
\frown
\frowneq
\frowneqsmile
\frownsmile
\frownsmileeq
\ndoublefrown
\ndoublefrowneq
\ndoublesmile
\ndoublesmileeq
\neqfrown
\neqsmile
\nfrown
\nfrowneq
\nfrowneqsmile
\nfrownsmile
\nfrownsmileeq
\nsmile
\nsmileeq
\nsmileeqfrown
\nsmilefrown
\nsmilefrowneq
\nsqdoublefrown
\nsqdoublefrowneq
\nsqdoublesmile
\nsqdoublesmileeq
\nsqeqfrown
\nsqeqsmile
\nsqfrown
\nsqfrowneq
\nsqfrowneqsmile
\nsqfrownsmile
\nsqsmile
\nsqsmileeq
\nsqsmileeqfrown
\nsqsmilefrown
\nsqtriplefrown
\nsqtriplesmile
\ntriplefrown
\ntriplesmile
\smile
&
≍
(
7
,
6
5
4
+
3
9
1
*
2
8
0
/
.
\smileeq
\smileeqfrown
\smilefrown
\smilefrowneq
\sqdoublefrown
\sqdoublefrowneq
\sqdoublesmile
\sqdoublesmileeq
\sqeqfrown
\sqeqsmile
\sqfrown
\sqfrowneq
\sqfrowneqsmile
\sqfrownsmile
\sqsmile
\sqsmileeq
\sqsmileeqfrown
\sqsmilefrown
\sqtriplefrown
\sqtriplesmile
\triplefrown
\triplesmile
MnSymbol defines \smallsmile as a synonym for \smile, \smallfrown as a synonym for \frown, \asymp as a synonym for \smilefrown, and \nasymp as a synonym for \nsmilefrown.
Table 115: ulsy Contradiction Symbols
\blitza
\blitzb
\blitzc
\blitzd
\blitze
Table 116: Extension Characters
−
=
\relbar
\Relbar
Table 117: stmaryrd Extension Characters
X
Y
\Arrownot
\arrownot
[
\Mapsfromchar
\mapsfromchar
\
\Mapstochar
Table 118: txfonts/pxfonts Extension Characters
\Mappedfromchar
\mappedfromchar
\Mmappedfromchar
\mmappedfromchar
48
\Mmapstochar
\mmapstochar
Table 119: mathabx Extension Characters
û
ß
Þ
\mapsfromchar
\Mapsfromchar
\mapstochar
\Mapstochar
ú
Table 120: Log-like Symbols
\arccos
\arcsin
\arctan
\arg
\cos
\cosh
\cot
\coth
\csc
\deg
\det
\dim
\exp
\gcd
\hom
\inf
\ker
\lg
\lim
\liminf
\limsup
\ln
\log
\max
\min
\Pr
\sec
\sin
\sinh
\sup
\tan
\tanh
Calling the above “symbols” may be a bit misleading.2 Each log-like symbol merely
produces the eponymous textual equivalent, but with proper surrounding spacing. See Section 7.4 for more information about log-like symbols. As \bmod and
\pmod are arguably not symbols we refer the reader to the Short Math Guide for
LATEX [Dow00] for samples.
Table 121: AMS Log-like Symbols
inj lim
\injlim
proj lim
\projlim
lim
−→
lim
\varinjlim
lim
\varlimsup
\varliminf
lim
←−
\varprojlim
Load the amsmath package to get these symbols. See Section 7.4 for some additional
comments regarding log-like symbols. As \mod and \pod are arguably not symbols
we refer the reader to the Short Math Guide for LATEX [Dow00] for samples.
Table 122: Greek Letters
α
β
γ
δ
ε
ζ
η
\alpha
\beta
\gamma
\delta
\epsilon
\varepsilon
\zeta
\eta
θ
ϑ
ι
κ
λ
µ
ν
ξ
\theta
\vartheta
\iota
\kappa
\lambda
\mu
\nu
\xi
o
π
$
ρ
%
σ
ς
o
\pi
\varpi
\rho
\varrho
\sigma
\varsigma
τ
υ
φ
ϕ
χ
ψ
ω
\tau
\upsilon
\phi
\varphi
\chi
\psi
\omega
Γ
∆
Θ
\Gamma
\Delta
\Theta
Λ
Ξ
Π
\Lambda
\Xi
\Pi
Σ
Υ
Φ
\Sigma
\Upsilon
\Phi
Ψ
Ω
\Psi
\Omega
The remaining Greek majuscules can be produced with ordinary Latin letters. The
symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “µ”.
See Section 7.5 for examples of how to produce bold Greek letters.
Table 123: AMS Greek Letters
z
2 Michael
\digamma
κ
\varkappa
J. Downes prefers the more general term, “atomic math objects”.
49
Table 124: txfonts/pxfonts Upright Greek Letters
α
β
γ
δ
ε
ζ
η
θ
ϑ
ι
κ
λ
µ
ν
ξ
\alphaup
\betaup
\gammaup
\deltaup
\epsilonup
\varepsilonup
\zetaup
\etaup
π
$
ρ
%
σ
ς
τ
υ
\thetaup
\varthetaup
\iotaup
\kappaup
\lambdaup
\muup
\nuup
\xiup
\piup
\varpiup
\rhoup
\varrhoup
\sigmaup
\varsigmaup
\tauup
\upsilonup
φ
ϕ
χ
ψ
ω
\phiup
\varphiup
\chiup
\psiup
\omegaup
Table 125: upgreek Upright Greek Letters
α
β
γ
δ
ε
ε
ζ
η
\upalpha
\upbeta
\upgamma
\updelta
\upepsilon
\upvarepsilon
\upzeta
\upeta
θ
ϑ
ι
κ
λ
µ
ν
ξ
\uptheta
\upvartheta
\upiota
\upkappa
\uplambda
\upmu
\upnu
\upxi
π
ϖ
ρ
ρ
σ
σ
τ
υ
\uppi
\upvarpi
\uprho
\upvarrho
\upsigma
\upvarsigma
\uptau
\upupsilon
φ
ϕ
χ
ψ
ω
\upphi
\upvarphi
\upchi
\uppsi
\upomega
Γ
∆
Θ
\Upgamma
\Updelta
\Uptheta
Λ
Ξ
Π
\Uplambda
\Upxi
\Uppi
Σ
Υ
Φ
\Upsigma
\Upupsilon
\Upphi
Ψ
Ω
\Uppsi
\Upomega
upgreek utilizes upright Greek characters from either the PostScript Symbol font
(depicted above) or Euler Roman. As a result, the glyphs may appear slightly
different from the above. Contrast, for example, “Γ∆Θαβγ” (Symbol) with
“Γ∆Θαβγ” (Euler).
Table 126: txfonts/pxfonts Variant Latin Letters
1
3
\varg
4
\varv
2
\varw
\vary
Pass the varg option to txfonts/pxfonts to replace g, v, w, and y with 1, 3, 4, and 2
in every mathematical expression in your document.
Table 127: AMS Hebrew Letters
i
\beth
‫ג‬
\gimel
k
\daleth
\aleph (ℵ) appears in Table 184 on page 62.
Table 128: MnSymbol Hebrew Letters
ℵ
\aleph
ℶ
\beth
ℷ
50
\gimel
ℸ
\daleth
Table 129: Letter-like Symbols
⊥
`
∃
∀
~
=
\bot
\ell
\exists
\forall
\hbar
\Im
ı
∈

3
∂
<
\imath
\in
\jmath
>
℘
\ni
\partial
\Re
\top
\wp
Table 130: AMS Letter-like Symbols
{
`
a
\Bbbk
\circledR
\circledS
k
r
s
\complement
\Finv
\Game
~
}
@
\hbar
\hslash
\nexists
Table 131: txfonts/pxfonts Letter-like Symbols
¢
∗
\mathcent
\mathsterling∗
£
<
\notin
=
\notni
It’s generally preferable to use the corresponding symbol from Table 3 on page 8
because the symbols in that table work properly in both text mode and math mode.
Table 132: mathabx Letter-like Symbols
V
A
D
F
G
\barin
\complement
\exists
\Finv
\Game
P
E
M
R
S
\in
\nexists
\notbot
\notin
\notowner
L
Q
W
B
C
T
U
\nottop
\owns
\ownsbar
\partial
\partialslash
\varnotin
\varnotowner
Table 133: MnSymbol Letter-like Symbols
–
∃
∀
∗
\bot
\exists
\forall
∈
∄
∉
\in
\nexists
\nin∗
∌
∋
℘
\nowns∗
\owns
\powerset
⊺
℘
\top
\wp
MnSymbol provides synonyms \notin for \nin, \ni for \owns, and \intercal for
\top.
Table 134: trfsigns Letter-like Symbols
e
j
\e
\im
Table 135: mathdesign Letter-like Symbols
∈
6
∈
\in
\notin
\notsmallin
\notsmallowns
3
\owns
\smallin
\smallowns
The mathdesign package additionally provides versions of each of the letter-like
symbols shown in Table 130.
51
Table 136: fge Letter-like Symbols
A
c
p
e
∗
\fgeA
\fgec
\fged
\fgee
D
C
B
s
\fgeeszett
\fgeF
\fgef
\fgelb∗
F
f
U
\fgeleftB
\fgeleftC
\fgerightB
\fges
\fgeU
The fge package defines \fgeeta, \fgeN, and \fgeoverU as synonyms for \fgelb.
Table 137: AMS Delimiters
p
x
q
y
\ulcorner
\llcorner
\urcorner
\lrcorner
Table 138: stmaryrd Delimiters
P
V
L
\Lbag
\llceil
\llparenthesis
Q
W
M
\Rbag
\rrceil
\rrparenthesis
N
T
\lbag
\llfloor
Table 139: mathabx Delimiters
v
\lcorners
w
\rcorners
x
z
\ulcorner
\llcorner
y
{
\urcorner
\lrcorner
Table 140: nath Delimiters
\niv
\vin
52
O
U
\rbag
\rrfloor
↓
h


y
D
d
l
b
j
(
/
.
\downarrow
\langle
\lceil
\lfloor
(
/
⇓
i
w
w

E
e
m
c
k
)
\
/
Table 141: Variable-sized Delimiters
h
\Downarrow
[
[
\rangle
| |
x

\rceil
↑  \uparrow
x

\rfloor
l y \updownarrow
n
)
{
\{
]
i
k
~
w
w
~
w

o
⇑
m
}
]
\|
\Uparrow
\Updownarrow
\}
\backslash
When used with \left and \right, these symbols expand to the height of the
enclosed math expression. Note that \vert is a synonym for |, and \Vert is a
synonym for \|.
ε-TEX provides a \middle analogue to \left and \right. \middle can be used, for
example, to make an internal “|” expand to the height of the surrounding \left and
\right symbols. (This capability is commonly needed when typesetting adjacent
bras and kets in Dirac notation: “hφ|ψi”). A similar effect can be achieved in
conventional LATEX using the braket package.















\lmoustache
\arrowvert
Table 142: Large, Variable-sized Delimiters


 
 


 
 


 \lgroup
 \rmoustache

w




w w


w

w w \Arrowvert
\bracevert

 

w










\rgroup
These symbols must be used with \left and \right. The mathabx package, however, redefines \lgroup and \rgroup so that those symbols can work without \left
and \right.
Table 143: AMS Variable-sized Delimiters
|
\lvert
|
\rvert
k
\lVert
k
\rVert
According to the amsmath documentation [AMS99], the preceding symbols are
intended to be used as delimiters (e.g., as in “|−z|”) while the \vert and \Vert
symbols (Table 141) are intended to be used as operators (e.g., as in “p|q”).
Table 144: stmaryrd Variable-sized Delimiters
~
\llbracket

\rrbracket
53
Table 145: mathabx Variable-sized Delimiters
1
v
77
77
7
~
9
w
\ldbrack
\rdbrack
??
?? \rfilet
~ \vvvert
?
\lfilet
\thickvert
Table 146: MnSymbol Variable-sized Delimiters
⌈
⌊
^^
^
_
_
_
(
⎡⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣
^^
^^
^^
^
_
_
_
_
_
_
_
(
⟦
⎧
⎪
⎭
/
[
∣
RR
R
L
P
P
P
P
P
N
⎧
⎪
⎪
⎪
⎪
⎪
⎭
/
\lceil
⌉
\lfloor
⌋
\lwavy
^^
^
\lWavy
_
_
_
(
)
\lsem
⟧
)
⎫
⎪
⎩
\lmoustache
/
/
⎡⎢
⎢⎢
⎢⎢
⎣
RR
RR
RR
R
[
]
|
∥
RR
RR
RR
R
\arrowvert
⎤⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦
^^
^^
^^
^
_
_
_
_
_
_
_
M
Q
Q
Q
Q
Q
O
⎫
⎪
⎪
⎪
⎪
⎪
⎩
/
X
X
X
\rceil
⌜
⌜
\ulcorner
⌝
⌝
\urcorner
\rfloor
⌞
⌞
\llcorner
⌟
⌟
\lrcorner
\rwavy
⟨
⟨
\langle
⟩
⟩
\rangle
\rWavy
k
n
\langlebar
p
s
\ranglebar
\rsem
⟪
\rmoustache
{
\backslash
⟨
]
3
⎤⎥
⎥⎥
⎥⎥
⎦
X
X
X
X
X
X
X
\|
X
X
X
X
X
X
X
\Arrowvert
⎧
⎪
⎪
⎪
⎪
⎪
⎩
⎧
⎪
⎩
)
⟪
⟫
\lbrace
}
⟨
<
⟩
⟩
>
6
\ullcorner
8
;
\ulrcorner
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⟫
⎫
⎪
⎪
⎬
⎪
⎪
⎭
\bracevert
\vert is a synonym for |. \Vert is a synonym for \|. \mid and \mvert produce
the same symbol as \vert but designated as math relations instead of ordinals.
\divides produces the same symbol as \vert but designated as a binary operator
instead of an ordinal. \parallel and \mVert produce the same symbol as \Vert
but designated as math relations instead of ordinals.
54
\rgroup
\llangle
⎧
⎪
⎪
⎨
⎪
⎪
⎩
⎪
⎪
⎪
⎫
⎪
⎪
⎪
⎪
⎪
⎭
⎫
⎪
⎭
\lgroup
\rrangle
\rbrace
Table 147: mathdesign Variable-sized Delimiters
Ð
Ð
Ð
Ð
Ñ
Ñ
Ñ
Ñ
Ð
Ñ
\leftwave
Ð
\leftevaw
Ñ
Ð
Ð
Ð
Ð
Ñ
Ñ
Ñ
Ñ
\rightwave
\rightevaw
The definitions of these symbols include a preceding \left or \right. It is therefore
an error to specify \left or \right explicitly. The internal, “primitive” versions
of these symbols are called \lwave, \rwave, \levaw, and \revaw.
Table 148: nath Variable-sized Delimiters (Double)
∗
hh
DD
[[
hh
dd
ll
bb
jj
||
\lAngle
ii
EE
\lBrack
]]
ii
\lCeil
ee
mm
\lFloor
cc
kk
\lVert∗
||
\rAngle
\rBrack
\rCeil
\rFloor
\rVert∗
nath redefines all of the above to include implicit \left and \right commands.
Hence, separate \lVert and \rVert commands are needed to disambiguate whether
“|” is a left or right delimiter.
All of the symbols in Table 148 can also be expressed using the \double macro.
See the nath documentation for examples and additional information.
Table 149: nath Variable-sized Delimiters (Triple)
∗
hhh
DDD
[[[
hhh
|||
\triple<
iii
EEE
\triple[
]]]
iii
\ltriple|∗
|||
\triple>
\triple]
\rtriple|∗
Similar to \lVert and \rVert in Table 148, \ltriple and \rtriple must be used
instead of \triple to disambiguate whether “|” is a left or right delimiter.
Note that \triple—and the corresponding \double—is actually a macro that
takes a delimiter as an argument.
55
Table 150: textcomp Text-mode Delimiters
〈
〚
⁅
〉
〛
⁆
\textlangle
\textlbrackdbl
\textlquill
\textrangle
\textrbrackdbl
\textrquill
Table 151: metre Text-mode Delimiters
}
{
i
h
\alad
\alas
\angud
\angus
} \Alad
{ \Alas
i
h
†
]]
\Angud
\Angus
[[
\crux
\quadrad
\quadras
†
\Crux
\Quadrad
\Quadras
]]
[[
Table 152: Math-mode Accents
á
ā
ă
\acute{a}
\bar{a}
\breve{a}
ǎ
ä
ȧ
\check{a}
\ddot{a}
\dot{a}
à
â
å
\grave{a}
\hat{a}
\mathring{a}
ã
~a
\tilde{a}
\vec{a}
Also note the existence of \imath and \jmath, which produce dotless versions of
“i ” and “j ”. (See Table 184 on page 62.) These are useful when the accent is
supposed to replace the dot. For example, “\hat{\imath}” produces a correct
“ ı̂ ”, while “\hat{i}” would yield the rather odd-looking “ î ”.
Table 153: AMS Math-mode Accents
...
....
a \dddot{a}
a \ddddot{a}
These accents are also provided by the mathabx and accents packages and are
redefined by the mathdots package if the amsmath and amssymb packages have previously been loaded. All of the variations except for the original AMS ones tighten
...
the space between the dots (from a to ˙˙˙
a). The mathabx and mathdots...
versions also
a
function properly within subscripts and superscripts (x˙˙˙
instead of x a ) .
Table 154: MnSymbol Math-mode Accents
a
⃗
A
a
∗
\vec{a}
Table 155: fge Math-mode Accents
\spirituslenis{A}\spirituslenis{a}∗
When fge is passed the crescent option, \spirituslenis instead uses a crescent
accent as in “ a ”.
56
Table 156: yhmath Math-mode Accents
å
\ring{a}
This symbol is largely obsolete, as standard LATEX 2ε has supported \mathring
since June, 1998 [LAT98].
Table 157: Extensible Accents
›
abc
←−
abc
\widehat{abc}∗
\overleftarrow{abc}†
”
abc
−→
abc
\overline{abc}
abc
\underline{abc}
\overbrace{abc}
abc
|{z}
\underbrace{abc}
\widetilde{abc}∗
abc
z}|{
abc
√
abc
\overrightarrow{abc}†
\sqrt{abc}‡
As demonstrated in a 1997 TUGboat article about typesetting long-division problems [Gib97], an extensible long-division sign (“ )abc ”) can be faked by putting a
“\big)” in a tabular environment with an \hline or \cline in the preceding row.
The article also presents a piece of code (uploaded to CTAN as longdiv.tex) that
automatically solves and typesets—by putting an \overline atop “\big)” and
the desired text—long-division problems. See also the polynom package, which automatically solves and typesets polynomial-division problems in a similar manner.
∗
These symbols are made more extensible by the MnSymbol package and even more
extensible by the yhmath package.
†
If you’re looking for an extensible diagonal line or arrow to be used for canceling or
5
:
or “
−x”
reducing mathematical subexpressions (e.g., “
x+
3+
2 ”) then consider
using the cancel package.
‡
With an optional argument,
\sqrt typesets nth roots.
For√ example,
√
3
n
“\sqrt[3]{abc}” produces “ abc ” and “\sqrt[n]{abc}” produces “ abc ”.
Table 158: overrightarrow Extensible Accents
=⇒
abc \Overrightarrow{abc}
Table 159: yhmath Extensible Accents
ˆ
abc
\wideparen{abc}
˚
ˆ
abc
\widering{abc}
È
abc
57
\widetriangle{abc}
Table 160: AMS Extensible Accents
←
→
abc
\overleftrightarrow{abc}
abc
←−
\underleftarrow{abc}
abc
←
→
abc
−→
\underleftrightarrow{abc}
\underrightarrow{abc}
Table 161: MnSymbol Extensible Accents
«
abc
³¹¹ ¹ ¹µ
abc
\overbrace{abc}
abc
°
\underbrace{abc}
\overgroup{abc}
\undergroup{abc}
zx
abc
↼Ð
abc
abc
´¹¹ ¹ ¹¶
\overlinesegment{abc}
\underlinesegment{abc}
\overleftharpoon{abc}
abc
zx
Ð⇀
abc
̂
abc
\widehat{abc}
̃
abc
Í
abc
\wideparen{abc}
\overrightharpoon{abc}
\widetilde{abc}
Table 162: mathtools Extensible Accents
∗
z}|{
abc
\overbrace{abc}
abc
\overbracket{abc}∗
abc
|{z}
abc
\underbrace{abc}
\underbracket{abc}∗
\overbracket and \underbracket accept optional arguments that specify the
bracket height and thickness. See the mathtools documentation for more information.
hkkikkj
Table 163: mathabx Extensible Accents
hkkk j
\overbrace{abc}
„
abc
\widebar{abc}
abc
\overgroup{abc}
|
abc
\widecheck{abc}
looabc
moon \underbrace{abc}
Œ
abc
\wideparen{abc}
abc
lo
oo n
ˆ
abc
˚
ˆ
abc
\widering{abc}
abc
\undergroup{abc}
\widearrow{abc}
The braces shown for \overbrace and \underbrace appear in their minimum size.
They can expand arbitrarily wide, however.
58
Table 164: esvect Extensible Accents
#”
abc \vv{abc} with package option a
#„
abc \vv{abc} with package option b
#«
abc \vv{abc} with package option c
#»
abc \vv{abc} with package option d
#–
abc \vv{abc} with package option e
#—
abc \vv{abc} with package option f
#
abc \vv{abc} with package option g
#‰
abc \vv{abc} with package option h
esvect also defines a \vv* macro which is used to typeset arrows over vector variables with subscripts. See the esvect documentation for more information.
Table 165: undertilde Extensible Accents
abc
›
\utilde{abc}
Because \utilde is based on \widetilde it is also made more extensible by the
yhmath package.
Table 166: AMS Extensible Arrows
abc
←−−
abc
−−→
\xleftarrow{abc}
\xrightarrow{abc}
Table 167: mathtools Extensible Arrows
abc
←−−abc
,−−→
abc
⇐==
abc
)−−
abc
(−−
abc
←−→
abc
⇐=⇒
abc
(
−
−
−
−
+
\xhookleftarrow{abc}
abc
7−−→
\xhookrightarrow{abc}
abc
==⇒
\xLeftarrow{abc}
abc
−−+
\xleftharpoondown{abc}
abc
−−*
\xleftharpoonup{abc}
abc
−−
*
)
−
−
\xleftrightarrow{abc}
\xleftrightharpoons{abc}
\xmapsto{abc}
\xRightarrow{abc}
\xrightharpoondown{abc}
\xrightharpoonup{abc}
\xrightleftharpoons{abc}
\xLeftrightarrow{abc}
Table 168: chemarr Extensible Arrows
abc
−
−
*
)
−
−
\xrightleftharpoons{abc}
59
Table 169: chemarrow Extensible Arrows
abc
DGGGGGGG
\autoleftarrow{abc}{def}
abc
EGGGGGGG
GGGGGGGC
def
\autoleftrightharpoons{abc}{def}
def
abc
GGGGGGGA
\autorightarrow{abc}{def}
abc
GGGGGGGB
FGGGGGGG
def
\autorightleftharpoons{abc}{def}
def
In addition to the symbols shown above, chemarrow also provides \larrowfill,
\rarrowfill, \leftrightharpoonsfill, and \rightleftharpoonsfill macros.
Each of these takes a length argument and produces an arrow of the specified
length.
Table 170: trfsigns Extensible Arrows
a
\dft{a}
a
\DFT{a}
Table 171: extarrows Extensible Arrows
abc
⇐=⇒
abc
←−→
abc
====
abc
⇐==
abc
←−−
abc
⇐=
=⇒
\xLeftrightarrow{abc}
abc
←−
−→
\xleftrightarrow{abc}
abc
==⇒
\xlongequal{abc}
abc
−−→
\xLongleftarrow{abc}
\xLongleftrightarrow{abc}
\xlongleftrightarrow{abc}
\xLongrightarrow{abc}
\xlongrightarrow{abc}
\xlongleftarrow{abc}
Table 172: extpfeil Extensible Arrows
abc
====
abc
−−−−
abc
7−−→
\xlongequal{abc}
abc
−−−−
\xtwoheadleftarrow{abc}
\xmapsto{abc}
\xtwoheadrightarrow{abc}
The extpfeil package also provides a \newextarrow command to help you define
your own extensible arrow symbols. See the extpfeil documentation for more information.
Table 173: holtpolt Non-commutative Division Symbols
abc
def
\holter{abc}{def}
60
abc
def
\polter{abc}{def}
Table 174: Dots
·
\cdotp
···
\cdots
:
..
.
\colon∗
.
\ldotp
\ddots†
...
\ldots
..
.
\vdots†
∗
While “:” is valid in math mode, \colon uses different surrounding spacing. See
Section 7.4 and the Short Math Guide for LATEX [Dow00] for more information on
math-mode spacing.
†
The mathdots package redefines \ddots and \vdots to make them scale properly
with font size. (They normally scale horizontally but not vertically.) \fixedddots
and \fixedvdots provide the original, fixed-height functionality of LATEX 2ε ’s
\ddots and \vdots macros.
Table 175: AMS Dots
∵
···
...
∗
\because∗
\dotsb
\dotsc
···
···
...
\dotsi
\dotsm
\dotso
∴
\therefore∗
\because and \therefore are defined as binary relations and therefore also appear
in Table 63 on page 30.
The AMS \dots symbols are named according to their intended usage: \dotsb
between pairs of binary operators/relations, \dotsc between pairs of commas,
\dotsi between pairs of integrals, \dotsm between pairs of multiplication signs,
and \dotso between other symbol pairs.
Table 176: wasysym Dots
∴
\wasytherefore
Table 177: MnSymbol Dots
⋅
⋱
∵
\cdot
\ddotdot
\ddots
\diamonddots
\downtherefore
\fivedots
⋯
∷
\hdotdot
\hdots
\lefttherefore
\righttherefore
\squaredots
\udotdot
⋰
∴
∶
⋮
\udots
\uptherefore
\vdotdot
\vdots
MnSymbol defines \therefore as \uptherefore and \because as
\downtherefore. Furthermore, \cdotp and \colon produce the same glyphs as
\cdot and \vdotdot respectively but serve as TEX math punctuation (class 6
symbols) instead of TEX binary operators (class 2).
All of the above except \hdots and \vdots are defined as binary operators and
therefore also appear in Table 46 on page 23. Also, unlike most of the other dot
symbols in this document, MnSymbol’s dots are defined as single characters instead
of as composites of multiple single-dot characters.
61
Table 178: mathdots Dots
.
..
\iddots
Table 179: yhmath Dots
..
.
\adots
Table 180: mathcomp Math Symbols
℃
µ
\tccentigrade
\tcmu
Ω
‱
\tcohm
\tcpertenthousand
‰
\tcperthousand
Table 181: mathabx Mayan Digits
0
1
2
3
\maya{0}
\maya{1}
4
5
\maya{2}
\maya{3}
\maya{4}
\maya{5}
Table 182: marvosym Digits
0
1
\MVZero
\MVOne
2
3
\MVTwo
\MVThree
4
5
6
7
\MVFour
\MVFive
\MVSix
\MVSeven
8
9
\MVEight
\MVNine
Table 183: fge Digits
0
1
\fgestruckzero
\fgestruckone
Table 184: Miscellaneous LATEX 2ε Math Symbols
ℵ
6
\
♣
\aleph
\angle
\backslash
\Box∗,†
\clubsuit
^
♦
∅
[
♥
\Diamond∗
\diamondsuit
\emptyset‡
\flat
\heartsuit
∞
f
∇
\
¬
\infty
\mho∗
\nabla
\natural
\neg
0
]
♠
`
4
\prime
\sharp
\spadesuit
\surd
\triangle
∗
Not predefined in LATEX 2ε . Use one of the packages latexsym, amsfonts, amssymb,
txfonts, pxfonts, or wasysym. Note, however, that amsfonts and amssymb define
\Diamond to produce the same glyph as \lozenge (“♦”); the other packages produce a squarer \Diamond as depicted above.
†
To use \Box—or any other symbol—as an end-of-proof (Q.E.D.) marker, consider
using the ntheorem package, which properly juxtaposes a symbol with the end of
the proof text.
‡
Many people prefer the look of AMS’s \varnothing (“∅”, Table 185) to that of
LATEX’s \emptyset.
62
Table 185: Miscellaneous AMS Math Symbols
∠
8
F
N
\angle
\backprime
\bigstar
\blacklozenge
\blacksquare
\blacktriangle
H
ð
♦
]
\blacktriangledown
\diagdown
\diagup
\eth
\lozenge
\measuredangle
\mho
\sphericalangle
\square
\triangledown
\varnothing
\vartriangle
f
^
O
∅
M
Table 186: Miscellaneous wasysym Math Symbols
2
∗
\Box
3
\Diamond
f
\mho∗
\varangle
wasysym also defines an \agemO symbol, which is the same glyph as \mho but is
intended for use in text mode.
Table 187: Miscellaneous txfonts/pxfonts Math Symbols
_

o
\Diamondblack
\Diamonddot
\lambdabar
n
p
q
\lambdaslash
\varclubsuit
\vardiamondsuit
r
s
\varheartsuit
\varspadesuit
Table 188: Miscellaneous mathabx Math Symbols
0
å
ä
I
\degree
\diagdown
\diagup
\diameter
4
#
8
$
\fourth
\hash
\infty
\leftthreetimes
>
&
9
%
\measuredangle
\pitchfork
\propto
\rightthreetimes
2
?
3
#
\second
\sphericalangle
\third
\varhash
Table 189: Miscellaneous MnSymbol Math Symbols
∠
⌐
‵
✓
♣
∅
\angle
\backneg
\backprime
\checkmark
\clubsuit
\diameter
♢
♭
♡
∞
⨽
⨼
\diamondsuit
\flat
\heartsuit
\infty
\invbackneg
\invneg
✠
∡
∇
♮
¬
′
\maltese
\measuredangle
\nabla
\natural
\neg
\prime
♯
∫
♠
∢
\sharp
\smallint
\spadesuit
\sphericalangle
MnSymbol defines \emptyset and \varnothing as synonyms for \diameter; \lnot
and \minushookdown as synonyms for \neg; \minushookup as a synonym for
\invneg; \hookdownminus as a synonym for \backneg; and, \hookupminus as
a synonym for \invbackneg.
63
Table 190: Miscellaneous Internal MnSymbol Math Symbols
∫…∫
⨚
⨙
∲
∲
∯
∮
∳
∳
⨏
⨋
∫…∫
⨚
⨙
∲
∲
∯
∮
∳
∳
⨏
⨋
\partialvardint
\partialvardlanddownint
\partialvardlandupint
\partialvardlcircleleftint
\partialvardlcirclerightint
\partialvardoiint
\partialvardoint
\partialvardrcircleleftint
\partialvardrcirclerightint
\partialvardstrokedint
\partialvardsumint
\partialvartint
\partialvartlanddownint
\partialvartlandupint
\partialvartlcircleleftint
\partialvartlcirclerightint
\partialvartoiint
\partialvartoint
\partialvartrcircleleftint
\partialvartrcirclerightint
\partialvartstrokedint
\partialvartsumint
These symbols are intended to be used internally by MnSymbol to construct the
integrals appearing in Table 59 on page 29 but can nevertheless be used in isolation.
Table 191: Miscellaneous textcomp Text-mode Math Symbols
°
÷
⁄
¬
−
\textdegree∗
\textdiv
\textfractionsolidus
\textlnot
\textminus
½
¼
¹
±
√
\textonehalf†
\textonequarter†
\textonesuperior
\textpm
\textsurd
¾
³
×
²
\textthreequarters†
\textthreesuperior
\texttimes
\texttwosuperior
∗
If you prefer a larger degree symbol you might consider defining one as
“\ensuremath{^\circ}” (“◦ ”).
†
nicefrac (part of the units package) can be used to construct vulgar fractions like
“1/2”, “1/4”, “3/4”, and even “c/o”.
Table 192: Miscellaneous marvosym Math Symbols
W
=
\Anglesign
\Corresponds
÷
p
P
\Squaredot
\Vectorarrow
\Vectorarrowhigh
Table 193: Miscellaneous fge Math Symbols
K
M
O
\fgebackslash
\fgebaracute
\fgebarcap
S
Q
N
\fgecap
\fgecapbar
\fgecup
R
P
i
\fgecupacute
\fgecupbar
\fgeinfty
h
L
Table 194: Miscellaneous mathdesign Math Symbols
∟
\rightangle
Table 195: Miscellaneous arev Math Symbols
♨
♧
\steaming
\varclub
♦
♥
\vardiamond
\varheart
64
♤
\varspade
\fgelangle
\fgeupbracket
Table 196: Math Alphabets
Font sample
Generating command
Required package
ABCdef123
ABCdef123
ABCdef 
ABC
ABC
or
ABC
or
ABCdef123
ABC
‚ƒ
\mathrm{ABCdef123}
\mathit{ABCdef123}
\mathnormal{ABCdef123}
\mathcal{ABC}
\mathscr{ABC}
\mathcal{ABC}
\mathcal{ABC}
\mathscr{ABC}
\mathpzc{ABCdef123}
\mathbb{ABC}
\varmathbb{ABC}
\mathbb{ABCdef123}
\mathbb{ABCdef123}
\mathbbm{ABCdef12}
\mathbbmss{ABCdef12}
\mathbbmtt{ABCdef12}
\mathds{ABC1}
\mathds{ABC1}
\mathfrak{ABCdef123}
\textfrak{ABCdef123}
\textswab{ABCdef123}
\textgoth{ABCdef123}
none
none
none
none
mathrsfs
calrsfs
euscript with the mathcal option
euscript with the mathscr option
none; manually defined∗
amsfonts,§ amssymb, txfonts, or pxfonts
txfonts or pxfonts
bbold or mathbbol†
mbboard†
bbm
bbm
bbm
dsfont
dsfont with the sans option
eufrak
yfonts‡
yfonts‡
yfonts‡
ABCdef123
ABCdef123
ABCdef12
ABCdef12
ABCdef12
ABC1
ABC1
ABCdef123
ABCdef123
ABCdef123
ABCˇf123
∗
Put “\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}” in your document’s preamble to make \mathpzc typeset its argument in Zapf Chancery.
As a similar trick, you can typeset the Calligra font’s script “ r ” (or other
calligraphic symbols) in math mode by loading the calligra package and
putting
“\DeclareMathAlphabet{\mathcalligra}{T1}{calligra}{m}{n}”
in your document’s preamble to make \mathcalligra typeset its
argument in the Calligra font.
(You may also want to specify
“\DeclareFontShape{T1}{calligra}{m}{n}{<->s*[2.2]callig15}{}”
to
set Calligra at 2.2 times its design size for a better blend with typical body fonts.)
†
The mathbbol package defines some additional blackboard bold characters:
parentheses, square brackets, angle brackets, and—if the bbgreekl option
is passed to matbbol—Greek letters.
For instance, “<[()]>” is produced by “\mathbb{\Langle\Lbrack\Lparen\bbalpha\bbbeta\bbgamma\Rparen
\Rbrack\Rangle}”.
mbboard extends the blackboard bold symbol set significantly further.
It
supports not only the Greek alphabet—including “Greek-like” symbols such
as \bbnabla (“š”)—but also all punctuation marks, various currency symbols such as \bbdollar (“$”) and \bbeuro (“û”), and the Hebrew alphabet (e.g., “\bbfinalnun\bbyod\bbqof\bbpe” → “ÏÉ×Ô”).
‡
As their \text. . . names imply, the fonts provided by the yfonts package are
actually text fonts. They are included in Table 196 because they are frequently
used in a mathematical context.
65
§
An older (i.e., prior to 1991) version of the AMS’s fonts rendered C, N, R, S,
and Z as C, N, R, S, and Z. As some people prefer the older glyphs—much to
the AMS’s surprise—and because those glyphs fail to build under modern versions
of METAFONT, Berthold Horn uploaded PostScript fonts for the older blackboardbold glyphs to CTAN, to the fonts/msym10 directory. As of this writing, however,
there are no LATEX 2ε packages for utilizing the now-obsolete glyphs.
66
4
Science and technology symbols
This section lists symbols that are employed in various branches of science and engineering.
Table 197: gensymb Symbols Defined to Work in Both Math and Text Mode
℃
°
µ
Ω
\celsius
\degree
‰
\micro
\ohm
\perthousand
Table 198: wasysym Electrical and Physical Symbols
:
!
&
\AC
@
::::
\VHF
F
\photon
QPPPPPPR
\HF
Table 199: ifsym Pulse Diagram Symbols
\FallingEdge
\LongPulseHigh
'
$
%
\LongPulseLow
\PulseHigh
"
#
\PulseLow
\RaisingEdge
\gluon
\ShortPulseHigh
\ShortPulseLow
In addition, within \textifsym{. . .}, the following codes are valid:
l
L
l
L
m
M
m
M
h
H
d
D
h
H
d
D
<
=
<
<<
>
?
>
>>
mm<DDD>mm
This enables one to write “\textifsym{mm<DDD>mm}” to get “
” or
“\textifsym{L|H|L|H|L}” to get “
”. See also the timing package,
which provides a wide variety of pulse-diagram symbols within an environment
designed specifically for typesetting pulse diagrams.
L|H|L|H|L
Finally, \textifsym supports the display of segmented digits, as would appear
on an LCD: “\textifsym{-123.456}” produces “
”. “\textifsym{b}”
outputs a blank with the same width as an “ ”.
8
-123.456
Table 200: ar Aspect Ratio Symbol
A
\AR
Table 201: textcomp Text-mode Science and Engineering Symbols
℃
\textcelsius
℧
\textmho
67
µ
\textmu
Ω
\textohm
Table 202: wasysym Astronomical Symbols
'
♀
\mercury
\venus
\earth
\mars
X
Y
\jupiter
\saturn
\astrosun
#
\fullmoon
$
\leftmoon
]
^
\aries
\taurus
\gemini
_
`
\cancer
\leo
\virgo
a
b
c
\libra
\scorpio
\sagittarius
e
d
f
\aquarius
\capricornus
\pisces
\ascnode
\descnode
V
\conjunction
W
\opposition
♁
♂
Z
[
\uranus
\neptune
\
\pluto
\newmoon
%
\rightmoon
\vernal
Table 203: marvosym Astronomical Symbols
Â
Ã
\Mercury
\Venus
Ê
Ä
\Earth
\Mars
Á
\Moon
À
\Sun
à
á
â
\Aries
\Taurus
\Gemini
ã
ä
å
\Cancer
\Leo
\Virgo
Å
Æ
\Jupiter
\Saturn
Ç
È
\Uranus
\Neptune
É
æ
ç
è
\Libra
\Scorpio
\Sagittarius
é
ê
ë
\Capricorn
\Aquarius
\Pisces
\Pluto
Note that \Aries . . . \Pisces can also be specified with \Zodiac{1} . . .
\Zodiac{12}.
A
B
\Mercury
\Venus
C
D
M
\fullmoon
P
\Aries
Table 204: mathabx Astronomical Symbols
\Earth
\Mars
E
F
\Jupiter
\Saturn
G
H
\Uranus
\Neptune
I
J
\Pluto
\varEarth
K
\leftmoon
N
\newmoon
L
\rightmoon
@
\Sun
Q
\Taurus
R
\Gemini
mathabx also defines \girl as an alias for \Venus, \boy as an alias for \Mars, and
\Moon as an alias for \leftmoon.
Table 205: wasysym APL Symbols
~

F
o
}
\APLbox
\APLcomment
\APLdown
\APLdownarrowbox
\APLinput
÷
~
p
−
q
\APLinv
\APLleftarrowbox
\APLlog
\APLminus
\APLrightarrowbox
E
n
−
\
−
/
\APLstar
\APLup
\APLuparrowbox
\notbackslash
\notslash
Table 206: wasysym APL Modifiers
◦ \APLcirc{}
∼ \APLnot{}
68
|
\APLvert{}
Table 207: marvosym Computer Hardware Symbols
Í
Ï
\ComputerMouse
\Keyboard
Ñ
Ò
\ParallelPort
\Printer
Î
Ð
\SerialInterface
\SerialPort
Table 208: keystroke Computer Keys
Alt
AltGr
Break
→−7
Ctrl
↓
Del
End
\Alt
\AltGr
\Break∗
\BSpace†
\Ctrl∗
\DArrow
\Del∗
\End∗
\Enter∗
\Esc∗
\Home∗
\Ins∗
\LArrow
\NumLock
\PgDown∗
\PgUp∗
Enter
Esc
Home
Ins
←
Num
Page ↓
Page ↑
\PrtSc∗
\RArrow
\Return
\Scroll∗
\Shift∗
\Spacebar
\Tab†
\UArrow
PrtSc
→
←Scroll
Shift ⇑
→
−
−
−
−
→
↑
∗
Changes based on the language option passed to the keystroke package. For example, the german option makes \Del produce “ Entf ” instead of “ Del ”.
†
These symbols utilize the rotating package and therefore display improperly in most
DVI viewers.
The \keystroke command draws a key with an arbitrary label. For example,
“\keystroke{F7}” produces “ F7 ”.
Table 209: ascii Control Characters (CP437)
␁
␂
␃
␄
␅
␆
␇
\SOH
\STX
\ETX
\EOT
\ENQ
\ACK
\BEL
␈
␉
␊
␋
␌
␍
␎
\BS
\HT
\LF
\VT
\FF
\CR
\SO
␏
␐
␑
␒
␓
␔
␕
\SI
\DLE
\DCa
\DCb
\DCc
\DCd
\NAK
␖
␗
␘
␙
␚
␛
␜
\SYN
\ETB
\CAN
\EM
\SUB
\ESC
\FS
␡
\DEL
\NBSP
␀
\NUL
¦
\splitvert
\GS
\RS
\US
␝
␞
␟
Code Page 437 (CP437), which was first utilized by the original IBM PC, uses the
symbols \SOH through \US to depict ASCII characters 1–31 and \DEL to depict
ASCII character 127. The \NUL symbol, not part of CP437, represents ASCII
character 0. \NBSP, also not part of CP437, represents a nonbreaking space.
\splitvert is merely the “|” character drawn as it was on the IBM PC.
Table 210: marvosym Communication Symbols
k
z
\Email
\Emailct
t
u
\fax
\FAX
v
B
\Faxmachine
\Letter
69
E
H
\Lightning
\Mobilefone
A
T
\Pickup
\Telefon
Table 211: marvosym Engineering Symbols
"
#
›
•
%
–
\Beam
\Bearing
\Circpipe
\Circsteel
\Fixedbearing
\Flatsteel
∗
l
’
&
L
$
™
‘
˜
”
'
Ÿ

\Force
\Hexasteel
\Lefttorque
\Lineload
\Loosebearing
\Lsteel
\Octosteel
\Rectpipe
\Rectsteel
\Righttorque
\RoundedLsteel∗
\RoundedTsteel∗
ž
—
“
œ
š
\RoundedTTsteel
\Squarepipe
\Squaresteel
\Tsteel
\TTsteel
\RoundedLsteel and \RoundedTsteel seem to be swapped, at least in the
2000/05/01 version of marvosym.
Table 212: wasysym Biological Symbols
♀
♂
\female
\male
Table 213: marvosym Biological Symbols
~

„
…
}
€
\Female
\FEMALE
\FemaleFemale
\FemaleMale
\Hermaphrodite
\HERMAPHRODITE
‚
|
ƒ
{
\MALE
\Male
\MaleMale
\Neutral
Table 214: marvosym Safety-related Symbols
h
n
\Biohazard
\BSEfree
C
J
\CEsign
\Estatically
`
a
j
!
\Explosionsafe
\Laserbeam
\Radioactivity
\Stopsign
Table 215: feyn Feynman Diagram Symbols
!
\feyn{fd}
f
w
n
\feyn{fl}
e
\feyn{fs}
\bigbosonloop
a
\feyn{a}
c
\feyn{c}
\feyn{fu}
\feyn{hd}
h
l
m
p
i
\feyn{hs}
x
\feyn{hu}
\feyn{gvs}
\feyn{fv}
\feyn{gv}
\feyn{glu}
g
o
\feyn{gl}
\feyn{gu}
\feyn{f}
\feyn{g}
\feyn{h}
\feyn{ms}
\feyn{m}
\feyn{p}
\feyn{x}
\smallbosonloop
All other arguments to the \feyn command produce a “?” symbol.
The feyn package provides various commands for composing the preceding symbols
into complete Feynman diagrams. See the feyn documentation for examples and
additional information.
70
5
Dingbats
Dingbats are symbols such as stars, arrows, and geometric shapes. They are commonly used as bullets in
itemized lists or, more generally, as a means to draw attention to the text that follows.
The pifont dingbat package warrants special mention. Among other capabilities, pifont provides a LATEX
interface to the Zapf Dingbats font (one of the standard 35 PostScript fonts). However, rather than name each
of the dingbats individually, pifont merely provides a single \ding command, which outputs the character that
lies at a given position in the font. The consequence is that the pifont symbols can’t be listed by name in this
document’s index, so be mindful of that fact when searching for a particular symbol.
y
{
Table 216: bbding Arrows
z
w
\ArrowBoldDownRight
\ArrowBoldRightCircled
\ArrowBoldRightShort
\ArrowBoldRightStrobe
x
\ArrowBoldUpRight
Table 217: pifont Arrows
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
\ding{212}
\ding{213}
\ding{214}
\ding{215}
\ding{216}
\ding{217}
\ding{218}
\ding{219}
\ding{220}
Ý
Þ
ß
à
á
â
ã
ä
å
\ding{221}
\ding{222}
\ding{223}
\ding{224}
\ding{225}
\ding{226}
\ding{227}
\ding{228}
\ding{229}
æ
ç
è
é
ê
ë
ì
í
î
\ding{230}
\ding{231}
\ding{232}
\ding{233}
\ding{234}
\ding{235}
\ding{236}
\ding{237}
\ding{238}
ï
ñ
ò
ó
ô
õ
ö
÷
ø
\ding{239}
\ding{241}
\ding{242}
\ding{243}
\ding{244}
\ding{245}
\ding{246}
\ding{247}
\ding{248}
ù
ú
û
ü
ý
þ
Table 218: universal Arrows
\bauarrow
\bauwhitearrow
Table 219: marvosym Scissors
s
r
\Cutleft
\Cutline
q
R
\Cutright
\Kutline
S
Q
\Leftscissors
\Rightscissors
Table 220: bbding Scissors
\ScissorHollowLeft
\ScissorHollowRight
\ScissorLeft
\ScissorLeftBrokenBottom
\ScissorLeftBrokenTop
\ScissorRight
\ScissorRightBrokenBottom
\ScissorRightBrokenTop
Table 221: pifont Scissors
!
\ding{33}
"
#
\ding{34}
71
\ding{35}
$
\ding{36}
\ding{249}
\ding{250}
\ding{251}
\ding{252}
\ding{253}
\ding{254}
Table 222: dingbat Pencils
W
P
\largepencil
\smallpencil
Table 223: bbding Pencils and Nibs
\NibLeft
\NibRight
\NibSolidLeft
\NibSolidRight
\PencilLeft
\PencilLeftDown
\PencilLeftUp
\PencilRight
\PencilRightDown
\PencilRightUp
Table 224: pifont Pencils and Nibs
.
\ding{46}
/
\ding{47}
0
\ding{48}
1
Table 225: dingbat Fists
R
D
U
L
d
u
\leftpointright
\leftthumbsdown
\leftthumbsup
\rightpointleft
\rightthumbsdown
\rightthumbsup
Table 226: bbding Fists
\HandCuffLeft
\HandCuffLeftUp
\HandCuffRight
\HandCuffRightUp
\HandLeft
\HandLeftUp
\ding{49}
N
2
\ding{50}
\rightpointright
\HandPencilLeft
\HandRight
\HandRightUp
Table 227: pifont Fists
*
*
4
.
\ding{42}
+
\ding{43}
,
-
\ding{44}
\ding{45}
Table 228: bbding Crosses and Plusses
\Cross
\CrossBoldOutline
\CrossClowerTips
\CrossMaltese
+
,
'
(
\CrossOpenShadow
\CrossOutline
\Plus
\PlusCenterOpen
&
)
\PlusOutline
\PlusThinCenterOpen
Table 229: pifont Crosses and Plusses
9
:
\ding{57}
\ding{58}
;
<
\ding{59}
\ding{60}
72
=
>
\ding{61}
\ding{62}
?
@
\ding{63}
\ding{64}
!
"
Table 230: bbding Xs and Check Marks
\Checkmark
\CheckmarkBold
#
$
%
\XSolid
\XSolidBold
\XSolidBrush
Table 231: pifont Xs and Check Marks
3
4
\ding{51}
\ding{52}
5
6
7
8
\ding{53}
\ding{54}
\ding{55}
\ding{56}
Table 232: wasysym Xs and Check Marks
2
\CheckedBox
\Square
4
\XBox
Table 233: universal Xs
\baucross
Table 234: pifont Circled Numbers
¬
­
®
¯
°
±
²
³
´
µ
\ding{172}
\ding{173}
\ding{174}
\ding{175}
\ding{176}
\ding{177}
\ding{178}
\ding{179}
\ding{180}
\ding{181}
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
\ding{182}
\ding{183}
\ding{184}
\ding{185}
\ding{186}
\ding{187}
\ding{188}
\ding{189}
\ding{190}
\ding{191}
\ding{192}
\ding{193}
\ding{194}
\ding{195}
\ding{196}
\ding{197}
\ding{198}
\ding{199}
\ding{200}
\ding{201}
Ê
Ë
Ì
Í
Î
Ï
Ð
Ñ
Ò
Ó
\ding{202}
\ding{203}
\ding{204}
\ding{205}
\ding{206}
\ding{207}
\ding{208}
\ding{209}
\ding{210}
\ding{211}
pifont (part of the psnfss package) provides a dingautolist environment which
resembles enumerate but uses circled numbers as bullets.3 See the psnfss documentation for more information.
Table 235: wasysym Stars
3 In
C
\davidsstar
A
\hexstar
B
\varhexstar
fact, dingautolist can use any set of consecutive Zapf Dingbats symbols.
73
N
A
B
X
C
D
0
/
Z
S
Y
H
I
F
E
R
Table 236: bbding Stars, Flowers, and Similar Shapes
\Asterisk
\AsteriskBold
\AsteriskCenterOpen
\AsteriskRoundedEnds
\AsteriskThin
\AsteriskThinCenterOpen
\DavidStar
\DavidStarSolid
\EightAsterisk
\EightFlowerPetal
\EightFlowerPetalRemoved
\EightStar
\EightStarBold
\EightStarConvex
\EightStarTaper
\FiveFlowerOpen
P
8
;
?
7
9
:
<
=
>
@
1
V
W
5
6
\FiveFlowerPetal
\FiveStar
\FiveStarCenterOpen
\FiveStarConvex
\FiveStarLines
\FiveStarOpen
\FiveStarOpenCircled
\FiveStarOpenDotted
\FiveStarOutline
\FiveStarOutlineHeavy
\FiveStarShadow
\FourAsterisk
\FourClowerOpen
\FourClowerSolid
\FourStar
\FourStarOpen
2
3
O
U
M
Q
L
[
G
K
`
^
_
]
\
J
\JackStar
\JackStarBold
\SixFlowerAlternate
\SixFlowerAltPetal
\SixFlowerOpenCenter
\SixFlowerPetalDotted
\SixFlowerPetalRemoved
\SixFlowerRemovedOpenPetal
\SixStar
\SixteenStarLight
\Snowflake
\SnowflakeChevron
\SnowflakeChevronBold
\Sparkle
\SparkleBold
\TwelweStar
Table 237: pifont Stars, Flowers, and Similar Shapes
A
B
C
D
E
F
G
H
I
\ding{65}
\ding{66}
\ding{67}
\ding{68}
\ding{69}
\ding{70}
\ding{71}
\ding{72}
\ding{73}
J
K
L
M
N
O
P
Q
R
\ding{74}
\ding{75}
\ding{76}
\ding{77}
\ding{78}
\ding{79}
\ding{80}
\ding{81}
\ding{82}
S
T
U
V
W
X
Y
Z
[
\ding{83}
\ding{84}
\ding{85}
\ding{86}
\ding{87}
\ding{88}
\ding{89}
\ding{90}
\ding{91}
\
]
^
_
`
a
b
c
d
\ding{92}
\ding{93}
\ding{94}
\ding{95}
\ding{96}
\ding{97}
\ding{98}
\ding{99}
\ding{100}
e
f
g
h
i
j
k
\ding{101}
\ding{102}
\ding{103}
\ding{104}
\ding{105}
\ding{106}
\ding{107}
Table 238: wasysym Geometric Shapes
7
\hexagon
8
\octagon
D
\pentagon
9
\varhexagon
Table 239: MnSymbol Geometric Shapes
☀
⧫
⧫
◯
\filledlargestar
\filledlozenge
\filledmedlozenge
\largecircle
◇
◊
…
◻
\largediamond
\largelozenge
\largepentagram
\largesquare
☆
✡
◊
✡
\largestar
\largestarofdavid
\medlozenge
\medstarofdavid
◊
\smalllozenge
MnSymbol defines \bigcirc as a synonym for \largecircle; \bigstar as a synonym for \filledlargestar; \lozenge as a synonym for \medlozenge; and,
\blacklozenge as a synonym for \filledmedlozenge.
74
%
&
_
/
#
"
$
!
5
6
U
V
P
S
R
Table 240: ifsym Geometric Shapes
\BigCircle
\BigCross
\BigDiamondshape
\BigHBar
\BigLowerDiamond
\BigRightDiamond
\BigSquare
\BigTriangleDown
\BigTriangleLeft
\BigTriangleRight
\BigTriangleUp
\BigVBar
\Circle
\Cross
\DiamondShadowA
\DiamondShadowB
\DiamondShadowC
\Diamondshape
\FilledBigCircle
\FilledBigDiamondshape
\FilledBigSquare
\FilledBigTriangleDown
\FilledBigTriangleLeft
T
Q
e
f
u
v
p
s
r
t
q
`
c
b
d
a
o
?
\FilledBigTriangleRight
\FilledBigTriangleUp
\FilledCircle
\FilledDiamondShadowA
\FilledDiamondShadowC
\FilledDiamondshape
\FilledSmallCircle
\FilledSmallDiamondshape
\FilledSmallSquare
\FilledSmallTriangleDown
\FilledSmallTriangleLeft
\FilledSmallTriangleRight
\FilledSmallTriangleUp
\FilledSquare
\FilledSquareShadowA
\FilledSquareShadowC
\FilledTriangleDown
\FilledTriangleLeft
\FilledTriangleRight
\FilledTriangleUp
\HBar
\LowerDiamond
\RightDiamond
E
F

O
@
C
B
D
A
*
)
0
3
2
4
1
\SmallCircle
\SmallCross
\SmallDiamondshape
\SmallHBar
\SmallLowerDiamond
\SmallRightDiamond
\SmallSquare
\SmallTriangleDown
\SmallTriangleLeft
\SmallTriangleRight
\SmallTriangleUp
\SmallVBar
\SpinDown
\SpinUp
\Square
\SquareShadowA
\SquareShadowB
\SquareShadowC
\TriangleDown
\TriangleLeft
\TriangleRight
\TriangleUp
\VBar
The ifsym documentation points out that one can use \rlap to combine
some of the above into useful, new symbols. For example, \BigCircle and
\FilledSmallCircle combine to give “ ”. Likewise, \Square and \Cross combine to give “ ”. See Section 7.3 for more information about constructing new
symbols out of existing symbols.
%u
0
d
a
p
b
e
c
s
r
\CircleShadow
\CircleSolid
\DiamondSolid
\Ellipse
\EllipseShadow
\EllipseSolid
\HalfCircleLeft
\HalfCircleRight
u
v
t
f
k
m
l
h
Table 241: bbding Geometric Shapes
\Rectangle
\RectangleBold
\RectangleThin
\Square
\SquareCastShadowBottomRight
\SquareCastShadowTopLeft
\SquareCastShadowTopRight
\SquareShadowBottomRight
j
i
g
o
n
\SquareShadowTopLeft
\SquareShadowTopRight
\SquareSolid
\TriangleDown
\TriangleUp
Table 242: pifont Geometric Shapes
l
m
n
\ding{108}
\ding{109}
\ding{110}
o
p
q
\ding{111}
\ding{112}
\ding{113}
r
s
t
\ding{114}
\ding{115}
\ding{116}
75
u
w
x
\ding{117}
\ding{119}
\ding{120}
y
z
\ding{121}
\ding{122}
}
|
~

Table 243: universa Geometric Shapes
\baucircle
\bausquare
\bautriangle
Table 244: universal Geometric Shapes
\baucircle
\baueclipse
…
†
\bauhole
\baupunct
\bausquare
\bautriangle
Table 245: igo Go Stones
}
|
~

\blackstone[\igocircle]
\blackstone[\igocross]
\blackstone[\igonone]
\blackstone[\igosquare]
\blackstone[\igotriangle]
\whitestone[\igocircle]
\whitestone[\igocross]
\whitestone[\igonone]
\whitestone[\igosquare]
\whitestone[\igotriangle]
In addition to the symbols shown above, igo’s \blackstone and \whitestone
commands accept numbers from 1 to 99 and display them circled as , , , . . .
and , , , . . . , respectively.
c
c
The igo package is intended to typeset Go boards (goban). See the igo documentation for more information.
Table 246: manfnt Dangerous Bend Symbols

\dbend
~
\lhdbend
\reversedvideodbend
Note that these symbols descend far beneath the baseline. manfnt also defines nondescending versions, which it calls, correspondingly, \textdbend, \textlhdbend,
and \textreversedvideodbend.
Table 247: skull Symbols
A
\skull
Table 248: Non-Mathematical mathabx Symbols
O
\rip
Table 249: marvosym Information Symbols
®
V
U
K
X
\Bicycle
\Checkedbox
\Clocklogo
\Coffeecup
\Crossedbox
o
x
I
i
y
\Football
\Gentsroom
\Industry
\Info
\Ladiesroom
76
Z
w
b
\Pointinghand
\Wheelchair
\Writinghand
O
C
D
q
Table 250: Miscellaneous dingbat Dingbats
E
\anchor
\carriagereturn
\checkmark
C
I
S
B
Z
\eye
\filledsquarewithdots
\satellitedish
\Sborder
\squarewithdots
\Zborder
Table 251: Miscellaneous bbding Dingbats
\Envelope
\OrnamentDiamondSolid
\Peace
\Phone
\PhoneHandset
\Plane
T
\SunshineOpenCircled
\Tape
Table 252: Miscellaneous pifont Dingbats
%
&
'
\ding{37}
\ding{38}
\ding{39}
(
)
v
\ding{40}
\ding{41}
\ding{118}
¤
¥
¦
\ding{164}
\ding{165}
\ding{166}
77
§
¨
ª
\ding{167}
\ding{168}
\ding{170}
«
©
\ding{171}
\ding{169}
6
Other symbols
The following are all the symbols that didn’t fit neatly or unambiguously into any of the previous sections.
(Do weather symbols belong under “Science and technology”? Should dice be considered “mathematics”?)
While some of the tables contain clearly related groups of symbols (e.g., musical notes), others represent motley
assortments of whatever the font designer felt like drawing.
Table 253: textcomp Genealogical Symbols
b
d
\textborn
\textdied
c
l
m
\textdivorced
\textleaf
\textmarried
Table 254: wasysym General Symbols
m
1
|
\ataribox
\bell
\blacksmiley
\Bowtie
\brokenvert
\checked
L
/
6
\clock
\diameter
\DOWNarrow
\frownie
\invdiameter
\kreuz
\LEFTarrow
\lightning
\phone
\pointer
\recorder
\RIGHTarrow
,
☼
K
◊
\smiley
\sun
\UParrow
\wasylozenge
Table 255: wasysym Circles
#
G
\CIRCLE
\Circle
\LEFTCIRCLE
#
G
I
H
#
H
J
"
\LEFTcircle
\Leftcircle
\RIGHTCIRCLE
\RIGHTcircle
\Rightcircle
\leftturn
!
\rightturn
Table 256: wasysym Musical Symbols
\eighthnote
\halfnote
\twonotes
\fullnote
♩
\quarternote
See also \flat, \sharp, and \natural (Table 184 on page 62).
Table 257: arev Musical Symbols
♩
\quarternote
♪
\eighthnote
♬
\sixteenthnote
See also \flat, \sharp, and \natural (Table 184 on page 62).
78
Table 258: harmony Musical Symbols
==
ˇ “ˇ “
“
=ˇ=(
ˇ “ ==
ˇ“
?
DD
\AAcht
DD
/
\Acht
\AchtBL
\AchtBR
\AcPa
\DD
D/
ss
SS
¯
<
\DDohne
\Dohne
\Ds
\DS
\Ganz
\GaPa
˘“
<
==
ˇ“
==
ˇ “=
\Halb
\HaPa
\Pu
\Sech
\SechBL
\SechBl
‰
ˇ“
==ˇ ) “
===“
ˇ
@
<
ˇ“
>
\SechBR
>
\VM
\SechBr
\SePa
\UB
\Vier
\ViPa
ˇ “*
A
\Zwdr
\ZwPa
The musixtex package must be installed to use harmony.
Table 259: harmony Musical Accents
.a
.
a
Aa
\Ferli{A}\Ferli{a}∗
.a
.
a
Aa
\Fermi{A}\Fermi{a}
Alal \Kr{A}\Kr{a}
∗
A/a/
\Ohne{A}\Ohne{a}∗
g
Ag
a \Umd{A}\Umd{a}∗
These symbols take an optional argument which shifts the accent either horizontally
or vertically (depending on the command) by the given distance.
In addition to the accents shown above, \HH is a special accent command
which accepts five period-separated characters and typesets them such that
b
c
“\HH.X.a.b.c.d.” produces “Xa d”. All arguments except the first can be omitted: “\HH.X.....” produces “X”. \Takt takes two arguments and composes them
into a musical time signature. For example, “\Takt{12}{8}” produces “ 12
8 ”. As
two special cases, “\Takt{c}{0}” produces “S ” and “\Takt{c}{1}” produces “R ”.
The musixtex package must be installed to use harmony.
Table 260: Miscellaneous manfnt Symbols
$
%
#
y
!
\manboldkidney
\manconcentriccircles
\manconcentricdiamond
\mancone
\mancube
\manerrarrow
\manfilledquartercircle
\manhpennib
\manimpossiblecube
\mankidney
\manlhpenkidney
&
'
"
7
x
6
\manpenkidney
\manquadrifolium
\manquartercircle
\manrotatedquadrifolium
\manrotatedquartercircle
\manstar
\mantiltpennib
\mantriangledown
\mantriangleright
\mantriangleup
\manvpennib
Table 261: marvosym Navigation Symbols
·
¸
¹
\Forward
\ForwardToEnd
\ForwardToIndex
»
º
¶
\MoveDown
\MoveUp
\Rewind
79
´
µ
½
\RewindToIndex
\RewindToStart
\ToBottom
¼
\ToTop
Table 262: marvosym Laundry Symbols
Ø
Ó
Õ
Ë
«
¾
¿
¬
­
Ý
Ü
¯
°
±
Ì
¨
²

×
Ù
\AtForty
\AtNinetyFive
\AtSixty
\Bleech
\CleaningA
\CleaningF
\CleaningFF
\CleaningP
\CleaningPP
\Dontwash
\Handwash
\IroningI
\IroningII
\IroningIII
\NoBleech
\NoChemicalCleaning
\NoIroning
\NoTumbler
\ShortFifty
\ShortForty
Ô
Ö
Û
Ú

‰
Š
‹
\ShortNinetyFive
\ShortSixty
\ShortThirty
\SpecialForty
\Tumbler
\WashCotton
\WashSynthetics
\WashWool
Table 263: Other marvosym Symbols
ˆ
ý
¥
‡
ª
\Ankh
\Bat
\Bouquet
\Celtcross
\CircledA
†
F
f
§
Ž
Œ
ÿ
m
@
:
\Cross
\FHBOlogo
\FHBOLOGO
\Frowny
\FullFHBO
\Heart
\MartinVogel
\Mundus
\MVAt
\MVRightarrow
©
þ
Y
\Smiley
\Womanface
\Yinyang
ƒ
\varQ
Table 264: Miscellaneous universa Symbols
\bauforms
\bauhead
Table 265: Miscellaneous universal Symbols
\baudash
\bauequal
\bauface
„
\bauforms
\bauhead
\bauplus
\bauquarter
\bauquestion
\bauwindow
Table 266: ifsym Weather Symbols
!
#
"
\Cloud
\FilledCloud
\FilledRainCloud
\FilledSunCloud
\FilledWeakRainCloud
\Fog
\Hail
\HalfSun
\Lightning
\NoSun
\Rain
\RainCloud
\Sleet
\Snow
\SnowCloud
\Sun
\SunCloud
\ThinFog
$
\WeakRain
\WeakRainCloud
\FilledSnowCloud
In addition, \Thermo{0}. . .\Thermo{6} produce thermometers that are between
0/6 and 6/6 full of mercury: Similarly, \wind{hsuni}{hanglei}{hstrengthi} will draw wind symbols with a given
amount of sun (0–4), a given angle (in degrees), and a given strength in km/h (0–
100). For example, \wind{0}{0}{0} produces “ 0 ”, \wind{2}{0}{0} produces
“ 0 ”, and \wind{4}{0}{100} produces “ : ”.
80
Table 267: ifsym Alpine Symbols
\SummitSign
\StoneMan
\Hut
\FilledHut
\Village
\Summit
\Mountain
\IceMountain
\VarMountain
\VarIceMountain
\SurveySign
\Joch
\Flag
\VarFlag
\Tent
\HalfFilledHut
\VarSummit
Table 268: ifsym Clocks
\Interval
\StopWatchStart
\VarClock
\Wecker
\StopWatchEnd
\Taschenuhr
\VarTaschenuhr
ifsym also exports a \showclock macro. \showclock{hours}{minutes} outputs
a clock displaying the corresponding time. For instance, “\showclock{5}{40}”
produces “ ”. hours must be an integer from 0 to 11, and minutes must be an
integer multiple of 5 from 0 to 55.
Table 269: Other ifsym Symbols
\FilledSectioningDiamond
\Fire
\Irritant
\Letter
\PaperLandscape
\PaperPortrait
\Radiation
\SectioningDiamond
\Telephone
\StrokeOne
\StrokeTwo
\StrokeThree
\StrokeFour
\StrokeFive
In addition, \Cube{1}. . .\Cube{6} produce dice with the corresponding number of
spots:
Table 270: epsdice Dice
\epsdice{1}
\epsdice{2}
\epsdice{3}
\epsdice{4}
\epsdice{5}
\epsdice{6}
The epsdice package does not provide a font but rather an interface to a set of
graphics drawn in Encapsulated PostScript. Consequently, epsdice does not work
with pdfLATEX.
81
Table 271: skak Chess Informator Symbols
g
i
b
a
e
I
RR
n
V
t
G
\bbetter
\bdecisive
\betteris
\bishoppair
\bupperhand
\centre
\comment
\compensation
\counterplay
\devadvantage
\diagonal
d
L
j
P
H
O
x
y
m
S
U
N
F
o
r
M
s
l
q
T
k
u
\doublepawns
\ending
\equal
\etc
\file
\kside
\markera
\markerb
\mate
\morepawns
\moreroom
\novelty
\onlymove
\opposbishops
\passedpawn
\qside
\samebishops
\see
\seppawns
\timelimit
\unclear
\unitedpawns
R
f
h
J
w
A
E
C
v
c
D
\various
\wbetter
\wdecisive
\weakpt
\with
\withattack
\withidea
\withinit
\without
\wupperhand
\zugzwang
The preceding symbols are merely the named informator symbol. skak can
typeset many more chess-related symbols, including those for all of the pieces
(
/
), but only in the context of moves and boards, not
as individual, named LATEX symbols.
KQRBNP kqrbnp
Table 272: metre Metrical Symbols
×
´˘
˘
´˘˘
˘´˘
˘˘
˘˘´
˘˘
˘˘˘
˘¯´˘¯
×
\a
\B
\b
\Bb
\BB
\bb
\bB
\bba
\bbb
\BBm
˘¯˘¯´
˘¯˘¯
˘¯´˘¯
˘¯˘˘¯
˘¯˘¯¯˘¯
˘¯
´˘¯
\bBm
\bbm
\Bbm
\bbmb
\bbmx
\bm
\Bm
\c
\C
\Cc
¯
´¯
¯
¯´˘
¯˘
¯˘´¯˘
¯˘¯˘´
¯˘¯˘
×
\cc
\Ccc
\m
\M
\ma
\Mb
\mb
\mBb
\mbB
\mbb
¯˘´¯˘
˘¯◦◦˘¯¯˘¯
˙
¯˙
˙˙
˙˙
¯˙˙˙
˙
˙˙˙
˙
\Mbb
\mbbx
\oo
\p
\pm
\pp
\Pp
\ppm
\ppp
\Ppp
˙˙
˙
˙˙˙
˙˙
˙˙
˙˙
˙˙
∼
∼
⊗
\Pppp
\pppp
\Ppppp
\ppppp
\ps
\pxp
\Pxp
\R
\r
\T
⊗
¯˙
¯˙
˙˙˙˙
\t
\tsbm
\tsmb
\tsmm
\vppm
\vpppm
\x
The preceding symbols are valid only within the argument to the metre command.
Table 273: metre Small and Large Metrical Symbols
÷
<
·
<
·
⊃
×
····
∧
>
·
>
·
··
∼
⊗
⊕
\anaclasis
\antidiple
\antidiple*
\antisigma
\asteriscus
\catalexis
\diple
\diple*
\obelus
\obelus*
\respondens
\terminus
\terminus*
÷
<
·
<
·
⊃
×
····
∧
>
>··
··
∼
⊗
⊕
82
\Anaclasis
\Antidiple
\Antidiple*
\Antisigma
\Asteriscus
\Catalexis
\Diple
\Diple*
\Obelus
\Obelus*
\Respondens
\Terminus
\Terminus*
Table 274: phaistos Symbols from the Phaistos Disk
J
\PHarrow
e
\PHeagle
B
\PHplumedHead
h
\PHbee
o
\PHflute
d
\PHram
X
\PHbeehive
H
\PHgaunlet
l
\PHrosette
R
\PHboomerang
p
\PHgrater
P
\PHsaw
K
\PHbow
G
\PHhelmet
L
\PHshield
b
\PHbullLeg
a
\PHhide
Y
\PHship
D
\PHcaptive
Z
\PHhorn
V
\PHsling
S
\PHcarpentryPlane
Q
\PHlid
r
\PHsmallAxe
c
\PHcat
m
\PHlily
q
\PHstrainer
E
\PHchild
N
\PHmanacles
C
\PHtattooedHead
M
\PHclub
O
\PHmattock
I
\PHtiara
W
\PHcolumn
n
\PHoxBack
g
\PHtunny
U
\PHcomb
k
\PHpapyrus
j
\PHvine
T
\PHdolium
A
\PHpedestrian
s
\PHwavyBand
f
\PHdove
i
\PHplaneTree
F
\PHwoman
Table 275: protosem Proto-Semitic Characters
a
A
b
B
g
d
D
e
\Aaleph
\AAaleph
\Abeth
\AAbeth
\Agimel
\Adaleth
\AAdaleth
\Ahe
E
z
w
H
h
T
y
Y
\AAhe
\Azayin
\Avav
\Aheth
\AAheth
\Ateth
\Ayod
\AAyod
k
K
l
L
m
n
o
O
\Akaph
\AAkaph
\Alamed
\AAlamed
\Amem
\Anun
\Aayin
\AAayin
s
p
P
x
X
q
Q
r
\Asamekh
\Ape
\AApe
\Asade
\AAsade
\Aqoph
\AAqoph
\Aresh
R
S
v
V
t
\AAresh
\Ashin
\Ahelmet
\AAhelmet
\Atav
The protosem package defines abbreviated control sequences for each of the above.
In addition, single-letter shortcuts can be used within the argument to the
\textproto command (e.g., “\textproto{Pakyn}” produces “Pakyn”). See
the protosem documentation for more information.
83
Table 276: hieroglf Hieroglyphics
A
\HA
I
\HI
n
\Hn
T
\HT
a
\Ha
i
\Hi
O
\HO
t
\Ht
B
\HB
˝
\Hibl
o
\Ho
˘
\Htongue
b
\Hb
ˆ
\Hibp
p
\Hp
U
\HU
c
\Hc
¨
\Hibs
P
\HP
u
\Hu
C
\HC
˜
\Hibw
˙
\Hplural
V
\HV
D
\HD
J
\HJ
+
\Hplus
v
\Hv
d
\Hd
j
\Hj
Q
\HQ
|
\Hvbar
¸
\Hdual
k
\Hk
q
\Hq
w
\Hw
e
E
\He
\HE
K
L
\HK
\HL
?
R
\Hquery
\HR
W
X
\HW
\HX
f
\Hf
l
\Hl
r
\Hr
x
\Hx
F
\HF
m
\Hm
s
\Hs
Y
\HY
G
\HG
M
\HM
S
\HS
y
\Hy
g
\Hg
ˇ
\Hman
¯
\Hscribe
z
\Hz
h
\Hh
´
\Hms
/
\Hslash
Z
\HZ
H
\HH
N
\HN
˚
\Hsv
|
\Hone
3
\Hhundred
5
\HXthousand
7
\Hmillion
2
\Hten
4
\Hthousand
6
\HCthousand
The hieroglf package defines alternate control sequences and single-letter shortcuts
for each of the above which can be used within the argument to the \textpmhg
command (e.g., “\textpmhg{Pakin}” produces “Pakin”). See the hieroglf
documentation for more information.
Table 277: dictsym Dictionary Symbols
a
G
A
B
C
\dsaeronautical
\dsagricultural
\dsarchitectural
\dsbiological
\dschemical
c
H
J
L
M
\dscommercial
\dsheraldical
\dsjuridical
\dsliterary
\dsmathematical
84
m
X
R
T
\dsmedical
\dsmilitary
\dsrailways
\dstechnical
Table 278: simpsons Characters from The Simpsons
\Bart
\Homer
\Maggie
\Burns
\Lisa
\Marge
\SNPP
The location of the characters’ pupils can be controlled with the \Goofy command.
See A METAFONT of ‘Simpsons’ characters [Che97] for more information. Also,
each of the above can be prefixed with \Left to make the character face left instead
of right:
\Left\Bart
Table 279: staves Magical Staves
\staveI
\staveXXIV
.
\staveXLVII
\staveII
\staveXXV
/
\staveXLVIII
\staveIII
\staveXXVI
0
\staveXLIX
\staveIV
\staveXXVII
1
\staveL
\staveV
\staveXXVIII
2
\staveLI
\staveVI
\staveXXIX
3
\staveLII
\staveVII
\staveXXX
4
\staveLIII
\staveVIII
\staveXXXI
5
\staveLIV
\staveIX
\staveXXXII
6
\staveLV
\staveX
\staveXXXIII
7
\staveLVI
\staveXI
!
\staveXXXIV
8
\staveLVII
\staveXII
"
\staveXXXV
9
\staveLVIII
\staveXIII
#
\staveXXXVI
:
\staveLIX
\staveXIV
$
\staveXXXVII
;
\staveLX
\staveXV
%
\staveXXXVIII
<
\staveLXI
\staveXVI
&
\staveXXXIX
=
\staveLXII
(continued on next page)
85
(continued from previous page)
\staveXVII
'
\staveXL
>
\staveLXIII
\staveXVIII
(
\staveXLI
?
\staveLXIV
\staveXIX
)
\staveXLII
@
\staveLXV
\staveXX
*
\staveXLIII
A
\staveLXVI
\staveXXI
+
\staveXLIV
B
\staveLXVII
\staveXXII
,
\staveXLV
C
\staveLXVIII
\staveXXIII
-
\staveXLVI
The meanings of these symbols are described on the Web site for the Museum of Icelandic Sorcery and Witchcraft at http://www.galdrasyning.is/
index.php?option=com content&task=category&sectionid=5&id=18&Itemid=
60 (TinyURL: http://tinyurl.com/25979m). For example, \staveL (“1”) is
intended to ward off ghosts and evil spirits.
86
7
Additional Information
Unlike the previous sections of this document, Section 7 does not contain new symbol tables. Rather, it provides
additional help in using the Comprehensive LATEX Symbol List. First, it draws attention to symbol names used
by multiple packages. Next, it provides some guidelines for finding symbols and gives some examples regarding
how to construct missing symbols out of existing ones. Then, it comments on the spacing surrounding symbols
in math mode. After that, it presents an ASCII and Latin 1 quick-reference guide, showing how to enter all of
the standard ASCII/Latin 1 symbols in LATEX. And finally, it lists some statistics about this document itself.
7.1
Symbol Name Clashes
Unfortunately, a number of symbol names are not unique; they appear in more than one package. Depending
on how the symbols are defined in each package, LATEX will either output an error message or replace an
earlier-defined symbol with a later-defined symbol. Table 280 presents a selection of name clashes that appear
in this document.
Using multiple symbols with the same name in the same document—or even merely loading conflicting
symbol packages—can be tricky but, as evidenced by the existence of Table 280, not impossible. The general
procedure is to load the first package, rename the conflicting symbols, and then load the second package.
Examine the LATEX source for this document (symbols.tex) for examples of this and other techniques for
handling symbol conflicts. Note that symbols.tex’s \savesymbol and \restoresymbol macros have been
extracted into the savesym package, which can be downloaded from CTAN.
txfonts and pxfonts redefine a huge number of symbols—essentially, all of the symbols defined by latexsym,
textcomp, the various AMS symbol sets, and LATEX 2ε itself. Similarly, mathabx redefines a vast number of
math symbols in an attempt to improve their look. The txfonts, pxfonts, and mathabx conflicts are not listed
in Table 280 because they are designed to be compatible with the symbols they replace. Table 281 on page 89
illustrates what “compatible” means in this context.
To use the new txfonts/pxfonts symbols without altering the document’s main font, merely reset the default
font families back to their original values after loading one of those packages:
\renewcommand\rmdefault{cmr}
\renewcommand\sfdefault{cmss}
\renewcommand\ttdefault{cmtt}
7.2
Resizing symbols
Mathematical symbols listed in this document as “variable-sized” are designed to stretch vertically. Each
variable-sized symbol comes in one or more basic sizes plus a variation comprising both stretchable and
nonstretchable segments. Table 282 on page 89 presents the symbols \} and \uparrow in their default size,
in their \big, \Big, \bigg, and \Bigg sizes, in an even larger size achieved using \left/\right, and—for
contrast—in a large size achieved by changing the font size using LATEX 2ε ’s \fontsize command. Because
the symbols shown belong to the Computer Modern family, the type1cm package needs to be loaded to support
font sizes larger than 24.88 pt.
Note how \fontsize makes the symbol wider and thicker. (The graphicx package’s \scalebox or
\resizebox commands would produce a similar effect.) Also, the \fontsize-enlarged symbol is vertically
centered relative to correspondingly large text, unlike the symbols enlarged using \big et al. or \left/\right,
which all use the same math axis regardless of symbol size. However, \fontsize is not limited to mathematical
delimiters. Also, \scalebox and \resizebox are more robust to poorly composed symbols (e.g., two symbols
made to overlap by backspacing a fixed distance) but do not work with every TEX backend and will produce
jagged symbols when scaling a bitmapped font.
All variable-sized delimiters are defined (by the corresponding .tfm file) in terms of up to five segments, as
illustrated by Figure 1 on page 89. The top, middle, and bottom segments are of a fixed size. The top-middle
and middle-bottom segments (which are constrained to be the same character) are repeated as many times as
necessary to achieve the desired height.
7.3
Where can I find the symbol for . . . ?
If you can’t find some symbol you’re looking for in this document, there are a few possible explanations:
87
88
\baro
\bigtriangledown
\bigtriangleup
\checkmark
\Circle
\Cross
\ggg
\Letter
\lightning
\Lightning
\lll
\Square
\Sun
\TriangleDown
\TriangleUp
Symbol
5
4
LATEX 2ε
≪
≫
X
AMS
`
a
stmaryrd
#
wasysym
@
Î
Ï
mathabx
À
E
B
†
marvosym
Table 280: Symbol Name Clashes
f
o
n
*
bbding
0
3
1
5
ifsym
D
dingbat
<
wsuipa
Table 281: Example of a Benign Name Clash
Default
(Computer Modern)
Symbol
txfonts
(Times Roman)
R
“
R
\textrecipe
R
“
Table 282: Sample resized delimiters
Symbol
\}
Default size
\big
\bigg
™
o
}
\Big
\Bigg
\left / \right
)

















\uparrow
↑









































−→
x



x


x

x





top

top-middle (extensible)

middle

middle-bottom (extensible)

bottom
x












Figure 1: Implementation of variable-sized delimiters
89
\fontsize
}
↑
• The symbol isn’t intuitively named. As a few examples, the ifsym command to draw dice is “\Cube”; a
plus sign with a circle around it (“exclusive or” to computer engineers) is “\oplus”; and lightning bolts
in fonts designed by German speakers may have “blitz” in their names as in the ulsy package. The moral
of the story is to be creative with synonyms when searching the index.
• The symbol is defined by some package that I overlooked (or deemed unimportant). If there’s some
symbol package that you think should be included in the Comprehensive LATEX Symbol List, please send
me e-mail at the address listed on the title page.
• The symbol isn’t defined in any package whatsoever.
Even in the last case, all is not lost. Sometimes, a symbol exists in a font, but there is no LATEX binding
for it. For example, the PostScript Symbol font contains a “↵” symbol, which may be useful for representing
a carriage return, but there is no package (as far as I know) for accessing that symbol. To produce an
unnamed symbol, you need to switch to the font explicitly with LATEX 2ε ’s low-level font commands [LAT00]
and use TEX’s primitive \char command [Knu86a] to request a specific character number in the font.4 In fact,
\char is not strictly necesssary; the character can often be entered symbolically. For example, the symbol
for an impulse train or Tate-Shafarevich group (“ ”) is actually an uppercase sha in the Cyrillic alphabet.
(Cyrillic is supported by the OT2 font encoding, for instance). While a sha can be defined numerically as
“{\fontencoding{OT2}\selectfont\char88}” it may be more intuitive to use the OT2 font encoding’s “SH”
ligature: “{\fontencoding{OT2}\selectfont SH}”.
X
Reflecting and rotating existing symbols
A common request on comp.text.tex is for a reversed or rotated version of an existing symbol.
As a last resort, these effects can be achieved with the graphicx (or graphics) package’s \reflectbox and
\rotatebox macros.
For example, \textsuperscript{\reflectbox{?}} produces an irony mark (“ ? ”;
cf. http://en.wikipedia.org/wiki/Irony mark), and \rotatebox[origin=c]{180}{$\iota$} produces the
definite-description operator (“ ”). The disadvantage of the graphicx/graphics approach is that not every TEX
backend handles graphical transformations.5 Far better is to find a suitable font that contains the desired
symbol in the correct orientation. For instance, if the phonetic package is available, then \textit{\riota}
will yield a backend-independent “ ”. Similarly, tipa’s \textrevepsilon (“3”) or wsuipa’s \revepsilon (“”)
may be used to express the mathematical notion of “such that” in a cleaner manner than with \reflectbox
or \rotatebox.6
ι
Joining and overlapping existing symbols
Symbols that do not exist in any font can sometimes be fabricated out of existing symbols. The LATEX 2ε source
file fontdef.dtx contains a number of such definitions. For example, \models (see Table 62 on page 30) is
defined in that file with:
\def\models{\mathrel|\joinrel=}
where \mathrel and \joinrel are used to control the horizontal spacing. \def is the TEX primitive upon
which LATEX’s \newcommand is based. See The TEXbook [Knu86a] for more information on all three of those
commands.
With some simple pattern-matching, one can easily define a backward \models sign (“=|”):
\def\ismodeledby{=\joinrel\mathrel|}
In general, arrows/harpoons, horizontal lines (“=”, “-”, “\relbar”, and “\Relbar”), and the various mathextension characters can be combined creatively with miscellaneous other characters to produce a variety of
new symbols. Of course, new symbols can be composed from any set of existing characters. For instance, LATEX
defines \hbar (“~”) as a “¯” character (\mathchar’26) followed by a backspace of 9 math units (\mkern-9mu),
followed by the letter “h”:
\def\hbar{{\mathchar’26\mkern-9muh}}
4 pifont
defines a convenient \Pisymbol command for accessing symbols in PostScript fonts by number.
“\Pisymbol{psy}{191}” produces “↵”.
5 As an example, Xdvi ignores both \reflectbox and \rotatebox.
6 More common symbols for representing “such that” include “|”, “:”, and “s.t.”.
90
For example,
We can just as easily define other barred letters:
\def\bbar{{\mathchar’26\mkern-9mu b}}
\def\dbar{{\mathchar’26\mkern-12mu d}}
(The space after the “mu” is optional but is added for clarity.) \bbar and \dbar define “b̄” and “¯
d”, respectively.
Note that \dbar requires a greater backward math kern than \bbar; a −9 mu kern would have produced the
less-attractive “d̄” glyph.
The amsmath package provides \overset and \underset commands for placing one symbol respectively
G
above or below another. For example, \overset{G}{\sim}7 produces “∼” (sometimes used for “equidecomposable with respect to G”).
Sometimes an ordinary tabular environment can be co-opted into juxtaposing existing symbols into a new
symbol. Consider the following definition of \asterism (“**
* ”) from a June 2007 post to comp.text.tex by
Peter Flynn:
\newcommand{\asterism}{\smash{%
\raisebox{-.5ex}{%
\setlength{\tabcolsep}{-.5pt}%
\begin{tabular}{@{}cc@{}}%
\multicolumn2c*\\[-2ex]*&*%
\end{tabular}}}}
Note how the space between columns (\tabcolsep) and rows (\\[. . . ]) is made negative to squeeze the
asterisks closer together.
There is a TEX primitive called \mathaccent that centers one mathematical symbol atop another. For
·
example, one can define \dotcup (“∪”)—the
composition of a \cup and a \cdot—as follows:
\newcommand{\dotcup}{\ensuremath{\mathaccent\cdot\cup}}
The catch is that \mathaccent requires the accent to be a “math character”. That is, it must be a character
in a math font as opposed to a symbol defined in terms of other symbols. See The TEXbook [Knu86a] for more
information.
Another TEX primitive that is useful for composing symbols is \vcenter. \vcenter is conceptually similar
to “\begin{tabular}{l}” in LATEX but takes a list of vertical material instead of \\-separated rows. Also,
it vertically centers the result on the math axis. (Many operators, such as “+” and “−” are also vertically
centered on the math axis.) Enrico Gregorio posted the following symbol definition to comp.text.tex in
March 2004 in response to a query about an alternate way to denote equivalence:
\newcommand*{\threesim}{%
\mathrel{\vcenter{\offinterlineskip
\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}\vskip-.35ex\hbox{$\sim$}}}}
The \threesim symbol, which vertically centers three \sim (“∼”) symbols with 0.35 x-heights of space between
∼
them, is rendered as “∼
∼”. \offinterlineskip is a macro that disables implicit interline spacing. Without
it, \threesim would have a full line of vertical spacing between each \sim. Because of \vcenter, \threesim
∼
aligns properly with other math operators: a ÷ b ∼
∼ c × d.
A related LATEX command, borrowed from Plain TEX, is \ooalign. \ooalign vertically overlaps symbols
and works both within and outside of math mode. Essentially, it creates a single-column tabular environment
with zero vertical distance between rows. However, because it is based directly on TEX’s \ialign primitive,
\ooalign uses TEX’s tabular syntax instead of LATEX’s (i.e., with \cr as the row terminator instead of \\). The
◦
following example of \ooalign, a macro that defines a standard-state symbol (\stst, “−
”) as a superscripted
8
Plimsoll line (\barcirc, “−
◦ ”), is due to an October 2007 comp.text.tex post by Donald Arseneau:
\makeatletter
\providecommand\barcirc{\mathpalette\@barred\circ}
\def\@barred#1#2{\ooalign{\hfil$#1-$\hfil\cr\hfil$#1#2$\hfil\cr}}
\newcommand\stst{^{\protect\barcirc}}
\makeatother
7L
AT
EX’s \stackrel command is similar but is limited to placing a symbol above a binary relation.
\barcirc illustrates how to combine symbols using \ooalign, the stmaryrd package’s \minuso command (Table 42 on
page 21) provides a similar glyph (“
”) as a single, indivisible symbol.
8 While
91
In the preceding code, note the \ooalign call’s use of \hfil to horizontally center a minus sign (“−”) and
a \circ (“◦”).
As another example of \ooalign, consider the following code (due to Enrico Gregorio in a June 2007 post
to comp.text.tex) that overlaps a \ni (“3”) and two minus signs (“−
−”) to produce “3
−
−”, an obscure variation
on the infrequently used “3” symbol for “such that”discussed on page 90:
\newcommand{\suchthat}{%
\mathrel{\ooalign{$\ni$\cr\kern-1pt$-$\kern-6.5pt$-$}}}
The slashed package, although originally designed for producing Feynman slashed-character notation, in
fact facilitates the production of arbitrary overlapped symbols. The default behavior is to overwrite a given
/
character with “/”. For example, \slashed{D} produces “D”.
However, the \declareslashed command
provides the flexibility to specify the mathematical context of the composite character (operator, relation,
punctuation, etc., as will be discussed in Section 7.4), the overlapping symbol, horizontal and vertical adjustments in symbol-relative units, and the character to be overlapped. Consider, for example, the symbol for
reduced quadrupole moment (“I”).
This can be declared as follows:
\newcommand{\rqm}{{%
\declareslashed{}{\text{-}}{0.04}{0}{I}\slashed{I}}}
\declareslashed{·}{·}{·}{·}{I} affects the meaning of all subsequent \slashed{I} commands in the same
scope. The preceding definition of \rqm therefore uses an extra set of curly braces to limit that scope to
a single \slashed{I}. In addition, \rqm uses amstext’s \text macro (described on the next page) to make
\declareslashed use a text-mode hyphen (“-”) instead of a math-mode minus sign (“−”) and to ensure that
the hyphen scales properly in size in subscripts and superscripts. See slashed’s documentation (located in
slashed.sty itself) for a detailed usage description of the \slashed and \declareslashed commands.
Somewhat simpler than slashed is the centernot package. centernot provides a single command, \centernot,
which, like \not, puts a slash over the subsequent mathematical symbol. However, instead of putting the slash
at a fixed location, \centernot centers the slash over its argument:
6−→
−→
6
\not\longrightarrow
vs.
\centernot\longrightarrow
See the centernot documentation for more information.
Making new symbols work in superscripts and subscripts
To make composite symbols work properly within subscripts and superscripts, you may need to use TEX’s
\mathchoice primitive. \mathchoice evaluates one of four expressions, based on whether the current math
style is display, text, script, or scriptscript. (See The TEXbook [Knu86a] for a more complete description.) For example, the following LATEX code—posted to comp.text.tex by Torsten Bronger—composes
a sub/superscriptable “⊥
>” symbol out of \top and \bot (“>” and “⊥”):
\def\topbotatom#1{\hbox{\hbox to 0pt{$#1\bot$\hss}$#1\top$}}
\newcommand*{\topbot}{\mathrel{\mathchoice{\topbotatom\displaystyle}
{\topbotatom\textstyle}
{\topbotatom\scriptstyle}
{\topbotatom\scriptscriptstyle}}}
The following is another example that uses \mathchoice to construct symbols in different math modes.
The code defines a principal value integral symbol, which is an integral sign with a line through it.
\def\Xint#1{\mathchoice
{\XXint\displaystyle\textstyle{#1}}%
{\XXint\textstyle\scriptstyle{#1}}%
{\XXint\scriptstyle\scriptscriptstyle{#1}}%
{\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
\!\int}
92
\def\XXint#1#2#3{{\setbox0=\hbox{$#1{#2#3}{\int}$}
\vcenter{\hbox{$#2#3$}}\kern-.5\wd0}}
\def\ddashint{\Xint=}
\def\dashint{\Xint-}
(The preceding code was taken verbatim from the UK TERX Users’ Group FAQ at http://www.tex.ac.uk/
faq.) R\dashint produces a single-dashed integral sign (“−”), while \ddashint produces a double-dashed
R
one (“=”). The \Xint macro Rdefined above can also be usedR to generate a wealthR of new integrals: “”
(\Xint\circlearrowright), “” (\Xint\circlearrowleft), “⊂” (\Xint\subset), “∞” (\Xint\infty), and
so forth.
LATEX 2ε provides a simple wrapper for \mathchoice that sometimes helps produce terser symbol definitions. The macro is called \mathpalette and it takes two arguments. \mathpalette invokes the first
argument, passing it one of “\displaystyle”, “\textstyle”, “\scriptstyle”, or “\scriptscriptstyle”,
followed by the second argument. \mathpalette is useful when a symbol macro must know which math
style is currently in use (e.g., to set it explicitly within an \mbox). Donald Arseneau posted the following
\mathpalette-based definition of a probabilistic-independence symbol (“⊥
⊥”) to comp.text.tex in June 2000:
\newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}}
\def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}}
The \independent macro uses \mathpalette to pass the \independenT helper macro both the current math
style and the \perp symbol. \independenT typesets \perp in the current math style, moves two math units to
the right, and finally typesets a second—overlapping—copy of \perp, again in the current math style. \rlap,
which enables text overlap, is described later on this page.
√
”) as this helps visually distinguish
Some people like their square-root signs with a trailing “hook” (i.e., “
√
√
expressions like “ 3x ” from those like “ 3x”. In March 2002, Dan Luecking posted a \mathpalette-based
definition of a hooked square-root symbol to comp.text.tex:
\def\hksqrt{\mathpalette\DHLhksqrt}
\def\DHLhksqrt#1#2{\setbox0=\hbox{$#1\sqrt{#2\,}$}\dimen0=\ht0
\advance\dimen0-0.2\ht0
\setbox2=\hbox{\vrule height\ht0 depth -\dimen0}%
{\box0\lower0.4pt\box2}}
Notice how \DHLhksqrt uses \mathpalette to recover the outer math style (argument #1) from within an
\hbox. The rest of the code is simply using TEX primitives to position a hook of height 0.2 times the \sqrt
height at the right of the \sqrt. See The TEXbook [Knu86a] for more understanding of TEX “boxes” and
“dimens”.
Sometimes, however, amstext’s \text macro is all that is necessary to make composite symbols appear
correctly in subscripts and superscripts, as in the following definitions of \neswarrow (“%
.”) and \nwsearrow
(“&”):9
\newcommand{\neswarrow}{\mathrel{\text{$\nearrow$\llap{$\swarrow$}}}}
\newcommand{\nwsearrow}{\mathrel{\text{$\nwarrow$\llap{$\searrow$}}}}
\text resembles LATEX’s \mbox command but shrinks its argument appropriately when used within a subscript
or superscript. \llap (“left overlap”) and its counterpart, \rlap (“right overlap”), appear frequently when
creating composite characters. \llap outputs its argument to the left of the current position, overlapping
whatever text is already there. Similarly, \rlap overlaps whatever text would normally appear to the right
of its argument. For example, “A\llap{B}” and “\rlap{A}B” each produce “A
B”. However, the result of the
former is the width of “A”, and the result of the latter is the width of “B”—\llap{. . . } and \rlap{. . . } take
up zero space.
In a June 2002 post to comp.text.tex, Donald Arseneau presented a general macro for aligning an arbitrary
number of symbols on their horizontal centers and vertical baselines:
\makeatletter
\def\moverlay{\mathpalette\mov@rlay}
9 Note
that if your goal is to typeset commutative diagrams, then you should probably be using XY-pic.
93
\def\mov@rlay#1#2{\leavevmode\vtop{%
\baselineskip\z@skip \lineskiplimit-\maxdimen
\ialign{\hfil$#1##$\hfil\cr#2\crcr}}}
\makeatother
The \makeatletter and \makeatother commands are needed to coerce LATEX into accepting “@” as
part of a macro name. \moverlay takes a list of symbols separated by \cr (TEX’s equivalent of
LATEX’s \\). For example, the \topbot command defined on page 92 could have been expressed as
“\moverlay{\top\cr\bot}” and the \neswarrow command defined on the previous page could have been
expressed as “\moverlay{\nearrow\cr\swarrow}”.
The basic concept behind \moverlay’s implementation is that \moverlay typesets the given symbols in a
table that utilizes a zero \baselineskip. This causes every row to be typeset at the same vertical position.
See The TEXbook [Knu86a] for explanations of the TEX primitives used by \moverlay.
Modifying LATEX-generated symbols
Oftentimes, symbols composed in the LATEX 2ε source code can be modified with minimal effort to produce
useful variations. For example, fontdef.dtx composes the \ddots symbol (see Table 174 on page 61) out of
three periods, raised 7 pt., 4 pt., and 1 pt., respectively:
\def\ddots{\mathinner{\mkern1mu\raise7\p@
\vbox{\kern7\p@\hbox{.}}\mkern2mu
\raise4\p@\hbox{.}\mkern2mu\raise\p@\hbox{.}\mkern1mu}}
\p@ is a LATEX 2ε shortcut for “pt” or “1.0pt”.
The remaining commands are defined in The
TEXbook [Knu86a]. To draw a version of \ddots with the dots going along the opposite diagonal, we merely
have to reorder the \raise7\p@, \raise4\p@, and \raise\p@:
\makeatletter
\def\revddots{\mathinner{\mkern1mu\raise\p@
\vbox{\kern7\p@\hbox{.}}\mkern2mu
\raise4\p@\hbox{.}\mkern2mu\raise7\p@\hbox{.}\mkern1mu}}
\makeatother
\revddots is essentially identical to the mathdots package’s \iddots command or the yhmath package’s \adots
command.
Producing complex accents
Accents are a special case of combining existing symbols to make new symbols. While various tables in
this document show how to add an accent to an existing symbol, some applications, such as transliterations from non-Latin alphabets, require multiple accents per character. For instance, the creator of pdfTEX
writes his name as “Hàn Th´ê Thành”. The dblaccnt package enables LATEX to stack accents, as in “H\‘an
Th\’{\^e} Th\‘anh” (albeit not in the OT1 font encoding). In addition, the wsuipa package defines \diatop
and \diaunder macros for putting one or more diacritics or accents above or below a given character. For
example, \diaunder[{\diatop[\’|\=]}|\textsubdot{r}] produces “´r̄”. See the wsuipa documentation for
˙
more information.
The accents package facilitates the fabrication of accents in math mode. Its \accentset command en?
ables any character to be used as an accent. For instance, \accentset{\star}{f} produces “f ” and
e
\accentset{e}{X} produces “X”. \underaccent does the same thing, but places the accent beneath the
character. This enables constructs like \underaccent{\tilde}{V}, which produces “V ”. accents provides
˜
other accent-related features as well; see the documentation for more information.
Creating extensible symbols
A relatively simple example of creating extensible symbols stems from a comp.text.tex post by Donald
Arseneau (June 2003). The following code defines an equals sign that extends as far to the right as possible,
just like LATEX’s \hrulefill command:
94
\makeatletter
\def\equalsfill{$\m@th\mathord=\mkern-7mu
\cleaders\hbox{$\!\mathord=\!$}\hfill
\mkern-7mu\mathord=$}
\makeatother
TEX’s \cleaders and \hfill primitives are the key to understanding \equalsfill’s extensibility. Essentially, \equalsfill repeats a box containing “=” plus some negative space until it fills the maximum available horizontal space. \equalsfill is intended to be used with LATEX’s \stackrel command, which stacks
one mathematical expression (slightly reduced in size) atop another. Hence, “\stackrel{a}{\rightarrow}”
a
definition
produces “→” and “X \stackrel{\text{definition}}{\hbox{\equalsfill}} Y” produces “X ======= Y ”.
If all that needs to extend are horizontal and vertical lines—as opposed to repeated symbols such as the
“=” in the previous example—LATEX’s array or tabular environments may suffice. Consider the following
code (due to a February 1999 comp.text.tex post by Donald Arseneau) for typesetting annuities:
\DeclareRobustCommand{\annu}[1]{_{%
\def\arraystretch{0}%
\setlength\arraycolsep{1pt}%
adjust these
\setlength\arrayrulewidth{.2pt}% two settings
\begin{array}[b]{@{}c|}\hline
\\[\arraycolsep]%
\scriptstyle #1%
\end{array}%
}}
One can then use, e.g., “$A\annu{x:n}$” to produce “Ax:n ”.
A more complex example of composing accents is the following definition of extensible \overbracket,
\underbracket, \overparenthesis, and \underparenthesis symbols, taken from a May 2002
comp.text.tex post by Donald Arseneau:
\makeatletter
\def\overbracket#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@}
\downbracketfill\crcr\noalign{\kern3\p@\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}
\def\underbracket#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip}
\upbracketfill\crcr\noalign{\kern3\p@}}}}\limits}
\def\overparenthesis#1{\mathop{\vbox{\ialign{##\crcr\noalign{\kern3\p@}
\downparenthfill\crcr\noalign{\kern3\p@\nointerlineskip}
$\hfil\displaystyle{#1}\hfil$\crcr}}}\limits}
\def\underparenthesis#1{\mathop{\vtop{\ialign{##\crcr
$\hfil\displaystyle{#1}\hfil$\crcr\noalign{\kern3\p@\nointerlineskip}
\upparenthfill\crcr\noalign{\kern3\p@}}}}\limits}
\def\downparenthfill{$\m@th\braceld\leaders\vrule\hfill\bracerd$}
\def\upparenthfill{$\m@th\bracelu\leaders\vrule\hfill\braceru$}
\def\upbracketfill{$\m@th\makesm@sh{\llap{\vrule\@height3\p@\@width.7\p@}}%
\leaders\vrule\@height.7\p@\hfill
\makesm@sh{\rlap{\vrule\@height3\p@\@width.7\p@}}$}
\def\downbracketfill{$\m@th
\makesm@sh{\llap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}%
\leaders\vrule\@height.7\p@\hfill
\makesm@sh{\rlap{\vrule\@height.7\p@\@depth2.3\p@\@width.7\p@}}$}
\makeatother
Table 283 showcases these accents. The TEXbook [Knu86a] or another book on TEX primitives is indispensible
for understanding how the preceding code works. The basic idea is that \downparenthfill, \upparenthfill,
\downbracketfill, and \upbracketfill do all of the work; they output a left symbol (e.g., \braceld [“z”]
for \downparenthfill), a horizontal rule that stretches as wide as possible, and a right symbol (e.g., \bracerd
[“{”] for \downparenthfill). \overbracket, \underbracket, \overparenthesis, and \underparenthesis
95
merely create a table whose width is determined by the given text, thereby constraining the width of the
horizontal rules.
Table 283: Manually Composed Extensible Accents
z {
abc \overparenthesis{abc}
abc \overbracket{abc}
abc
\underbracket{abc}
abc
| }
\underparenthesis{abc}
Note that the simplewick package provides mechanisms for typesetting Wick contractions, which utilize \overbracket- and \underbracket-like brackets of variable width and height (or depth). For example, “\acontraction{}{A}{B}{C}\acontraction[2ex]{A}{B}{C}{D}\bcontraction{}{A}{BC}{D}ABCD”
produces
ABCD
.
See the simplewick documentation for more information.
Developing new symbols from scratch
Sometimes is it simply not possible to define a new symbol in terms of existing symbols. Fortunately, most, if
not all, TEX distributions are shipped with a tool called METAFONT which is designed specifically for creating
fonts to be used with TEX. The METAFONTbook [Knu86b] is the authoritative text on METAFONT. If you
plan to design your own symbols with METAFONT, The METAFONTbook is essential reading. Nevertheless, the
following is an extremely brief tutorial on how to create a new LATEX symbol using METAFONT. Its primary
purpose is to cover the LATEX-specific operations not mentioned in The METAFONTbook and to demonstrate
that symbol-font creation is not necessarily a difficult task.
Suppose we need a symbol to represent a light bulb (“A”).10 The first step is to draw this in METAFONT.
It is common to separate the font into two files: a size-dependent file, which specifies the design size and
various font-specific parameters that are a function of the design size; and a size-independent file, which draws
characters in the given size. Figure 2 shows the METAFONT code for lightbulb10.mf. lightbulb10.mf
specifies various parameters that produce a 10 pt. light bulb then loads lightbulb.mf. Ideally, one should
produce lightbulbhsizei.mf files for a variety of hsizeis. This is called “optical scaling”. It enables, for
example, the lines that make up the light bulb to retain the same thickness at different font sizes, which looks
much nicer than the alternative—and default—“mechanical scaling”. When a lightbulbhsizei.mf file does
not exist for a given size hsizei, the computer mechanically produces a wider, taller, thicker symbol:
A
A
vs.
10 pt.
20 pt.
vs.
A
30 pt.
vs.
A
vs.
40 pt.
A A
vs.
50 pt.
font identifier := "LightBulb10";
font size 10pt#;
em# := 10pt#;
cap# := 7pt#;
sb# := 1/4pt#;
o# := 1/16pt#;
vs.
60 pt.
A
70 pt.
% Name the font.
% Specify the design size.
% “M” width is 10 points.
% Capital letter height is 7 points above the baseline.
% Leave this much space on the side of each character.
% Amount that curves overshoot borders.
input lightbulb
% Load the file that draws the actual glyph.
Figure 2: Sample METAFONT size-specific file (lightbulb10.mf)
lightbulb.mf, shown in Figure 3, draws a light bulb using the parameters defined in lightbulb10.mf.
Note that the the filenames “lightbulb10.mf” and “lightbulb.mf” do not follow the Berry font-naming
10 I’m
not a very good artist; you’ll have to pretend that “A” looks like a light bulb.
96
scheme [Ber01]; the Berry font-naming scheme is largely irrelevant for symbol fonts, which generally lack bold,
italic, small-caps, slanted, and other such variants.
mode setup;
% Target a given printer.
define pixels(em, cap, sb);
define corrected pixels(o);
% Convert to device-specific units.
% Same, but add a device-specific fudge factor.
%% Define a light bulb at the character position for “A”
%% with width 1/2em#, height cap#, and depth 1pt#.
beginchar("A", 1/2em#, cap#, 1pt#); "A light bulb";
pickup pencircle scaled 1/2pt;
%% Define the points we need.
top z1 = (w/2, h + o);
rt z2 = (w + sb + o − x4 , y4 );
bot z3 = (z1 − (0, w − sb − o));
lft z4 = (sb − o, 1/2[y1 , y3 ]);
path bulb;
bulb = z1 . . z2 . . z3 . . z4 . . cycle;
% Use a pen with a small, circular tip.
% z1 is at the top of a circle.
% z2 is at the same height as z4 but the opposite side.
% z3 is at the bottom of the circle.
% z4 is on the left of the circle.
% Define a path for the bulb itself.
% The bulb is a closed path.
z5 = point 2 − 1/3 of bulb;
% z5 lies on the bulb, a little to the right of z3 .
z6 = (x5 , 0);
% z6 is at the bottom, directly under z5 .
z7 = (x8 , 0);
% z7 is at the bottom, directly under z8 .
z8 = point 2 + 1/3 of bulb;
% z8 lies on the bulb, a little to the left of z3 .
bot z67 = ( 1/2[x6 , x7 ], pen bot − o − 1/8pt); % z67 lies halfway between z6 and z7 but a jot lower.
%% Draw the bulb and the base.
draw bulb;
draw z5 - - z6 . . z67 . . z7 - - z8 ;
% Draw the bulb proper.
% Draw the base of the bulb.
%% Display key positions and points to help us debug.
makegrid(0, sb, w/2, w − sb)(0, −1pt, y2 , h);
% Label “interesting” x and y coordinates.
penlabels(1, 2, 3, 4, 5, 6, 67, 7, 8);
% Label control points for debugging.
endchar;
end
Figure 3: Sample METAFONT size-independent file (lightbulb.mf)
The code in Figures 2 and 3 is heavily commented and should demonstrate some of the basic concepts
behind METAFONT usage: declaring variables, defining points, drawing lines and curves, and preparing to
debug or fine-tune the output. Again, The METAFONTbook [Knu86b] is the definitive reference on METAFONT programming.
METAFONT can produce “proofs” of fonts—large, labeled versions that showcase the logical structure of
each character. In fact, proof mode is METAFONT’s default mode. To produce a proof of lightbulb10.mf,
issue the following commands at the operating-system prompt:
⇐ Produces lightbulb10.2602gf
⇐ Produces lightbulb10.dvi
prompt > mf lightbulb10.mf
prompt > gftodvi lightbulb10.2602gf
You can then view lightbulb10.dvi with any DVI viewer. The result is shown in Figure 4. Observe how the
grid defined with makegrid at the bottom of Figure 3 draws vertical lines at positions 0, sb, w/2, and w − sb
and horizontal lines at positions 0, −1pt, y2 , and h. Similarly, observe how the penlabels command labels all
of the important coordinates: z1 , z2 , . . . , z8 and z67 , which lightbulb.mf defines to lie between z6 and z7 .
Most, if not all, TEX distributions include a Plain TEX file called testfont.tex which is useful for testing
new fonts in a variety of ways. One useful routine produces a table of all of the characters in the font:
prompt > tex testfont
This is TeX, Version 3.14159 (Web2C 7.3.1)
(/usr/share/texmf/tex/plain/base/testfont.tex
Name of the font to test = lightbulb10
97
1
4
2
8
7
3
67
5
6
Figure 4: Proof diagram of lightbulb10.mf
Now type a test command (\help for help):)
*\table
*\bye
[1]
Output written on testfont.dvi (1 page, 1516 bytes).
Transcript written on testfont.log.
The resulting table, stored in testfont.dvi and illustrated in Figure 5, shows every character in the font.
To understand how to read the table, note that the character code for “A”—the only character defined by
lightbulb10.mf—is 41 in hexadecimal (base 16) and 101 in octal (base 8).
Test of lightbulb10 on March 11, 2003 at 1127
´0
´10x
´11x
˝8
´1
A
´2
˝9
˝A
´3
´4
´5
´6
´7
˝4x
˝B
˝C
˝D
˝E
˝F
Figure 5: Font table produced by testfont.tex
The LightBulb10 font is now usable by TEX. LATEX 2ε , however, needs more information before documents
can use the font. First, we create a font-description file that tells LATEX 2ε how to map fonts in a given font
family and encoding to a particular font in a particular font size. For symbol fonts, this mapping is fairly simple.
Symbol fonts almost always use the “U” (“Unknown”) font encoding and frequently occur in only one variant:
normal weight and non-italicized. The filename for a font-description file important; it must be of the form
“hencodingihfamilyi.fd”, where hencodingi is the lowercase version of the encoding name (typically “u” for
symbol fonts) and hfamilyi is the name of the font family. For LightBulb10, let’s call this “bulb”. Figure 6 lists
the contents of ubulb.fd. The document “LATEX 2ε Font Selection” [LAT00] describes \DeclareFontFamily
and \DeclareFontShape in detail, but the gist of ubulb.fd is first to declare a U-encoded version of the bulb
font family and then to specify that a LATEX 2ε request for a U-encoded version of bulb with a (m)edium font
series (as opposed to, e.g., bold) and a (n)ormal font shape (as opposed to, e.g., italic) should translate into a
TEX request for lightbulb10.tfm mechanically scaled to the current font size.
The final step is to write a LATEX 2ε style file that defines a name for each symbol in the font. Because
we have only one symbol our style file, lightbulb.sty (Figure 7), is rather trivial. Note that instead of
typesetting “A” we could have had \lightbulb typeset “\char65”, “\char"41”, or “\char’101” (respectively,
decimal, hexadecimal, and octal character offsets into the font). For a simple, one-character symbol font
98
\DeclareFontFamily{U}{bulb}{}
\DeclareFontShape{U}{bulb}{m}{n}{<-> lightbulb10}{}
Figure 6: LATEX 2ε font-description file (ubulb.fd)
such as LightBulb10 it would be reasonable to merge ubulb.fd into lightbulb.sty instead of maintaining
two separate files. In either case, a document need only include “\usepackage{lightbulb}” to make the
\lightbulb symbol available.
\newcommand{\lightbulb}{{\usefont{U}{bulb}{m}{n}A}}
Figure 7: LATEX 2ε style file (lightbulb.sty)
METAFONT normally produces bitmapped fonts. However, it is also possible, with the help of some
external tools, to produce PostScript Type 1 fonts. These have the advantages of rendering better in Adobe®
Acrobat® (at least in versions prior to 6.0) and of being more memory-efficient when handled by a PostScript
interpreter. See http://www.tex.ac.uk/cgi-bin/texfaq2html?label=textrace for pointers to tools that can
produce Type 1 fonts from METAFONT.
7.4
Math-mode spacing
Terms such as “binary operators”, “relations”, and “punctuation” in Section 3 primarily regard the surrounding
spacing. (See the Short Math Guide for LATEX [Dow00] for a nice exposition on the subject.) To use a symbol
for a different purpose, you can use the TEX commands \mathord, \mathop, \mathbin, \mathrel, \mathopen,
\mathclose, and \mathpunct. For example, if you want to use \downarrow as a variable (an “ordinary”
symbol) instead of a delimiter, you can write “$3 x + \mathord{\downarrow}$” to get the properly spaced
˙ that
“3x + ↓” rather than the awkward-looking “3x+ ↓”. Similarly, to create a dotted-union symbol (“∪”)
spaces like the ordinary set-union symbol (\cup) it must be defined with \mathbin, just as \cup is. Contrast
˙
˙
“$A \dot{\cup} B$” (“A∪B”)
with “$A \mathbin{\dot{\cup}} B$” (“A ∪B”).
See The TEXbook [Knu86a]
for the definitive description of math-mode spacing.
The purpose of the “log-like symbols” in Tables 120 and 121 is to provide the correct amount of spacing
around and within multiletter function names. Table 284 contrasts the output of the log-like symbols with
various, naı̈ve alternatives. In addition to spacing, the log-like symbols also handle subscripts properly. For
example, “\max_{p \in P}” produces “maxp∈P ” in text, but “max” as part of a displayed formula.
p∈P
Table 284: Spacing Around/Within Log-like Symbols
LATEX expression
Output
$r
$r
$r
$r
r sin θ
rsinθ
rsinθ
rsinθ
\sin \theta$
sin \theta$
\mbox{sin} \theta$
\mathrm{sin} \theta$
(best)
The amsmath package makes it straightforward to define new log-like symbols:
\DeclareMathOperator{\atan}{atan}
\DeclareMathOperator*{\lcm}{lcm}
The difference between \DeclareMathOperator and \DeclareMathOperator* involves the handling of subscripts. With \DeclareMathOperator*, subscripts are written beneath log-like symbols in display style and
to the right in text style. This is useful for limit operators (e.g., \lim) and functions that tend to map over
a set (e.g., \min). In contrast, \DeclareMathOperator tells TEX that subscripts should always be displayed
to the right of the operator, as is common for functions that take a single parameter (e.g., \log and \cos).
Table 285 contrasts symbols declared with \DeclareMathOperator and \DeclareMathOperator* in both text
style ($. . .$) and display style (\[. . .\]).11
11 Note that \displaystyle can be used to force display style within $. . .$ and \textstyle can be used to force text style
within \[. . .\].
99
Table 285: Defining new log-like symbols
Declaration function
$\newlogsym {p \in P}$
\[ \newlogsym {p \in P} \]
\DeclareMathOperator
newlogsymp∈P
newlogsymp∈P
\DeclareMathOperator*
newlogsymp∈P
newlogsym
p∈P
It is common to use a thin space (\,) between the words of a multiword operators, as in
“\DeclareMathOperator*{\argmax}{arg\,max}”. \liminf, \limsup, and all of the log-like symbols shown
in Table 121 utilize this spacing convention.
7.5
Bold mathematical symbols
LATEX does not normally use bold symbols when typesetting mathematics. However, bold symbols are occasionally needed, for example when naming vectors. Any of the approaches described at http://www.tex.ac.uk/
cgi-bin/texfaq2html?label=boldgreek can be used to produce bold mathematical symbols. Table 286
contrasts the output produced by these various techniques. As the table illustrates, these techniques exhibit
variation in their formatting of Latin letters (upright vs. italic), formatting of Greek letters (bold vs. normal),
formatting of operators and relations (bold vs. normal), and spacing.
Table 286: Producing bold mathematical symbols
7.6
Package
Code
Output
none
none
none
amsbsy
amsbsy
bm
fixmath
$\alpha + b = \Gamma \div D$
$\mathbf{\alpha + b = \Gamma \div D}$
\boldmath$\alpha + b = \Gamma \div D$
$\pmb{\alpha + b = \Gamma \div D}$
$\boldsymbol{\alpha + b = \Gamma \div D}$
$\bm{\alpha + b = \Gamma \div D}$
$\mathbold{\alpha + b = \Gamma \div D}$
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ÷D
α+b=Γ ÷D
(no bold)
(faked bold)
ASCII and Latin 1 quick reference
Table 287 on the next page amalgamates data from various other tables in this document into a convenient
reference for LATEX 2ε typesetting of ASCII characters, i.e., the characters available on a typical U.S. computer
keyboard. The first two columns list the character’s ASCII code in decimal and hexadecimal. The third
column shows what the character looks like. The fourth column lists the LATEX 2ε command to typeset the
character as a text character. And the fourth column lists the LATEX 2ε command to typeset the character
within a \texttt{. . .} command (or, more generally, when \ttfamily is in effect).
The following are some additional notes about the contents of Table 287:
• “"” is not available in the OT1 font encoding.
• The characters “<”, “>”, and “|” do work as expected in math mode, although they produce, respectively,
“¡”, “¿”, and “—” in text mode when using the OT1 font encoding.12 The following are some alternatives
for typesetting “<”, “>”, and “|”:
– Specify a document font encoding other than OT1 (as described on page 7).
– Use the appropriate symbol commands from Table 2 on page 8, viz. \textless, \textgreater,
and \textbar.
– Enter the symbols in math mode instead of text mode, i.e., $<$, $>$, and $|$.
12 Donald
Knuth didn’t think such symbols were important outside of mathematics so he omitted them from his text fonts.
100
Table 287: LATEX 2ε ASCII Table
Dec
Hex
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
..
.
57
58
59
60
61
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
..
.
39
3A
3B
3C
3D
Char
Body text
!
"
#
$
%
&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
<
=
!
\textquotedbl
\#
\$
\%
\&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
\textless
=
\texttt
Dec
Hex
!
"
\#
\$
\%
\&
’
(
)
*
+
,
.
/
0
1
2
..
.
9
:
;
<
=
62
63
64
65
66
67
..
.
90
91
92
93
94
95
96
97
98
99
..
.
122
123
124
125
126
3E
3F
40
41
42
43
..
.
5A
5B
5C
5D
5E
5F
60
61
62
63
..
.
7A
7B
7C
7D
7E
Char
Body text
\texttt
>
?
@
A
B
C
..
.
Z
[
\
]
ˆ
\textgreater
?
@
A
B
C
..
.
Z
[
\textbackslash
]
\^{}
\_
‘
a
b
c
..
.
z
\{
\textbar
\}
\~{}
>
?
@
A
B
C
..
.
Z
[
\char‘\\
]
\^{}
\char‘\_
‘
a
b
c
..
.
z
\char‘\{
|
\char‘\}
\~{}
‘
a
b
c
..
.
z
{
|
}
˜
Note that for typesetting metavariables many people prefer \textlangle and \textrangle to \textless
and \textgreater, i.e., “hfilenamei” instead of “<filename>”.
• Although “/” does not require any special treatment, LATEX additionally defines a \slash command
which outputs the same glyph but permits a line break afterwards. That is, “increase/decrease” is
always typeset as a single entity while “increase\slash{}decrease” may be typeset with “increase/”
on one line and “decrease” on the next.
• \textasciicircum can be used instead of \^{}, and \textasciitilde can be used instead of \~{}.
Note that \textasciitilde and \~{} produce raised, diacritic tildes. “Text” (i.e., vertically centered)
tildes can be generated with either the math-mode \sim command (shown in Table 62 on page 30),
which produces a somewhat wide “∼”, or the textcomp package’s \texttildelow (shown in Table 36
on page 19), which produces a vertically centered “~” in most fonts but a baseline-oriented “~” in
Computer Modern, txfonts, pxfonts, and various other fonts originating from the TEX world. If your
goal is to typeset tildes in URLs or Unix filenames, your best bet is to use the url package, which has a
number of nice features such as proper line-breaking of such names.
• The various \char commands within \texttt are necessary only in the OT1 font encoding. In other
encodings (e.g., T1), commands such as \{, \}, \_, and \textbackslash all work properly.
• The code page 437 (IBM PC) version of ASCII characters 1 to 31 can be typeset using the ascii package.
See Table 209 on page 69.
• To replace “‘” and “’” with the more computer-like (and more visibly distinct) “`” and “'” within
a verbatim environment, use the upquote package. Outside of verbatim, you can use \char18 and
\char13 to get the modified quote characters. (The former is actually a grave accent.)
Similar to Table 287, Table 288 on the next page is an amalgamation of data from other tables in this
document. While Table 287 shows how to typeset the 7-bit ASCII character set, Table 288 shows the Latin 1
(Western European) character set, also known as ISO-8859-1.
101
Table 288: LATEX 2ε Latin 1 Table
Dec
Hex
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
Char
¡
¢
£
¤
¥
¦
§
¨
©
ª
«
¬
®
¯
°
±
²
³
´
µ
¶
·
¸
¹
º
»
¼
½
¾
¿
À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï
Ð
LATEX 2ε
!‘
\textcent
\pounds
\textcurrency
\textyen
\textbrokenbar
\S
\textasciidieresis
\textcopyright
\textordfeminine
\guillemotleft
\textlnot
\\textregistered
\textasciimacron
\textdegree
\textpm
\texttwosuperior
\textthreesuperior
\textasciiacute
\textmu
\P
\textperiodcentered
\c{}
\textonesuperior
\textordmasculine
\guillemotright
\textonequarter
\textonehalf
\textthreequarters
?‘
\‘{A}
\’{A}
\^{A}
\~{A}
\"{A}
\AA
\AE
\c{C}
\‘{E}
\’{E}
\^{E}
\"{E}
\‘{I}
\’{I}
\^{I}
\"{I}
\DH
(tc)
(tc)
(tc)
(tc)
(tc)
(T1)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(tc)
(T1)
(tc)
(tc)
(tc)
(T1)
102
Dec
Hex
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
Char
Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Ý
Þ
ß
à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ı̀
ı́
ı̂
ı̈
ð
ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü
ý
þ
ÿ
LATEX 2ε
\~{N}
\‘{O}
\’{O}
\^{O}
\~{O}
\"{O}
\texttimes
\O
\‘{U}
\’{U}
\^{U}
\"{U}
\’{Y}
\TH
\ss
\‘{a}
\’{a}
\^{a}
\~{a}
\"{a}
\aa
\ae
\c{c}
\‘{e}
\’{e}
\^{e}
\"{e}
\‘{ı}
\’{ı}
\^{ı}
\"{ı}
\dh
\~{n}
\‘{o}
\’{o}
\^{o}
\~{o}
\"{o}
\textdiv
\o
\‘{u}
\’{u}
\^{u}
\"{u}
\’{y}
\th
\"{y}
(tc)
(T1)
(T1)
(tc)
(T1)
The following are some additional notes about the contents of Table 288:
• A “(tc)” after a symbol name means that the textcomp package must be loaded to access that symbol.
A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can change the
font encoding document-wide.
• Many of the \text. . . accents can also be produced using the accent commands shown in Table 18 on
page 13 plus an empty argument. For instance, \={} is essentially the same as \textasciimacron.
• The commands in the “LATEX 2ε ” columns work both in body text and within a \texttt{. . .} command
(or, more generally, when \ttfamily is in effect).
• The “£” and “$” glyphs occupy the same slot (36) of the OT1 font encoding, with “£” appearing in italic
fonts and “$” appearing in roman fonts. A problem with LATEX’s default handling of this double-mapping
is that “{\sffamily\slshape\pounds}” produces “$”, not “£”. Other font encodings use separate slots
for the two characters and are therefore robust to the problem of “£”/”$” conflicts. Authors who use
\pounds should select a font encoding other than OT1 (as explained on page 7) or use the textcomp
package, which redefines \pounds to use the TS1 font encoding.
• Character 173, \-, is shown as “-” but is actually a discretionary hyphen; it appears only at the end of
a line.
Microsoft® Windows® normally uses a superset of Latin 1 called “Code Page 1252” or “CP1252” for
short. CP1252 introduces symbols in the Latin 1 “invalid” range (characters 128–159). Table 289 presents the
characters with which CP1252 augments the standard Latin 1 table.
Table 289: LATEX 2ε Code Page 1252 Table
Dec
Hex
128
130
131
132
133
134
135
136
137
138
139
140
142
80
82
83
84
85
86
87
88
89
8A
8B
8C
8E
Char
€
‚
f
„
...
†
‡
ˆ
‰
Š
‹
Œ
Ž
LATEX 2ε
\texteuro
\quotesinglbase
\textit{f}
\quotedblbase
\dots
\dag
\ddag
\textasciicircum
\textperthousand
\v{S}
\guilsinglleft
\OE
\v{Z}
(tc)
(T1)
(T1)
(tc)
(T1)
Dec
Hex
145
146
147
148
149
150
151
152
153
154
155
156
158
159
91
92
93
94
95
96
97
98
99
9A
9B
9C
9E
9F
Char
‘
’
“
”
•
–
—
˜
™
š
›
œ
ž
Ÿ
LATEX 2ε
‘
’
‘‘
’’
\textbullet
---\textasciitilde
\texttrademark
\v{s}
\guilsinglright
\oe
\v{z}
\"{Y}
(T1)
The following are some additional notes about the contents of Table 289:
• As in Table 288, a “(tc)” after a symbol name means that the textcomp package must be loaded to access
that symbol. A “(T1)” means that the symbol requires the T1 font encoding. The fontenc package can
change the font encoding document-wide.
• Not all characters in the 128–159 range are defined.
• Look up “euro signs” in the index for alternatives to \texteuro.
While too large to incorporate into this document, a listing of ISO 8879:1986 SGML/XML character entities
and their LATEX equivalents is available from http://www.bitjungle.com/~isoent/. Some of the characters
presented there make use of isoent, a LATEX 2ε package (available from the same URL) that fakes some of the
missing ISO glyphs using the LATEX picture environment.13
13 isoent is not featured in this document, because it is not available from CTAN and because the faked symbols are not “true”
characters; they exist in only one size, regardless of the body text’s font size.
103
7.7
About this document
History David Carlisle wrote the first version of this document in October, 1994. It originally contained all
of the native LATEX symbols (Tables 40, 52, 62, 95, 120, 122, 141, 142, 152, 157, 184, and a few tables that have
since been reorganized) and was designed to be nearly identical to the tables in Chapter 3 of Leslie Lamport’s
book [Lam86]. Even the table captions and the order of the symbols within each table matched! The AMS
symbols (Tables 41, 63, 64, 98, 99, 123, 127, 137, and 185) and an initial Math Alphabets table (Table 196)
were added thereafter. Later, Alexander Holt provided the stmaryrd tables (Tables 42, 54, 65, 101, 117, and
138).
In January, 2001, Scott Pakin took responsibility for maintaining the symbol list and has since implemented
a complete overhaul of the document. The result, now called, “The Comprehensive LATEX Symbol List”,
includes the following new features:
• the addition of a handful of new math alphabets, dozens of new font tables, and thousands of new
symbols
• the categorization of the symbol tables into body-text symbols, mathematical symbols, science and
technology symbols, dingbats, and other symbols, to provide a more user-friendly document structure
• an index, table of contents, and a frequently-requested symbol list, to help users quickly locate symbols
• symbol tables rewritten to list the symbols in alphabetical order
• appendices to provide additional information relevant to using symbols in LATEX
• tables showing how to typeset all of the characters in the ASCII and Latin 1 font encodings
Furthermore, the internal structure of the document has been completely altered from David’s original version.
Most of the changes are geared towards making the document easier to extend, modify, and reformat.
Build characteristics Table 290 lists some of this document’s build characteristics. Most important is
the list of packages that LATEX couldn’t find, but that symbols.tex otherwise would have been able to take
advantage of. Complete, prebuilt versions of this document are available from CTAN (http://www.ctan.org/
or one of its many mirror sites) in the directory tex-archive/info/symbols/comprehensive. Table 291
shows the package date (specified in the .sty file with \ProvidesPackage) for each package that was used to
build this document and that specifies a package date. Packages are not listed in any particular order in either
Table 290 or 291.
Table 290: Document Characteristics
Characteristic
Value
Source file:
Build date:
Symbols documented:
Packages included:
symbols.tex
January 3, 2008
4947
textcomp latexsym amssymb stmaryrd euscript wasysym
pifont manfnt bbding undertilde ifsym tipa tipx extraipa
wsuipa phonetic ulsy ar metre txfonts mathabx fclfont
skak ascii dingbat skull eurosym esvect yfonts yhmath
esint mathdots trsym universa upgreek overrightarrow
chemarr chemarrow nath trfsigns mathtools phaistos arcs
vietnam t4phonet holtpolt semtrans dictsym extarrows
protosem harmony hieroglf cclicenses mathdesign arev
MnSymbol cmll extpfeil keystroke fge turnstile simpsons
epsdice feyn universal staves igo accents nicefrac bm
mathrsfs chancery calligra bbold mbboard dsfont bbm
none
Packages omitted:
104
Table 291: Package versions used in the preparation of this document
Name
Date
textcomp
latexsym
amssymb
stmaryrd
euscript
wasysym
pifont
manfnt
bbding
undertilde
ifsym
tipa
tipx
wsuipa
metre
txfonts
mathabx
skak
ascii
dingbat
skull
eurosym
yfonts
mathdots
trsym
universa
upgreek
chemarr
mathtools
phaistos
arcs
t4phonet
semtrans
dictsym
extarrows
protosem
harmony
hieroglf
cclicenses
arev
MnSymbol
extpfeil
keystroke
fge
turnstile
epsdice
feyn
universal
accents
nicefrac
bm
calligra
2005/09/27
1998/08/17
2002/01/22
1994/03/03
2001/10/01
2003/10/30
2005/04/12
1999/07/01
1996/06/21
2000/08/08
2000/04/18
2002/08/08
2003/01/01
1994/07/16
2001/12/05
2005/01/03
2003/07/29
2003/09/27
2006/05/30
2001/04/27
2002/01/23
1998/08/06
2003/01/08
2006/03/16
2000/06/25
98/08/01
2003/02/12
2006/02/20
2004/10/10
2004/04/23
2004/05/09
2004/06/01
1998/02/10
2004/07/26
2002/03/30
2005/03/18
2007/05/03
2000/09/23
2005/05/20
2005/06/14
2007/01/21
2006/07/27
2003/08/15
2007/06/03
2007/06/23
2001/02/15
2002/04/23
97/12/24
2006/05/12
1998/08/04
2004/02/26
1996/07/18
105
7.8
Copyright and license
The Comprehensive LATEX Symbol List
Copyright © 2008, Scott Pakin
This work may be distributed and/or modified under the conditions of the LATEX Project Public License, either
version 1.3c of this license or (at your option) any later version. The latest version of this license is in
http://www.latex-project.org/lppl.txt
and version 1.3c or later is part of all distributions of LATEX version 2006/05/20 or later.
This work has the LPPL maintenance status “maintained”.
The current maintainer of this work is Scott Pakin.
References
[AMS99] American Mathematical Society. User’s Guide for the amsmath Package (Version 2.0), December 13,
1999. Available from ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf.
[Ber01]
Karl Berry. Fontname: Filenames for TEX fonts, June 2001. Available from http://www.ctan.org/
tex-archive/info/fontname.
[Che97]
Raymond Chen. A METAFONT of ‘Simpsons’ characters. Baskerville, 4(4):19, September
1997. ISSN 1354-5930. Available from http://tug.ctan.org/usergrps/uktug/baskervi/4 4/
bask4 4.ps.
[Dow00] Michael Downes. Short math guide for LATEX, July 19, 2000. Version 1.07. Available from http://
www.ams.org/tex/short-math-guide.html.
[Gib97]
Jeremy Gibbons. Hey—it works! TUGboat, 18(2):75–78, June 1997. Available from http://
www.tug.org/TUGboat/Articles/tb18-2/tb55works.pdf.
[Knu86a] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986.
[Knu86b] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.
[Lam86] Leslie Lamport. LATEX: A document preparation system. Addison-Wesley, Reading, MA, USA, 1986.
[LAT98]
LATEX3 Project Team. A new math accent. LATEX News. Issue 9, June 1998. Available from
http://www.ctan.org/tex-archive/macros/latex/doc/ltnews09.pdf (also included in many TEX
distributions).
[LAT00]
LATEX3 Project Team. LATEX 2ε font selection, January 30, 2000. Available from http://
www.ctan.org/tex-archive/macros/latex/doc/fntguide.ps (also included in many TEX distributions).
106
Index
If you’re having trouble locating a symbol, try looking under “T” for “\text. . .”. Many text-mode commands begin
with that prefix. Also, accents are shown over/under a gray box, e.g., “ á ” for “\’”.
Some symbol entries appear to be listed repeatedly. This happens when multiple packages define identical (or nearly
identical) glyphs with the same symbol name.14
\" (ä)
\# (#)
\$ ($)
\% (%)
\& (&)
\’ (á)
( (() .
Symbols
........
.......
........
.......
.......
........
........
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . 13
8, 101
8, 101
8, 101
8, 101
. . . 13
. . . 53
( (() . . . . . . . . . . . . . . . . . . 54
) ()) . . . . . . . . . . . . . . . . . . 53
) ()) . . . . . . . . . . . . . . . . . . 54
* (*) .
\, . . .
\- (-)
\. (ȧ)
/ (/) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . 22
. . . 100
102, 103
. . . . 13
. . . . 53
/ (/) . . . . . . . . . . . . . . . . . 54
< (⟨) . . . . . . . . . . . . . . . . . . 54
[ ([) . . .
⎡⎢
[ ( ⎢⎢⎢) . .
\\ .⎢⎣. . . .
] (]) . . .
⎤⎥
] ( ⎥⎥⎥) . .
⎥⎦ . .
\^ (â)
\^{} (ˆ)
\| (k) . .
\| (a
¿) . .
\= (ā) . .
\={} (¯)
| (|) . . .
\_ ( ) . .
\{ ({) . .
\} (}) . .
\‘ (à) . .
\~ (ã) . .
\~{} (˜)
. . . . . . . . . . . . . . . 53
. . . . . . . . . . . . . . . 54
. . . . . . . . . . . . . . . 91
. . . . . . . . . . . . . . . 53
\Acht (ˇ “( ) . . . . . . . . . . . . . . 79
==
\AchtBL ( ˇ “ )
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . 54
. . . . . 13
. . . . 101
. . . . . 53
. . . . . 13
. . . . . 13
. . . . 103
. . . . . 53
. . 8, 101
8, 53, 101
8, 53, 101
. . . . . 13
. . . . . 13
. . . . 101
A
a (esvect package option)
\a ( ×) . . . . . . . . . . . . .
\AA (Å) . . . . . . . . . . . . .
\aa (å) . . . . . . . . . . . . .
\AAaleph (A) . . . . . . . .
\AAayin (O) . . . . . . . . .
\AAbeth (B)
== . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
59
82
. 9
. 9
83
83
83
\AAcht (ˇ “ ˇ “ ) . . . . . . . . . . . . . 79
\AAdaleth (D) . . . . . . . . . . . 83
14 This
\AAhe (E) . . . . . . . . . . . . . . 83
\AAhelmet (V) . . . . . . . . . . 83
\AAheth (h) . . . . . . . . . . . . 83
\AAkaph (K) . . . . . . . . . . . . 83
\AAlamed (L) . . . . . . . . . . . 83
\Aaleph (a) . . . . . . . . . . . . 83
\AApe (P) . . . . . . . . . . . . . . 83
\AAqoph (Q) . . . . . . . . . . . . 83
\AAresh (R) . . . . . . . . . . . . 83
\AAsade (X) . . . . . . . . . . . . 83
\Aayin (o) . . . . . . . . . . . . . 83
\AAyod (Y) . . . . . . . . . . . . . 83
\Abeth (b) . . . . . . . . . . . . . 83
absolute value . see \lvert and
\rvert
abzüglich . . see \textdiscount
\AC (:) . . . . . . . . . . . . . . . . 67
\acarc . . . . . . . . . . . . . . . . 15
\acbar . . . . . . . . . . . . . . . . 15
accents . . 13–17, 33–35, 44, 46,
56–60, 68, 79, 86, 94–96
any character as . . . . . . 94
extensible . . 57–60, 95–96
multiple per character . 94
accents (package) 56, 94, 104, 105
\accentset . . . . . . . . . . . . . 94
==
. . . . . . . . . . . . 79
\AchtBR ( ˇ “ ) . . . . . . . . . . . . 79
\ACK (␆) . . . . . . . . . . . . . . . 69
\acontraction . . . . . . . . . . 96
\AcPa (? ) . . . . . . . . . . . . . . 79
actuarial symbols . . . . . . . . 95
\acute (´) . . . . . . . . . . . . . 56
\acutus (á) . . . . . . . . . . . . . 16
\Adaleth (d) . . . . . . . . . . . 83
adjoint (†) . . . . . . . . . see \dag
Adobe Acrobat . . . . . . . . . . 99
.
\adots ( . . ) . . . . . . . . . 62, 94
advancing . see \textadvancing
\AE (Æ) . . . . . . . . . . . . . . . . 9
\ae (æ) . . . . . . . . . . . . . . . . . 9
\agemO (0) . . . . . . . . . . . . . 63
\Agimel (g) . . . . . . . . . . . . 83
\Ahe (e) . . . . . . . . . . . . . . . 83
\Ahelmet (v) . . . . . . . . . . . 83
\Aheth (H) . . . . . . . . . . . . . 83
\ain (s) . . . . . . . . . . . . . . . . 16
\Akaph (k) . . . . . . . . . . . . . 83
\Alad (}) . . . . . . . . . . . . . . 56
\alad (}) . . . . . . . . . . . . . . 56
\Alamed (l) . . . . . . . . . . . . 83
occurs frequently between amssymb and mathabx, for example.
107
\Alas ({) . . . . . . . . . . . . . . 56
\alas ({) . . . . . . . . . . . . . . 56
\aleph (ℵ) . . . . . . . . . . 50, 62
\aleph (ℵ) . . . . . . . . . . . . . 50
\Alif (-) . . . . . . . . . . . . . . . 13
\alpha (α) . . . . . . . . . . . . . 49
alphabets
African . . . . . . . . . . . . . 9
Cyrillic . . . . . . . . . . . . 90
Greek . . . . . . . . 49, 50, 65
Hebrew . . . . . . . . . 50, 65
hieroglyphic . . . . . . . . . 84
math . . . . . . . . . . . . . . 65
phonetic . . . . . . . . 10–13
proto-Semitic . . . . . . . . 83
Vietnamese . . . . . . . . . . 9
\alphaup (α) . . . . . . . . . . . . 50
alpine symbols . . . . . . . . . . . 81
\Alt ( Alt ) . . . . . . . . . . . . 69
\AltGr ( AltGr ) . . . . . . . . . 69
\amalg (q) . . . . . . . . . . . . . 20
\amalg (∐) . . . . . . . . . . . . . 23
\Amem (m) . . . . . . . . . . . . . . 83
ampersand . . . . . . . . . . see \&
AMS 7, 8, 21, 25, 30, 36, 37, 39,
41, 49–53, 56, 58, 59, 61–63,
66, 87, 104
amsbsy (package) . . . . . . . . 100
amsfonts (package) 20, 30, 36, 41,
62, 65
amsmath (package) 7, 49, 56, 91,
99
amssymb (package) 7, 20, 30, 36,
41, 56, 62, 65, 104, 105, 107
amstext (package) . . . . . 92, 93
\Anaclasis (÷) . . . . . . . . . . 82
\anaclasis (÷) . . . . . . . . . . 82
O
\anchor ( ) .
and . . . . . . . . .
\angle (∠) . . .
\angle (6 ) . . .
\angle (∠) . . .
angles . . . . . . .
\Anglesign (W)
Ångström unit
math mode
text mode
\Angud (i) . . . .
\angud (i) . . . .
angular minutes
angular seconds
\Angus (h) . . . .
\angus (h) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . 77
see \wedge
. . . . . . 63
. . . . . . 62
. . . . . . 63
. . . 62–64
. . . . . . 64
.
.
.
.
.
.
.
.
.
.
.
.
.
.
see \mathring
. . . . see \AA
. . . . . . . . 56
. . . . . . . . 56
. . see \prime
. see \second
. . . . . . . . 56
. . . . . . . . 56
\Ankh (ˆ) . . . . . . . . . . . . . . 80
\annu ( ) . . . . . . . . . . . . . . 95
annuity . . . . . . . . . . . . . . . . 95
\Antidiple (<) . . . . . . . . . . 82
\antidiple (<) . . . . . . . . . . 82
· ) . . . . . . . . . 82
\Antidiple* (<
·
· ) . . . . . . . . . 82
\antidiple* (<
·
\Antisigma (⊃) . . . . . . . . . . 82
\antisigma (⊃) . . . . . . . . . . 82
\Anun (n) . . . . . . . . . . . . . . 83
\Ape (p) . . . . . . . . . . . . . . . 83
APL
modifiers . . . . . . . . . . . 68
symbols . . . . . . . . . . . . 68
\APLbox (~) . . . . . . . . . . . . 68
\APLcirc (◦) . . . . . . . . . . . . 68
\APLcomment () . . . . . . . . . 68
\APLdown (F) . . . . . . . . . . . 68
\APLdownarrowbox (o) . . . . 68
\APLinput (}) . . . . . . . . . . 68
\APLinv (÷
~) . . . . . . . . . . . . 68
\APLleftarrowbox (p) . . . . 68
\APLlog () . . . . . . . . . . . . 68
\APLminus (−) . . . . . . . . . . 68
\APLnot (∼) . . . . . . . . . . . . . 68
\APLrightarrowbox (q) . . . . 68
\APLstar (E) . . . . . . . . . . . 68
\APLup ( ) . . . . . . . . . . . . . 68
\APLuparrowbox (n) . . . . . . 68
\APLvert ( | ) . . . . . . . . . . . . 68
\apprge (?) . . . . . . . . . . . . 38
\apprle (>) . . . . . . . . . . . . 38
\approx (≈) . . . . . . . . . . . . 30
\approx (≈) . . . . . . . . . . . . . 32
\approxeq (u) . . . . . . . . . . 30
\approxeq (≊) . . . . . . . . . . . 32
\Aqoph (q) . . . . . . . . . . . . . 83
\Aquarius (ê) . . . . . . . . . . 68
\aquarius (e) . . . . . . . . . . 68
\AR ( ) . . . . . . . . . . . . . . . 67
ar (package) . . . . . . . . 67, 104
arc . . . . . . . . . . . . see accents
\arccos (arccos) . . . . . . . . . 49
arcminutes . . . . . . . see \prime
arcs (package) . . . . 16, 104, 105
arcseconds . . . . . . . see \second
\arcsin (arcsin) . . . . . . . . . 49
\arctan (arctan) . . . . . . . . . 49
\Aresh (r) . . . . . . . . . . . . . 83
arev (package) . 64, 78, 104, 105
\arg (arg) . . . . . . . . . . . . . . 49
\Aries (P) . . . . . . . . . . . . . 68
\Aries (à) . . . . . . . . . . . . . 68
\aries () . . . . . . . . . . . . . 68
\ArrowBoldDownRight ( ) . 71
\ArrowBoldRightCircled ( ) 71
\ArrowBoldRightShort ( ) . . 71
\ArrowBoldRightStrobe ( ) 71
\ArrowBoldUpRight ( ) . . . 71
\Arrownot (Y) . . . . . . . . . . . . 48
\arrownot (X) . . . . . . . . . . . . 48
A
y
{
z
w
x
arrows . . . 41–43, 47, 69, 71, 90
diagonal, for reducing subexpressions . . . . . . . . . . 57
double-headed, diagonal 93
extensible . . . . . . . 57–60
fletched . . . . . . . . . 47, 71
negated . . . . . . . 41, 42, 44
w
\Arrowvert (w) . . . . . . . . . 53
X
X
X
X
\Arrowvert ( X
XX) . . . . . . . . . 54
\arrowvert () . . . . . . . . . . 53
RR
RR
\arrowvert ( RRR) . . . . . . . . . . 54
Arseneau, Donald . . . 91, 93–95
\Asade (x) . . . . . . . . . . . . . 83
\Asamekh (s) . . . . . . . . . . . 83
ASCII . . . 7, 9, 69, 100–101, 104
table . . . . . . . . . . . . . 101
ascii (package) 69, 101, 104, 105
\ascnode () . . . . . . . . . . . 68
\Ashin (S) . . . . . . . . . . . . . 83
aspect ratio . . . . . . . . . . . . . 67
\ast () . . . . . . . . . . . . . . . 22
\ast (∗) . . . . . . . . . . . . . . . 20
\ast (∗) . . . . . . . . . . . . . . . 23
\Asteriscus ( ×
····) . . . . . . . . 82
\asteriscus (×
····) . . . . . . . . . 82
\Asterisk () . . . . . . . . . . 22
N
\Asterisk ( ) . . . . . . . . . . 74
\asterisk () . . . . . . . . . . . 22
A) . . . . . . . 74
\AsteriskCenterOpen (B) . . 74
\AsteriskRoundedEnds (X) . 74
asterisks . . . . . . . . . . . . 22, 74
\AsteriskThin (C) . . . . . . . 74
\AsteriskThinCenterOpen (D)
\AsteriskBold (
. . . . . . . . . 74
\asterism (**
*) . . . .
astrological symbols .
astronomical symbols
\astrosun () . . . .
\asymp () . . . . . . .
\asymp (≍) . . . . . . .
\atan (atan) . . . . . .
\ataribox (m) . . . . .
\Atav (t) . . . . . . . .
\Ateth (T) . . . . . . .
\AtForty (Ø) . . . .
\AtNinetyFive (Ó)
atomic math objects
\AtSixty (Õ) . . . .
\autoleftarrow (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . 91
. . . 68
. . . 68
. . . 68
. . . 30
. . . 48
. . . 99
. . . 78
. . . 83
. . . 83
. . . 80
. . . 80
49, 100
. . . . 80
DGGGGG)
. . . 60
\autoleftrightharpoons
(
EGGGGG
GGGGGC)
. . . . . . . . . . . 60
\autorightarrow (
GGGGGA)
. . 60
\autorightleftharpoons
(
GGGGGB)
FGGGGG
. . . . . . . . . . . 60
108
\Avav (w) . .
average . . . .
\Ayn (,) . . .
\Ayod (y) . .
\Azayin (z)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
B
\B . . . . . . . . . . . . . . . . .
\B ( ´) . . . . . . . . . . . . .
˘
b (esvect package option)
\b (a) . . . . . . . . . . . . . .
¯
\b ( ) . . . . . . . . . . . . .
˘
\babygamma (!) . . . . . . .
\backapprox () . . . . . .
\backapproxeq () . . . .
\backcong (≌) . . . . . . . .
\backepsilon () . . . . .
\backeqsim () . . . . . . .
\backneg (⌐) . . . . . . . . .
\backprime (8) . . . . . . .
\backprime (‵) . . . . . . .
\backsim (v) . . . . . . . .
\backsim (∽) . . . . . . . . .
\backsimeq (w) . . . . . .
\backsimeq (⋍) . . . . . . .
\backslash (\) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... 9
. . 82
. . 59
. . 13
. . 82
. . 11
. . 32
. . 32
. . 32
. . 30
. . 32
. . 63
. . 63
. . 63
. . 30
. . 32
. . 30
. . 32
53, 62
\backslash (/)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
83
20
13
83
83
. . . . . . . . . 54
\backslashdiv () . . . . . . . 23
\backtriplesim () . . . . . . . 32
banana brackets . . . . . . . . . . .
. see \llparenthesis and
\rrparenthesis
\bar (¯) . . . . . . . . . . . . . . . 56
\barb () . . . . . . . . . . . . . . 11
\barcirc (−
◦ ) . . . . . . . . . . . 91
\bard () . . . . . . . . . . . . . . 11
\bari (') . . . . . . . . . . . . . . . 11
\barin (V) . . . . . . . . . . . . . 51
\barj (j) . . . . . . . . . . . . . . . 12
\barl (.) . . . . . . . . . . . . . . . 11
\barlambda () . . . . . . . . . . 12
\barleftharpoon (Þ) . . . . . 43
\baro () . . . . . . . . . . . . . . 21
\baro ( vs. <) . . . . . . . . . . 88
\baro (<) . . . . . . . . . . . . . . 12
\barp (A) . . . . . . . . . . . . . . 12
barred letters . . . . . . . . . . . 91
\barrightharpoon (ß) . . . . 43
\barsci (+) . . . . . . . . . . . . . 12
\barscu (X) . . . . . . . . . . . . 12
\Bart (
)
\baru (T) . . . .
\barwedge (X)
\barwedge (Z) .
\Bat (ý) . . . . .
\bauarrow ( )
\baucircle ( )
\baucircle ( )
\baucross ( )
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
85
12
22
21
80
71
76
76
73
\baudash ( ) . . . . . .
\baueclipse ( ) . . . .
\bauequal ( ) . . . . .
\bauface ( ) . . . . . .
\bauforms ( ) . . . . .
„
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
80
76
80
80
80
\bauforms (
) . . . . . . . . . 80
\bauhead ( ) . . . . . . . . . . . 80
\bauhead (
) . . . . . . . . . . 80
\bauhole ( ) . . . . . . . . . . . 76
\bauplus ( ) . . . . . . . . . . . 80
\baupunct ( ) . . . . . . . . . . 76
\bauquarter ( ) . . . . . . . . . 80
\bauquestion ( ) . . . . . . . . 80
\bausquare ( ) . . . . . . . . . . 76
\bausquare ( ) . . . . . . . . . 76
\bautriangle ( ) . . . . . . . . 76
\bautriangle ( ) . . . . . . . . 76
\bauwhitearrow ( ) . . . . . . 71
\bauwindow ( ) . . . . . . . . . . 80
\BB ( ´) . . . . . . . . . . . . . . . 82
˘˘
\Bb ( ´ ) . . . . . . . . . . . . . . . 82
˘˘
\bB ( ´) . . . . . . . . . . . . . . . 82
˘˘
\bb ( ) . . . . . . . . . . . . . . . 82
˘˘
\bba ( ˘×˘) . . . . . . . . . . . . . . 82
\bbalpha () . . . . . . . . . . . . 65
\bbar (b̄) . . . . . . . . . . . . . . 91
\bbb ( ˘˘) . . . . . . . . . . . . . . 82
˘
\bbbeta () . . . . . . . . . . . . . 65
\Bbbk (k) . . . . . . . . . . . . . . 51
bbding (package) . 71–75, 77, 88,
104, 105
\bbdollar ($) . . . . . . . . . . . 65
\bbetter (g) . . . . . . . . . . . 82
\bbeuro (û) . . . . . . . . . . . . 65
\bbfinalnun (Ï) . . . . . . . . . 65
\bbgamma () . . . . . . . . . . . . 65
bbgreekl (mathbbol package option) . . . . . . . . . . . . . 65
\BBm ( ´ ) . . . . . . . . . . . . . . 82
˘¯˘) . . . . . . . . . . . . . . 82
\Bbm ( ¯
´˘
˘
¯
\bBm ( ¯
) . . . . . . . . . . . . . . 82
¯˘¯˘´
bbm (package)
. . . . . . . 65, 104
\bbm ( ) . . . . . . . . . . . . . . 82
˘˘ ) . . . . . . . . . . . . . 82
\bbmb (¯¯
˘¯˘˘¯
\bbmx ( ¯¯) . . . . . . . . . . . . 82
˘˘˘
\bbnabla¯¯(š) . . . . . . . . . . . 65
bbold (package) . . . . . . 65, 104
\bbpe (Ô) . . . . . . . . . . . . . . 65
\bbqof (×) . . . . . . . . . . . . . 65
\bbslash () . . . . . . . . . . . 21
\bbyod (É) . . . . . . . . . . . . . . 65
\bcontraction . . . . . . . . . . 96
\bdecisive (i) . . . . . . . . . 82
\Beam (") . . . . . . . . . . . . . . 70
\Bearing (#) . . . . . . . . . . . 70
\because (∵) . . . . . . . . 30, 61
\because (∵) . . . . . . . . . . . . 61
\BEL (␇) . . . . . . . . . . . . . . . 69
\bell (
) . . . . . . . . . . . . . . 78
Berry, Karl . . . . . . . . . . . . 106
\beta (β) . . . . . . . . . . . . . . 49
…
†
\betaup (β) . . .
\beth (i) . . . .
\beth (ℶ) . . . .
\betteris (b)
\between ( ) . .
\between (G) . .
\between (”)
” .
\bibridge (a
”) .
\Bicycle (®) .
\Big . . . . . . . .
\big . . . . . . . .
\bigast () . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..
87,
87,
...
50
50
50
82
31
30
32
15
76
89
89
22
\bigbosonloop
(!) . . . . . . . .
e
\bigbox ( ) . . . .Ö
........
\bigboxasterisk ( Þ
) .....
\bigboxbackslash
(
) ....
Û
\bigboxbot ( Õ
) .........
\bigboxcirc ( ) . .×
......
\bigboxcoasterisk
(
) ...
Ó
\bigboxdiv (Ô) . . . . . . . . .
\bigboxdot ( Ø
) .........
\bigboxleft ( Ñ
) ........
\bigboxminus Ð
( ) .......
\bigboxplus ( Ù
) ........
\bigboxright (Ý) . . . . . . .
\bigboxslash (Ò) . . . . . . .
\bigboxtimesÚ( ) . . . . . . .
\bigboxtop ( ) . . .ß
......
\bigboxtriangleup
(
) ...
Ü
\bigboxvoid
(
)
.
.
.
.....
T
\bigcap ( ) . . . . . . . . . . . .
\bigcap (⋂) . . . . . . . . . . . .
\bigcapdot (⩀) . . . . . . . . . .
\bigcapplus ($) . . . . . . . . .
\bigcirc () . . . . . . . . . . .
\bigcirc (◯) . . . . . . . . . . .
\BigCircle ( ) . . . . . . . . .
\bigcircle (◯) . . . . . . . . .
\bigcoast () . . .’. . . . . . .
\bigcomplementop ( ) . . . . .
\BigCrossS( ) . . . . . . . . . .
\bigcup ( ) . . . . . . . . . . . .
\bigcup (⋃) . . . . . . . . . . . .
\bigcupdot (⊍) . . . . . . . . . .
\bigcupplus (⊎) . . . . . . . .
\bigcupplus (⊎)
.........
œ
\bigcurlyvee (b ) . . . . . . . .
\bigcurlyvee ( ) . . . . . . . .
\bigcurlyvee (⋎) . . . . . . . .
\bigcurlyveedot ›
() . . . . .
\bigcurlywedge (c ) . . . . . .
\bigcurlywedge ( ) . . . . . .
\bigcurlywedge (⋏) . . . . . .
\bigcurlywedgedot () . . . .
\BigDiamondshape ( ) . . . .
\bigdoublecurlyvee () . . .
\bigdoublecurlywedge () .
\bigdoublevee (⩔) . . . . . . .
\bigdoublewedge (⩕) . . . . .
\Bigg . . . . . . . . . . . . . . 87,
\bigg . . . . . . . . . . . . . . 87,
70
25
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
26
25
29
29
29
20
74
75
29
22
26
75
25
29
29
29
29
26
25
29
29
26
25
29
29
75
29
29
29
29
89
89
%
&
109
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\BigHBar ( ) . . g. . . . . . . . .
\biginterleave ( ) . . . . . .
\BigLowerDiamond ( ) . . . .
\bignplus ( ) . . . . . . . . . .
\bigoast (⊛) . Æ
..........
\bigoasterisk ( Î
) .......
\bigobackslash ( ) . . . . . .
\bigobackslash
(⦸) . . . . . .
Ë
\bigobot ( Å
) ...........
\bigocirc ( ) . . . . . . . . . .
\bigocirc (⊚) . .Ç
........
\bigocoasterisk
(
) .....
Ã
\bigodiv (J) . . . . . . . . . . .
\bigodot ( ) . . . . . . . . . . .
\bigodot (⊙)
...........
È
\bigoleft ( Á
) ..........
\bigominus ( ) . . . . . . . . .
\bigominus L
(⊖) . . . . . . . . .
\bigoplus ( ) . . . . . . . . . .
\bigoplus (⊕)
..........
É
\bigoright (Í) . . . . . . . . .
\bigoslash ( ) . . . . . . . . .
\bigoslash (⊘) . . . . . . . . .
\bigostar (⍟)
N ..........
\bigotimes ( ) . . . . . . . . .
\bigotimesÊ(⊗) . . . . . . . . .
\bigotop ( ) . . . . . . . . . . .
\bigotriangle (F)Ï. . . . . . .
\bigotriangleup ( ) . . . . .
\bigovert (⦶)
..........
Ì
\bigovoid ( ) f . . . . . . . . . .
\bigparallel
˙ ( ) ........
\bigparr () . . . . . . . . . . .
\bigplus ( ) . . . . . . . . . . .
\bigplus (+) . . . . . . . . . . .
\BigRightDiamond
( ) ....
–
\bigsqcap ( ) . . . . . . . . . .
\bigsqcap ( ) . . . . . . . . . .
\bigsqcap (⊓) . . . . . . . . . . .
\bigsqcapdot (,) . . . . . . . .
\bigsqcapplus ( ) . . . . . . .
\bigsqcapplus
F (0) . . . . . . .
\bigsqcup ( ) . . . . . . . . . .
\bigsqcup (⊔) . . . . . . . . . . .
\bigsqcupdot (.) . . . . . . . .
\bigsqcupplus ( ) . . . . . . .
\bigsqcupplus (2) . . . . . . .
\BigSquare ( ˜) . . . . . . . . .
\bigsquplus ( ) . . . . . . . . .
\bigstar () . . . . . . . . . . .
\bigstar (F) . . . . . . . . . . .
\bigstar (☀)
...........
‘
\bigtimes ( ) . . . . . . . . . .
\bigtimes (⨉) . . . . . . . . . . .
\BigTriangleDown (` ) . . . .
\bigtriangledown ( ) . `
...
\bigtriangledown (5 vs. )
\bigtriangledown (5) . . . .
\bigtriangledown (▽) . . . .
\BigTriangleLeft ( ) . . . .
\BigTriangleRight ( ) . . .
_
/
#
"
$
75
25
75
25
29
26
26
29
26
26
29
26
26
25
29
26
26
29
25
29
26
26
29
29
25
29
26
29
26
29
26
25
30
26
29
75
26
25
29
29
27
29
25
29
29
27
29
75
26
22
63
74
26
29
75
25
88
20
40
75
75
!
\BigTriangleUp (a ) . . . . . . 75
\bigtriangleup ( ) . .a. . . . 25
\bigtriangleup (4 vs. ) . 88
\bigtriangleup (4) . . . . . . 20
\bigtriangleup
U (△) . . . . . . 40
\biguplus ( ) . . . . . . . . . . 25
\biguplus (⊎) . . . . . . . . . . 29
\bigvarstar () . . . . . . . . . 22
\BigVBar W
( ) . . . . . . . . . . . 75
\bigvee ( ) . . . . . . . . . . . . 25
\bigvee (⋁) . . . . . . . . . . . . 29
\bigveedot V
(
) . . . . . . . . . . 29
\bigwedge ( ) . . . . . . . . . . 25
\bigwedge (⋀) . . . . . . . . . . . 29
\bigwedgedot
˘ () . . . . . . . . 29
\bigwith ( ) . . . . . . . . . . . 30
\binampersand (N) . . . . . . . 21
binary operators . . . . . . 20–24
binary relations . . 30–32, 34–39,
47, 48
negated . . . . . . . . . 30–33
\bindnasrepma (O) . . . . . . . 21
\Biohazard (h) . . . . . . . . . 70
biological symbols . . . . . . . . 70
bishop . . . . . . see chess symbols
\bishoppair (a) . . . . . . . . . 82
blackboard bold
see alphabets,
math
\blackdiamond () . . . . . . . 22
\blacklozenge () . . . . . . . 63
\blacklozenge (⧫) . . . . . . . 74
\blacksmiley (-) . . . . . . . . 78
\blacksquare () . . . . . . . . 63
\blacksquare (∎) . . . . . . . . 24
\blackstone . . . . . . . . . . . . 76
\blacktriangle (N) . . . . . . 63
\blacktriangle (▲) . . . . . . 40
\blacktriangledown () . . . 24
\blacktriangledown (H) . . . 63
\blacktriangledown (▼) . . . 40
\blacktriangleleft (ž) . . . 24
\blacktriangleleft (J) . . . 39
\blacktriangleleft (◀) . . . 40
\blacktriangleright (Ÿ) . . 24
\blacktriangleright (I) . . 39
\blacktriangleright (▶) . . 40
\blacktriangleup (œ) . . . . . 24
blank . . . . . . . see \textblank
\Bleech (Ë) . . . . . . . . . . . . 80
\blitza ( ) . . . . . . . . . 20, 48
\blitzb ( ) . . . . . . . . . . . . 48
\blitzc ( ) . . . . . . . . . . . . 48
\blitzd ( ) . . . . . . . . . . . . 48
\blitze ( ) . . . . . . . . . . . . 48
\Bm ( ´) . . . . . . . . . . . . . . . 82
¯˘
bm (package)
. . . . 100, 104, 105
\bm . . . . . . . . . . . . . . . . . . 100
\bm ( ) . . . . . . . . . . . . . . . 82
˘
\bmod ¯ . . . . . . . . . . . . . . . . . 49
body-text symbols . . . . . . 8–19
bold symbols . . . . . . . . . . . 100
\boldmath . . . . . . . . . . . . . 100
\boldsymbol . . . . . . . . . . . 100
born . . . . . . . . . see \textborn
bosons . . . . . . . . . . . . . . . . 70
\bot (⊥) . . . . . . . . . . 20, 51, 92
\bot (–) . . . . . . . . . . . . . . . 51
\botdoteq () . . . . . . . . . . 31
\Bouquet (¥) . . . . . . . . . . . 80
\Bowtie (1) . . . . . . . . . . . . 78
\bowtie (./) . . . . . . . . . . . . 30
\bowtie (&) . . . . . . . . . . . . 23
\Box () . . . . . . . . . . . . . . . 62
\Box (2) . . . . . . . . . . . . . . . 63
\Box (◻) . . . . . . . . . . . . . . . 24
\boxast (i) . . . . . . . . . . . . 21
\boxasterisk (f) . . . . . . . . 24
\boxbackslash (n) . . . . . . . 24
\boxbackslash (⧅) . . . . . . . 24
\boxbar (k) . . . . . . . . . . . . 21
\boxbot (k) . . . . . . . . . . . . 24
\boxbox () . . . . . . . . . . . . 21
\boxbox (⧈) . . . . . . . . . . . . 24
\boxbslash (j) . . . . . . . . . . 21
\boxcirc (e) . . . . . . . . . . . 24
\boxcircle () . . . . . . . . . . 21
\boxcoasterisk (g) . . . . . . 24
\boxdiv (c) . . . . . . . . . . . . 24
\boxdot (d) . . . . . . . . . . . . 24
\boxdot ( ) . . . . . . . . . . . . 21
\boxdot (⊡) . . . . . . . . . . . . 24
\boxdotLeft (‹) . . . . . . . . 42
\boxdotleft (ƒ) . . . . . . . . 42
\boxdotRight (Š) . . . . . . . 42
\boxdotright (‚) . . . . . . . 42
\boxempty () . . . . . . . . . . 21
\boxLeft (‰) . . . . . . . . . . 42
\boxleft (h) . . . . . . . . . . . 24
\boxleft () . . . . . . . . . . 42
\boxminus (a) . . . . . . . . . . 24
\boxminus () . . . . . . . . . . 21
\boxminus (⊟) . . . . . . . . . . . 24
\boxplus (`) . . . . . . . . . . . 24
\boxplus () . . . . . . . . . . . 21
\boxplus (⊞) . . . . . . . . . . . . 24
\boxRight (ˆ) . . . . . . . . . 42
\boxright (i) . . . . . . . . . . 24
\boxright (€) . . . . . . . . . 42
\boxslash (m) . . . . . . . . . . 24
\boxslash (l) . . . . . . . . . . . 21
\boxslash (⧄) . . . . . . . . . . . 24
\boxtimes (b) . . . . . . . . . . 24
\boxtimes () . . . . . . . . . . 21
\boxtimes (⊠) . . . . . . . . . . . 24
\boxtop (j) . . . . . . . . . . . . 24
\boxtriangleup (o) . . . . . . 24
\boxvert (q) . . . . . . . . . . . . 24
\boxvoid (l) . . . . . . . . . . . 24
\boy (D) . . . . . . . . . . . . . . . 68
bra . . . . . . . . . . . . . . . . . . . 53
\braceld (z) . . . . . . . . . . . . 95
\bracerd ({) . . . . . . . . . . . . 95

\bracevert (
) . . . . . . . . . 53
⎪
⎪
⎪
⎪
\bracevert ( ⎪
⎪
⎪) . . . . . . . . . 54
110
brackets . . . . . . . see delimiters
braket (package) . . . . . . . . . 53
\Break ( Break ) . . . . . . . . . 69
breve . . . . . . . . . . see accents
\breve (˘) . . . . . . . . . . . . . 56
\breve (ă) . . . . . . . . . . . . . 16
\brokenvert (|) . . . . . . . . . . 78
Bronger, Torsten . . . . . . . . . 92
\BS (␈) . . . . . . . . . . . . . . . . 69
\BSEfree (n) . . . . . . . . . . . 70
\BSpace ( →−7 ) . . . . . . . . . 69
\bullet (•) . . . . . . . . . . . . . 20
\bullet (●) . . . . . . . . . . . . . 23
bullseye . . . see \textbullseye
\Bumpedeq () . . . . . . . . . . 31
\bumpedeq () . . . . . . . . . . 31
\Bumpeq (m) . . . . . . . . . . . . 30
\Bumpeq (≎) . . . . . . . . . . . . . 32
\bumpeq (l) . . . . . . . . . . . . 30
\bumpeq (≏) . . . . . . . . . . . . . 32
\bupperhand (e) . . . . . . . . . 82
\Burns (
)
. . . . . . . . 85
C
\C ( ) . . . . . . . . . . . . . . . . . 82
c (esvect package option) . . . 59
\c (a̧) . . . . . . . . . . . . . 13, 102
\c ( ) . . . . . . . . . . . . . . . 82
calligra (package) . . 65, 104, 105
Calligra (font) . . . . . . . . . . . 65
calrsfs (package) . . . . . . . . . 65
\CAN (␘) . . . . . . . . . . . . . . . 69
cancel (package) . . . . . . . . . 57
\Cancer (ã) . . . . . . . . . . . . 68
\cancer (_) . . . . . . . . . . . . 68
\Cap (e) . . . . . . . . . . . . . . . 21
\Cap (⋒) . . . . . . . . . . . . . . . 23
\cap (X) . . . . . . . . . . . . . . . 22
\cap (∩) . . . . . . . . . . . . . . . 20
\cap (∩) . . . . . . . . . . . . . . . 23
\capdot (⩀) . . . . . . . . . . . . 23
\capplus (?) . . . . . . . . . . . . 23
\Capricorn (é) . . . . . . . . . . 68
\capricornus (d) . . . . . . . . 68
card suits . . . . . . . . . 62–64, 77
cardinality . . . . . . . see \aleph
care of (c/o) . . . . . . . . . . . . . 64
caret . . . . . . . . . . . . . . . see \^
Carlisle, David . . . . . . . 1, 104
caron . . . . . . . . . . see accents
carriage return . 69, 77, 90, see
also \hookleftarrow
\carriagereturn ( ) . . . . . 77
castle . . . . . . see chess symbols
\Catalexis (∧) . . . . . . . . . . 82
\catalexis (∧) . . . . . . . . . . 82
catamorphism . . . . . . . . . . . . .
. see \llparenthesis and
\rrparenthesis
\Cc ( ) . . . . . . . . . . . . . . . 82
C
\
CC
\cc ( ) . . . . . . . . . . . . . 18
\cc (
) . . . . . . . . . . . . . . 82
BY:
\ccby ( ) . . . . . . . . . . . 18
\Ccc ( ) . . . . . . . . . . . . . . 82
cclicenses (package) 18, 104, 105
$
\ccnc ( ) . . . . . . . . . . . 18
=
\ccnd ( ) . . . . . . . . . . . 18
\ccsa ( ) . . . . . . . . . . . . . 18
\cdot (·) . . . . . . . . . . . . 20, 91
\cdot (⋅) . . . . . . . . . . . . 23, 61
\cdotp (·) . . . . . . . . . . . . . . 61
\cdotp (⋅) . . . . . . . . . . . . . . 61
\cdots (· · · ) . . . . . . . . . . . . 61
Cedi . see \textcolonmonetary
cedilla . . . . . . . . . . see accents
celestial bodies . . . . . . . . . . 68
\celsius (℃) . . . . . . . . . . . 67
\Celtcross (‡) . . . . . . . . . . 80
\cent (¢) . . . . . . . . . . . . . . 17
\centerdot () . . . . . . . . . . 22
\centerdot () . . . . . . . . . . 21
centernot (package) . . . . . . . 92
\centernot . . . . . . . . . . . . . 92
\centre (I) . . . . . . . . . . . . 82
cents . . . . . . . . . see \textcent
\CEsign (C) . . . . . . . . . . . . 70
chancery (package) . . . . . . . 104
\changenotsign . . . . . . . . . 32
\char . . . . . . . . . . . . . . . 7, 90
Charter (font) . . . . . . . . 17, 29
\check (ˇ) . . . . . . . . . . . . . 56
check marks . . . . . . . 73, 76, 77
\checked () . . . . . . . . . . . 78
\CheckedBox (2
) . . . . . . . . . 73
\Checkedbox (V) . . . . . . . . . 76
\Checkmark ( ) . . . . . . . . . 73
\checkmark (X) . . . . . . . . . . 8
\checkmark (✓) . . . . . . . . . 63
\checkmark (X vs. ) . . . . . 88
\checkmark ( ) . . . . . . . . . 77
\CheckmarkBold ( ) . . . . . . 73
chemarr (package) . 59, 104, 105
chemarrow (package) 47, 60, 104
\chemarrow ( ) . . . . . . . . . 47
Chen, Raymond . . . . . . . . 106
chess symbols . . . . . . . . . . . 82
\chi (χ) . . . . . . . . . . . . . . . 49
\chiup (χ) . . . . . . . . . . . . . . 50
\circ (◦) . . . . . . . . . 20, 64, 92
\circ (○) . . . . . . . . . . . . . . 23
\circeq () . . . . . . . . . . . . 31
\circeq ($) . . . . . . . . . . . . 30
\circeq (≗) . . . . . . . . . . . . . 32
\CIRCLE ( ) . . . . . . . . . . . . 78
\Circle ( ) . . . . . . . . . . . . 75
\Circle (# vs. ) . . . . . . . 88
\Circle (#) . . . . . . . . . . . . 78
\circlearrowleft (ö) . . . . 42
\circlearrowleft () . . . . 41
\circlearrowleft (↺) . . . . 44
\circlearrowright (÷) . . . . 42
C
!
D
D
"
A
5
5
\circlearrowright () . . . 41
\circlearrowright (↻) . . . 44
circled numbers . . . . . . . 73, 76
\CircledA (ª) . . . . . . . . . . 80
\circledast (~) . . . . . . . . . 21
\circledast (⊛) . . . . . . . . . 24
\circledbar (V) . . . . . . . . . 21
\circledbslash (W) . . . . . . 21
\circledcirc (}) . . . . . . . . 21
\circledcirc (⊚) . . . . . . . . 24
\circleddash () . . . . . . . . 21
\circleddash (⊖) . . . . . . . . 24
\circleddot . . . . . . see \odot
\circleddotleft (”) . . . . 42
\circleddotright (“) . . . . 42
\circledgtr (S) . . . . . . . . . 31
\circledless (R) . . . . . . . . 31
\circledminus . . . see \ominus
\circledotleft . . . . . . . . see
\circleddotleft
\circledotright . . . . . . . see
\circleddotright
\circledplus . . . . . see \oplus
\circledR (r) . . . . . . . . 8, 51
\circledS (s) . . . . . . . . . . 51
\circledslash . . . see \oslash
\circledtimes . . . see \otimes
\circledvee (U) . . . . . . . . . 21
\circledwedge (T) . . . . . . . 21
\circleleft (’) . . . . . . . . 42
\circleright (‘) . . . . . . . 42
circles . . . . . . . . . . . . 75, 76, 78
\CircleShadow ( ) . . . . . . . 75
\CircleSolid ( ) . . . . . . . . 75
\Circpipe (›) . . . . . . . . . . 70
\circplus () . . . . . . . . . . 22
\Circsteel (•) . . . . . . . . . 70
circumflex . . . . . . . see accents
\circumflexus (ã) . . . . . . . 16
\CleaningA («) . . . . . . . . . . 80
\CleaningF (¾) . . . . . . . . . . 80
\CleaningFF (¿) . . . . . . . . . 80
\CleaningP (¬) . . . . . . . . . . 80
\CleaningPP (­) . . . . . . . . . 80
\clickb (;) . . . . . . . . . . . . 12
\clickc () . . . . . . . . . . . . . 12
\clickt (R) . . . . . . . . . . . . . 12
\clock () . . . . . . . . . . . . . 78
clock symbols . . . . . . . . . . . 81
\Clocklogo (U) . . . . . . . . . . 76
\closedcurlyvee (¾) . . . . . . 23
\closedcurlywedge (¼) . . . . 23
\closedequal (Ü) . . . . . . . . 32
\closedniomega (?) . . . . . . 12
\closedprec (½) . . . . . . . . . 32
\closedrevepsilon () . . . . 12
\closedsucc (») . . . . . . . . . 32
\Cloud ( ) . . . . . . . . . . . . . 80
clovers . . . . . . . . . . . . . . . . 74
clubs (suit) . . . . . . . . 62–64, 77
\clubsuit (♣) . . . . . . . . . . 62
\clubsuit (♣) . . . . . . . . . . . 63
d
a
111
cmll (package) 20, 23, 30, 36, 104
\coAsterisk () . . . . . . . . . 22
\coasterisk () . . . . . . . . . 22
code page 1252 . . . . . . . . . 103
table . . . . . . . . . . . . . 103
code page 437 . . . . . . . 69, 101
\Coffeecup (K) . . . . . . . . . 76
\coh (¨) . . . . . . . . . . . . . . . 36
\colon . . . . . . . . . . . . . . . . 61
\colon ( : ) . . . . . . . . . . . . . 61
\colon (∶) . . . . . . . . . . . . . . 61
\Colonapprox () . . . . . . . 31
\Colonapprox (::≈) . . . . . . . 34
\colonapprox (:≈) . . . . . . . . 34
\colonapprox () . . . . . . . . 31
\Coloneq (H) . . . . . . . . . . . 31
\Coloneq (::−) . . . . . . . . . . . 34
\coloneq () . . . . . . . . . . . 31
\coloneq (:−) . . . . . . . . . . . 34
\coloneq (D) . . . . . . . . . . . 31
\Coloneqq (F) . . . . . . . . . . 31
\Coloneqq (::=) . . . . . . . . . . 34
\coloneqq (:=) . . . . . . . . . . 34
\coloneqq (B) . . . . . . . 20, 31
\Colonsim () . . . . . . . . . . 31
\Colonsim (::∼) . . . . . . . . . . 34
\colonsim (:∼) . . . . . . . . . . 34
\colonsim () . . . . . . . . . . 31
\comment (RR) . . . . . . . . . . 82
communication symbols . . . . 69
comp.text.tex (newsgroup) . 7,
20, 90–95
\compensation (n) . . . . . . . 82
\complement (A) . . . . . . . . . 51
\complement ({) . . . . . . . . . 51
\complement (∁) . . . . . . . . . 29
complex numbers (C) . . . . see
alphabets, math
Comprehensive TEX Archive Network 1, 7, 57, 66, 87, 103,
104
computer hardware symbols . 69
computer keys . . . . . . . . . . . 69
Computer Modern (font) 87, 89,
101
\ComputerMouse (Í) . . . . . . . 69
\cong () . . . . . . . . . . . . . . 30
\cong (≅) . . . . . . . . . . . . . . 32
conjunction . . . . . . . see \wedge
\conjunction (V) . . . . . . . . 68
consequence relations . . . . . . 34
contradiction symbols . . 20, 48
control characters . . . . . . . . 69
\convolution
` (
) . . . . . . . . 22
\coprod ( ) . . . . . . . . . 20, 25
\coprod (∐) . . . . . . . . . . . . 29
copyright . . . . . . . . . 8, 18, 102
\copyright (©) . . . . . . . . . . 8
\corner (k) . . . . . . . . . . . . . 16
\Corresponds (=) . . . . . . . . 64
\corresponds () . . . . . . . . 31
\cos (cos) . . . . . . . . . . . 49, 99
\cosh (cosh) . . . . . . . . . . . . 49
*
* 4
.
,
+
\curlywedgedownarrow (') . 21
\curlywedgeuparrow (&) . . . 21
\curlyyogh (a) . . . . . . . . . . 12
\curlyz (^) . . . . . . . . . . . . . 12
\currency (¤) . . . . . . . . . . . 17
currency symbols . . . . . . 17, 65
\curvearrowbotleft (ó) . . 42
\curvearrowbotleftright (õ)
. . . . . . . . . 42
\curvearrowbotright (ô) . . 42
\curvearrowdownup (Ë) . . . . 43
\curvearrowleft (ð) . . . . . 42
\curvearrowleft (x) . . . . . 41
\curvearrowleft (↶) . . . . . 44
\curvearrowleftright (ò) . 42
\curvearrowleftright (È) . 43
\curvearrownesw (Ì) . . . . . 43
\curvearrownwse (Í) . . . . . 43
\curvearrowright (ñ) . . . . 42
\curvearrowright (y) . . . . 41
\curvearrowright (↷) . . . . 44
\curvearrowrightleft (Ê) . 43
\curvearrowsenw (Ï) . . . . . 43
\curvearrowswne (Î) . . . . . 43
\curvearrowupdown (É) . . . . 43
\Cutleft (s) . . . . . . . . . . . 71
\Cutline (r) . . . . . . . . . . . 71
cutoff subtraction . see \dotdiv
\Cutright (q) . . . . . . . . . . 71
D
\D (a) . . . . . . . . . . . . . . .
¨
d (esvect
package option) .
\d (a.) . . . . . . . . . . . . . . .
\dag (†) . . . . . . . . . . . .
\dagger (†) . . . . . . . . . . .
\daleth (k) . . . . . . . . . .
\daleth (ℸ) . . . . . . . . . .
dangerous bend symbols .
\DArrow ( ↓ ) . . . . . . . .
\dasharrow . . . . . . . . . . .
\dashrightarrow
\dasheddownarrow (⇣) . . .
\dashedleftarrow (⇠) . .
\dashednearrow (d) . . . .
\dashednwarrow (e) . . . .
\dashedrightarrow (⇢) . .
\dashedsearrow (g) . . . .
\dashedswarrow (f) . . . .
\dasheduparrow
(⇡) . . . . .
R
\dashint (− ) . . . . . . . . .
\dashleftarrow (c) . . . .
\dashleftarrow (⇠) . . . .
\dashleftrightarrow (e)
\dashrightarrow (d) . . .
\dashrightarrow (⇢) . . .
\DashV ()) . . . . . . . . . . .
\Dashv ()) . . . . . . . . . . .
\dashv (a) . . . . . . . . . . .
\dashv (⊣) . . . . . . . . . . .
\dashVv (-) . . . . . . . . . .
\davidsstar (C) . . . . . . .
112
. . 16
. . 59
. . 13
8, 103
. . 20
. . 50
. . 50
. . 76
. . 69
. see
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
43
43
43
43
43
43
43
43
93
41
44
42
41
44
31
31
30
33
31
73
0
\DavidStar ( ) .
\DavidStarSolid (
\dbar (¯
d) . . . . . . .
\dbend () . . . .
dblaccnt (package)
\dblcolon (::) . . .
\DCa (␑) . . . . . . .
\DCb (␒) . . . . . . .
\DCc (␓) . . . . . . .
\DCd (␔) . . . . . . .
\DD (D
D) . . . . . . .
\ddag (‡) . . . . . .
\ddagger (‡)R . . . .
\ddashint (= ) . . .
....
\ddddot ( ) . . . .
...
\dddot ( ) . . . . .
....
.
....
....
....
....
....
....
....
....
....
....
....
....
....
....
/)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 74
. . 74
. . 91
. . 76
. . 94
. . 34
. . 69
. . 69
. . 69
. . 69
. . 79
8, 103
. . 20
. . 93
. . 56
. . 56
\dddtstile (
) . . . . . . . . . 34
\DDohne (D
D/)
\ddot (¨) . .
\ddotdot ()
.
\ddots ( . . )
\ddots (⋱) .
. . . . . . . . . . . . 79
. . . . . . . . . . . . 56
. . . . . . . . . 23, 61
. . . . . . . . . 61, 94
. . . . . . . . . . . . 61
\ddststile (
) . . . . . . . . . 34
\ddtstile (
) . . . . . . . . . . 34
) . . . . . . . . 34
\ddttstile (
\DeclareFontFamily . . . . . . 98
\DeclareFontShape . . . . . . . 98
\DeclareMathOperator . . . . 99
\DeclareMathOperator* . . . 99
\declareslashed . . . . . . . . 92
definite-description operator ( )
. . . . . . . . . 90
definition symbols . . . . . 20, 95
\deg (deg) . . . . . . . . . . . . . 49
\degree (0) . . . . . . . . . . . . . 63
\degree (°) . . . . . . . . . . . . . 67
degrees . . . . . see \textdegree
\DEL (␡) . . . . . . . . . . . . . . . 69
\Del ( Del ) . . . . . . . . . . . . 69
\Deleatur . . . . . see \Denarius
delimiters . . . . . . . . . . . 52–56
text-mode . . . . . . . . . . 56
variable-sized . . . . . 53–55
wavy-line . . . . . . . . 54, 55
\Delta (∆) . . . . . . . . . . . . . 49
\delta (δ) . . . . . . . . . . . . . 49
\deltaup (δ) . . . . . . . . . . . . 50
demisemiquaver . . . see musical
symbols
\Denarius (¢) . . . . . . . . . . 17
\dental (ag ) . . . . . . . . . . . . . 15
derivitive, partial . see \partial
\descnode () . . . . . . . . . . 68
\det (det) . . . . . . . . . . . . . . 49
\devadvantage (t) . . . . . . . 82
ι
\cot (cot) . . . . . . . . . . . . . . 49
\coth (coth) . . . . . . . . . . . . 49
\counterplay (V) . . . . . . . . 82
Courier (font) . . . . . . . . . . . 17
CP1252 . . . . see code page 1252
CP437 . . . . . see code page 437
\CR (␍) . . . . . . . . . . . . . . . . 69
\cr . . . . . . . . . . . . . . . . . . . 91
Creative Commons licenses . 18
crescent (fge package option) 56
\Cross ( ) . . . . . . . . . . . . . 75
\Cross († vs. vs. ) . . . . . 88
\Cross ( ) . . . . . . . . . . . . . 72
\Cross (†) . . . . . . . . . . . . . 80
\crossb () . . . . . . . . . . . . . 12
\CrossBoldOutline ( ) . . . . 72
\CrossClowerTips ( ) . . . . 72
\crossd () . . . . . . . . . . . . . 12
\Crossedbox (X) . . . . . . . . . 76
crosses . . . . . . . . . . . 72, 76, 80
\crossh (#) . . . . . . . . . . . . . 12
\CrossMaltese ( ) . . . . . . . 72
\crossnilambda (3) . . . . . . 12
\CrossOpenShadow ( ) . . . . . 72
\CrossOutline ( ) . . . . . . . 72
crotchet . . see musical symbols
Ŕ
\crtilde (ã) . . . . . . . . . . . . 15
crucifixes . . . . . . . . . . . . 72, 80
\Crux (†) . . . . . . . . . . . . . . 56
\crux (†) . . . . . . . . . . . . . . 56
\csc (csc) . . . . . . . . . . . . . . 49
CTAN
see Comprehensive TEX
Archive Network
\Ctrl ( Ctrl ) . . . . . . . . . . . 69
\Cube . . . . . . . . . . . . . . 81, 90
cube root . . . . . . . . see \sqrt
\Cup (d) . . . . . . . . . . . . . . . 21
\Cup (⋓) . . . . . . . . . . . . . . . 23
\cup (Y) . . . . . . . . . . . . . . . 22
\cup (∪) . . . . . . . . . . 20, 91, 99
\cup (∪) . . . . . . . . . . . . . . . 23
\cupdot (⊍) . . . . . . . . . . . . 23
\cupplus (⊎) . . . . . . . . . . . . 23
\curlyc () . . . . . . . . . . . . . 12
\curlyeqprec (¶) . . . . . . . . 31
\curlyeqprec (2) . . . . . . . . 30
\curlyeqprec (⋞) . . . . . . . . 32
\curlyeqsucc (·) . . . . . . . . 31
\curlyeqsucc (3) . . . . . . . . 30
\curlyeqsucc (⋟) . . . . . . . . 32
\curlyesh (N) . . . . . . . . . . . 12
\curlyvee (O) . . . . . . . . . . 22
\curlyvee (g) . . . . . . . . . . 21
\curlyvee (⋎) . . . . . . . . . . . 23
\curlyveedot (5) . . . . . . . . 23
\curlyveedownarrow (.) . . . 21
\curlyveeuparrow (/) . . . . . 21
\curlywedge (N) . . . . . . . . . 22
\curlywedge (f) . . . . . . . . . 21
\curlywedge (⋏) . . . . . . . . . 23
\curlywedgedot (4) . . . . . . 23
\Dfourier (
\dfourier ( c
....
...
c) . . . . . . . . 35
)
. . . . . . . . 35
\DFT (
) . . . . . . . . . . . . . 60
\dft (
) . . . . . . . . . . . . . 60
\DH (Ð) . . . . . . . . . . . . . 9, 102
\DH (D) . . . . . . . . . . . . . . . . 12
\dh (ð) . . . . . . . . . . . . . 9, 102
\dh (k) . . . . . . . . . . . . . . . . 12
diacritics . . . . . . . . see accents
\diaeresis (ä) . . . . . . . . . . 16
diæresis . . . . . . . . see accents
\diagdown (å) . . . . . . . . . . 63
\diagdown () . . . . . . . . . . 63
\diagdown (Ó) . . . . . . . . . . 33
\diagonal (G) . . . . . . . . . . 82
\diagup (ä) . . . . . . . . . . . . 63
\diagup () . . . . . . . . . . . . 63
\diagup (Ò) . . . . . . . . . . . . 33
\diameter (I) . . . . . . . . . . 63
\diameter () . . . . . . . . . . 20
\diameter (∅) . . . . . . . . . . . 63
\diameter () . . . . . . . . . . 78
\Diamond (^) . . . . . . . . . . . 62
\Diamond (3) . . . . . . . . . . . 63
\Diamond (◇) . . . . . . . . . . . 24
\diamond () . . . . . . . . . . . . 20
\diamond (◇) . . . . . . . . . . . . 24
\diamondbackslash ({) . . . . 24
\Diamondblack (_) . . . . . . . 63
\diamonddiamond () . . . . . 24
\Diamonddot () . . . . . . . . . 63
\diamonddot (⟐) . . . . . . . . . 24
\DiamonddotLeft () . . . . 42
\Diamonddotleft (‡) . . . . 42
\DiamonddotRight (Ž) . . . . 42
\Diamonddotright (†) . . . . 42
\diamonddots () . . . . . 23, 61
\DiamondLeft () . . . . . . . 42
\Diamondleft (…) . . . . . . . 42
\diamondminus (x) . . . . . . . 24
\diamondplus (|) . . . . . . . . 24
\DiamondRight (Œ) . . . . . . 42
\Diamondright („) . . . . . . 42
diamonds . . . . . . . . . . . . . . 75
diamonds (suit) . . . . . 62–64, 77
\DiamondShadowA ( ) . . . . . 75
\DiamondShadowB ( ) . . . . . 75
\DiamondShadowC ( ) . . . . . 75
\Diamondshape ( ) . . . . . . . 75
\diamondslash (z) . . . . . . . 24
\DiamondSolid ( ) . . . . . . . 75
\diamondsuit (♦) . . . . . . . . 62
\diamondsuit (♢) . . . . . . . . 63
\diamondtimes (}) . . . . . . . 24
\diamondvert (y) . . . . . . . . 24
\diatop . . . . . . . . . . . . 16, 94
\diaunder . . . . . . . . . . . 16, 94
dice . . . . . . . . . . . . . . . 81, 90
dictionary symbols . . . 10–13, 84
dictsym (package) . 84, 104, 105
died . . . . . . . . . see \textdied
differential, inexact . see \dbar
\digamma (z) . . . . . . . . . . . 49
digits . . . . . . . . . . . . . . . . . 62
LCD . . . . . . . . . . . . . . 67
Mayan . . . . . . . . . . . . . 62
6
p
old-style . . . . . . . . . . . . 18
segmented . . . . . . . . . . 67
\dim (dim) . . . . . . . . . . . . . 49
\ding . . . . . . . . . . 9, 71–75, 77
dingautolist . . . . . . . . . . . 73
dingbat (package) 72, 77, 88, 104,
105
dingbat symbols . . . . . . 71–77
\Diple (>) . . . . . . . . . . . . . 82
\diple (>) . . . . . . . . . . . . . 82
\Diple* (>·· ) . . . . . . . . . . . . 82
\diple* (>·· ) . . . . . . . . . . . . 82
Dirac notation . . . . . . . . . . . 53
discount . . . see \textdiscount
discretionary hyphen . . . . . 103
disjoint union . . . . . . . . . . . 20
disjunction . . . . . . . . see \vee
\displaystyle . . 92, 93, 95, 99
ditto marks . see \textquotedbl
\div (÷) . . . . . . . . . . . . . . . 20
\div (÷) . . . . . . . . . . . . . . . 23
\divdot () . . . . . . . . . . . . 22
\divideontimes () . . . . . . 22
\divideontimes (>) . . . . . . 21
\divides () . . . . . . . . . . . . 31
\divides (Ò) . . . . . . . . . . . 33
division . . . . . . . . . . . . . 20, 57
non-commutative . . . . . 60
division times . . . . . . . . . . see
\divideontimes
divorced . . . see \textdivorced
\DJ (Ð) . . . . . . . . . . . . . . . . . 9
\dj (đ) . . . . . . . . . . . . . . . . . 9
\dlbari (() . . . . . . . . . . . . . 12
\DLE (␐) . . . . . . . . . . . . . . . 69
\dlsh (ê) . . . . . . . . . . . . . . 42
\dndtstile ( ) . . . . . . . . . 34
\dnststile ( ) . . . . . . . . . 34
\dntstile ( ) . . . . . . . . . . 34
\dnttstile (
) . . . . . . . . 35
does not divide . . . . see \nmid
does not exist . . . see \nexists
\Dohne (D/) . . . . . . . . . . . . . 79
dollar . . . . . . see \textdollar
dollar sign . . . . . . . . . . . see \$
\Dontwash (Ý) . . . . . . . . . . 80
\dot ( ˙ ) . . . . . . . . . . . . . . . 56
dot symbols . . . . . 8, 61, 62, 94
·
\dotcup (∪)
. . . . . . . . . 20, 91
\dotdiv () . . . . . . . . . . . . 22
\Doteq . . . . . . . see \doteqdot
\Doteq (≑) . . . . . . . . . . . . . 32
\doteq () . . . . . . . . . . . . . 30
\doteq (≐) . . . . . . . . . . . . . 32
\doteqdot (+) . . . . . . . . . . 30
\doteqdot (≑) . . . . . . . . . . . 33
dotless i (ı)
math mode . . . . . . 56, 62
text mode . . . . . . . . . . 13
dotless j ()
math mode . . . . . . 56, 62
text mode . . . . . . . . . . 13
113
\dotmedvert () . . . . . . . . . 23
\dotminus () . . . . . . . . . . . 23
\dotplus ( ) . . . . . . . . . . . 22
\dotplus (u) . . . . . . . . . . . 21
\dots (. . . ) . . . . . . . . . . 8, 103
dots (ellipses) . . . . 8, 61, 62, 94
\dotsb (· · · ) . . . . . . . . . . . . 61
\dotsc (. . .) . . . . . . . . . . . . 61
\dotseq () . . . . . . . . . . . . 31
\dotsi (· · ·¯
) . . . . . . . . . . . . 61
\dotsint ( ) . . . . . . . . . . 28
\dotsm (· · · ) . . . . . . . . . . . . 61
\dotso (. . .) . . . . . . . . . . . . 61
˙ . . . . . . . . . 99
dotted union (∪)
.. . . . . . . . . 15
\dottedtilde (ã)
\dottimes () . . . . . . . . . . 22
\double . . . . . . . . . . . . . . . 55
\doublebarwedge (Z) . . . . . 22
\doublebarwedge ([) . . . . . 21
\doublecap . . . . . . . . see \Cap
\doublecap (\) . . . . . . . . . . 22
\doublecap (⋒) . . . . . . . . . . 23
\doublecup . . . . . . . . see \Cup
\doublecup (]) . . . . . . . . . . 22
\doublecup (⋓) . . . . . . . . . . 23
\doublecurlyvee (7) . . . . . 23
\doublecurlywedge (6) . . . . 23
\doublefrown () . . . . . . . . 48
\doublefrowneq (%) . . . . . . . 48
\doublepawns (d) . . . . . . . . 82
\doublesmile () . . . . . . . . 48
\doublesmileeq ($) . . . . . . . 48
\doublesqcap (⩎) . . . . . . . . 23
\doublesqcup (⩏) . . . . . . . . 23
\doubletilde (˜
ã) . . . . . . . . 15
\doublevee (⩔) . . . . . . . . . . 23
\doublewedge (⩕) . . . . . . . . 23
\DOWNarrow (L) . . . . . . . . . . 78
\Downarrow (⇓) . . . . . . . 41, 53
\Downarrow (⇓) . . . . . . . . . . 43
\downarrow . . . . . . . . . . . . . 99
\downarrow (↓) . . . . . . . 41, 53
\downarrow (↓) . . . . . . . . . . 43
\downarrowtail (#) . . . . . . . 43
\downbracketfill . . . . . . . . 95
\downdownarrows (Ó) . . . . . 42
\downdownarrows () . . . . . 41
\downdownarrows (⇊) . . . . . 43
\downdownharpoons (Û) . . . . 43
Downes, Michael J. . . . 49, 106
\downfilledspoon (s) . . . . . 47
\downfootline ({) . . . . . . . . 32
\downfree (⫝) . . . . . . . . . . . 32
\downharpoonccw (⇂) . . . . . . 46
\downharpooncw (⇃) . . . . . . . 46
\downharpoonleft (å) . . . . . 43
\downharpoonleft () . . . . . 41
\downharpoonright (ç) . . . . 43
\downharpoonright () . . . . 41
\downlsquigarrow (£) . . . . . 43
\downmapsto (↧) . . . . . . . . . 43
\downModels (ó) . . . . . . . . . 32
\downmodels (ã) . . . . . . . . . 32
\downp ( ) . . . . . . . . .
\downparenthfill . . .
\downpitchfork (⫛) . .
\downpropto () . . . .
\downrsquigarrow ()
\downslice () . . . . .
\downspoon (⫰) . . . . .
\downt ( ) . . . . . . . . .
\downtherefore (∵) .
\downtouparrow ( ) .
\downuparrows ( ) . .
\downuparrows () . .
\downupharpoons ( ) .
\downupharpoons (⥯) .
\downVdash (⍑) . . . . .
\downvdash (⊤) . . . . .
\downY () . . . . . . . .
\drsh ( ) . . . . . . . . .
\DS (SS) . . . . . . . . . . .
\Ds (ss) . . . . . . . . . . .
\dsaeronautical (a)
\dsagricultural (G)
\dsarchitectural (A)
\dsbiological (B) . .
\dschemical (C) . . . .
\dscommercial (c) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\dsdtstile ( ) . . .
dsfont (package) . . .
\dsheraldical (H) .
\dsjuridical (J) . .
\dsliterary (L) . . .
\dsmathematical (M)
\dsmedical (m) . . . .
\dsmilitary (X) . . .
\dsrailways (R) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
23,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
16
95
47
32
43
24
47
16
61
42
42
43
43
46
32
32
23
42
79
79
84
84
84
84
84
84
. . . . 35
65, 104
. . . . 84
. . . . 84
. . . . 84
. . . . 84
. . . . 84
. . . . 84
. . . . 84
\dsststile ( ) . . . . . . . . . 35
\dstechnical (T) . . . . . . . . 84
\dststile (
) . . . . . . . . . . 35
\dsttstile (
) . . . . . . . . 35
\dtdtstile (
) . . . . . . . . . 35
\dtimes () . . . . . . . . . . . . 23
\dtimes () . . . . . . . . . . . . 23
\dtststile (
) . . . . . . . . . 35
\dttstile (
) . . . . . . . . . . 35
\dtttstile (
) . . . . . . . . 35
DVI . . . . . . . . . . . . . 18, 69, 97
\dz ( ) . . . . . . . . . . . . . . . 12
E
e (esvect package option)
\e (e ) . . . . . . . . . . . . . .
ε-TEX . . . . . . . . . . . . . .
\Earth ( ) . . . . . . . . . .
\Earth (Ê) . . . . . . . . . .
\earth (♁) . . . . . . . . . .
\Ecommerce () . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
59
51
53
68
68
68
17
\EightAsterisk ( ) . . . . . . 74
\EightFlowerPetal ( ) . . . 74
\EightFlowerPetalRemoved ( )
. . . . . . . . . 74
eighth note see musical symbols
\eighthnote (♪) . . . . . . . . . 78
\eighthnote () . . . . . . . . . 78
\EightStar ( ) . . . . . . . . . 74
\EightStarBold ( ) . . . . . . 74
\EightStarConvex ( ) . . . . 74
\EightStarTaper ( ) . . . . . 74
\ejective ( ) . . . . . . . . . . . 12
electrical symbols . . . . . . . . 67
electromotive force (E) . . . . see
alphabets, math
\ell () . . . . . . . . . . . . . . . 51
\Ellipse ( ) . . . . . . . . . . . 75
ellipses (dots) . . . . 8, 61, 62, 94
ellipses (ovals) . . . . . . . . . . . 75
\EllipseShadow ( ) . . . . . . 75
\EllipseSolid ( ) . . . . . . . 75
\EM (␙) . . . . . . . . . . . . . . . . 69
\Email (k) . . . . . . . . . . . . . 69
\Emailct (z) . . . . . . . . . . . 69
\emgma ( ) . . . . . . . . . . . . . 12
\emptyset (∅) . . . . . . . . . . . 62
\emptyset (∅) . . . . . . . . . . . 63
\End ( End ) . . . . . . . . . . . . 69
end of proof . . . . . . . . . . . . 62
\ending (L) . . . . . . . . . . . . 82
\eng ( ) . . . . . . . . . . . . . . . 11
engineering symbols . . . . 67, 70
\engma ( ) . . . . . . . . . . . . . 12
\ENQ (␅) . . . . . . . . . . . . . . . 69
entails . . . . . . . . . . see \models
\Enter ( Enter ) . . . . . . . . . 69
\Envelope ( ) . .
\enya ( ) . . . . .
\EOT (␄) . . . . . .
epsdice (package)
\epsdice (
\epsi ( ) . . . . .
\epsilon () . . .
\epsilonup () .
\eqbump () . . . .
\eqbumped ( ) .
\eqcirc ( ) . . .
\eqcirc () . . .
\eqcirc (≖) . . . .
\Eqcolon () . .
\Eqcolon (−::) . .
\eqcolon ( ) . .
\eqcolon (−:) . .
\eqcolon () . .
\eqdot (⩦) . . . .
\eqfrown () . . .
\Eqqcolon () .
\Eqqcolon (=::) .
\eqqcolon (=:) .
\eqqcolon () .
\eqsim () . . . .
\eqsim (≂) . . . .
\eqslantgtr ( )
114
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . 77
. . . . . . . 12
. . . . . . . 69
81, 104, 105
) . . . . . 81
. . . . . . . . 12
. . . . . . . . 49
. . . . . . . . 50
. . . . . . . . 32
. . . . . . . . 31
. . . . . . . . 31
. . . . . . . . 30
. . . . . . . . 32
. . . . . . . . 31
. . . . . . . . 34
. . . . . . . . 31
. . . . . . . . 34
. . . . . . . . 31
. . . . . . . . 32
. . . . . . . . 48
. . . . . . . . 31
. . . . . . . . 34
. . . . . . . . 34
. . . . . . . . 31
. . . . . . . . 31
. . . . . . . . 32
. . . . . . . . 38
\eqslantgtr () . . . . . . . . . 37
\eqslantgtr (⪖) . . . . . . . . . 39
\eqslantless ( ) . . . . . . . . 38
\eqslantless () . . . . . . . . 37
\eqslantless (⪕) . . . . . . . . 39
\eqsmile () . . . . . . . . . . . . 48
\equal (=) . . . . . . . . . . . . . 32
\equal (j) . . . . . . . . . . . . . 82
\equalclosed () . . . . . . . . 32
\equalsfill . . . . . . . . . 20, 95
equidecomposable . . . . . . . . 91
equilibrium . . . . . . . . . . . . see
\rightleftharpoons
\equiv (≡) . . . . . . . . . . 20, 30
\equiv (≡) . . . . . . . . . . . . . 32
equivalence . . . . . . . . . . . . see
\equiv, \leftrightarrow,
and \threesim
\equivclosed () . . . . . . . . 32
\er ( ) . . . . . . . . . . . . . . . . 11
es-zet . . . . . . . . . . . . . see \ss
\ESC (␛) . . . . . . . . . . . . . . . 69
\Esc ( Esc ) . . . . . . . . . . . . 69
escapable characters . . . . . . . 8
\esh ( ) . . . . . . . . . . . . . . . 11
\esh ( ) . . . . . . . . . . . . . . . 12
esint (package) . . . . . . . 28, 104
\Estatically (J) . . . . . . . . 70
estimated . see \textestimated
esvect (package) . . . . . . 59, 104
\eta (η) . . . . . . . . . . . . . . . 49
\etaup (η) . . . . . . . . . . . . . 50
\ETB (␗) . . . . . . . . . . . . . . . 69
\etc (P) . . . . . . . . . . . . . . . 82
\eth (ð) . . . . . . . . . . . . . . . 63
\eth ( ) . . . . . . . . . . . . . . . 11
\eth ( ) . . . . . . . . . . . . . . . 12
\ETX (␃) . . . . . . . . . . . . . . . 69
eufrak (package) . . . . . . . . . 65
Euler Roman . . . . . . . . . . . . 50
\EUR (e ) . . . . . . . . . . . . . . . 17
\EURcr (d) . . . . . . . . . . . . . 17
\EURdig (D) . . . . . . . . . . . . 17
\EURhv (c) . . . . . . . . . . . . . 17
\euro . . . . . . . . . . . . . . . . . 17
euro signs . . . . . . . . . . . . . . 17
blackboard bold . . . . . . 65
eurosym (package) . 17, 104, 105
\EURtm (e) . . . . . . . . . . . . . 17
euscript (package) . 65, 104, 105
evaluated at . . . . . . see \vert
evil spirits . . . . . . . . . . . . . . 86
exclusive or . . . . . . . . . . . . . 90
\exists ( ) . . . . . . . . . . . . . 51
\exists (∃) . . . . . . . . . . . . . 51
\exists (∃) . . . . . . . . . . . . . 51
\exp (exp) . . . . . . . . . . . . . 49
\Explosionsafe (`) . . . . . . 70
extarrows (package) 60, 104, 105
extensible accents
57–60, 95–96
extensible arrows . . . . . . 57–60
extensible symbols, creating 94–
96
extensible tildes . . . . . . . 57, 59
extension characters . . . 48, 49
extpfeil (package) . . 60, 104, 105
extraipa (package) . . . . 15, 104
\eye (
) . . . . . . . . . . . . . 77
\EyesDollar (¦) . . . . . . . . . 17
E
F
f (esvect package option) . . . 59
faces . . . . . . . . . . 69, 78, 80, 85
\fallingdotseq () . . . . . . 31
\fallingdotseq (;) . . . . . . 30
\fallingdotseq (≒) . . . . . . . 32
\FallingEdge ( ) . . . . . . . . 67
\fatbslash ()) . . . . . . . . . . 21
\fatsemi (#) . . . . . . . . . . . . 21
\fatslash (() . . . . . . . . . . . 21
\FAX (u) . . . . . . . . . . . . . . 69
\fax (t) . . . . . . . . . . . . . . . 69
\Faxmachine (v) . . . . . . . . 69
fc (package) . . . . . . . . . . 9, 13
fclfont (package) . . . . . . . . 104
feet . . . . . . . . . see \prime and
\textquotesingle
\FEMALE () . . . . . . . . . . . . 70
\Female (~) . . . . . . . . . . . . 70
\female (♀) . . . . . . . . . . . . . 70
\FemaleFemale („) . . . . . . . 70
\FemaleMale (…) . . . . . . . . . 70
.
a
\Ferli (a) . . . . . . . . . . . . . 79
.
a
\Fermi (a) . . . . . . . . . . . . . 79
fermions . . . . . . . . . . . . . . . 70
feyn (package) . . . . 70, 104, 105
Feynman slashed character notation . . . . . . . . . . . . . . 92
Feynman-diagram symbols . . 70
\feyn{a} (a) . . . . . . . . . . . . . 70
\feyn{c} (c) . . . . . . . . . . . 70
\feyn{fd} ( ) . . . . . . . . . . . 70
\feyn{fl} (n) . . . . . . . . 70
!
\feyn{fs} (e)
\feyn{fu} ()
\feyn{fv} () .
\feyn{f} (f)
\feyn{glu} ()w
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
70
70
70
70
70
\feyn{gl} (o) .
\feyn{gu} ()
\feyn{gvs} ()
\feyn{gv} () .
\feyn{g} (g)
\feyn{hd} ()
\feyn{hs} (i)
\feyn{hu} ()
\feyn{h} (h)
\feyn{ms} (l)
\feyn{m} (m)
\feyn{p} (p)
\feyn{x} (x) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
70
70
70
70
70
70
70
70
70
70
70
70
70
\FF (␌) . . . . . . . . . . . . . . . . 69
fge (package) . 47, 52, 56, 62, 64,
104, 105
fge-digits . . . . . . . . . . . . . . . 62
\fgeA (A) . . . . . . . . . . . . . . 52
\fgebackslash (K) . . . . . . . . 64
\fgebaracute (M) . . . . . . . . 64
\fgebarcap (O) . . . . . . . . . . 64
\fgec (c) . . . . . . . . . . . . . . 52
\fgecap (S) . . . . . . . . . . . . 64
\fgecapbar (Q) . . . . . . . . . . 64
\fgecup (N) . . . . . . . . . . . . 64
\fgecupacute (R) . . . . . . . . 64
\fgecupbar (P) . . . . . . . . . . 64
\fged (p) . . . . . . . . . . . . . . 52
\fgee (e) . . . . . . . . . . . . . . 52
\fgeeszett () . . . . . . . . . . 52
\fgeeta () . . . . . . . . . . . . 52
\fgeF (F) . . . . . . . . . . . . . . 52
\fgef (f) . . . . . . . . . . . . . . 52
\fgeinfty (i) . . . . . . . . . . 64
\fgelangle (h) . . . . . . . . . . 64
\fgelb . . . . . . . . . . . . . . . . 52
\fgelb () . . . . . . . . . . . . . 52
\fgeleftB (D) . . . . . . . . . . . 52
\fgeleftC (C) . . . . . . . . . . . 52
\fgeN () . . . . . . . . . . . . . . 52
\fgeoverU () . . . . . . . . . . . 52
\fgerightarrow (!) . . . . . 47
\fgerightB (B) . . . . . . . . . . 52
\fges (s) . . . . . . . . . . . . . . . 52
\fgestruckone (1) . . . . . . . . 62
\fgestruckzero (0) . . . . . . . 62
\fgeU (U) . . . . . . . . . . . . . . 52
\fgeuparrow (") . . . . . . . . . 47
\fgeupbracket (L) . . . . . . . 64
\FHBOLOGO (f) . . . . . . . . . . . 80
\FHBOlogo (F) . . . . . . . . . . . 80
\file (H) . . . . . . . . . . . . . . 82
\FilledBigCircle ( ) . . . . 75
\FilledBigDiamondshape ( ) 75
\FilledBigSquare ( ) . . . . 75
\FilledBigTriangleDown ( ) 75
\FilledBigTriangleLeft ( ) 75
\FilledBigTriangleRight ( )
. . . . . . . . . 75
\FilledBigTriangleUp ( ) . 75
\FilledCircle ( ) . . . . . . . 75
\FilledCloud ( ) . . . . . . . . 80
\filleddiamond (◆) . . . . . . . 24
\FilledDiamondShadowA ( ) 75
\FilledDiamondShadowC ( ) 75
\FilledDiamondshape ( ) . . 75
\FilledHut ( ) . . . . . . . . . . 81
\filledlargestar (☀) . . . . 74
\filledlozenge (⧫) . . . . . . . 74
\filledmedlozenge (⧫) . . . . 74
\filledmedsquare (∎) . . . . . 24
\filledmedtriangledown (▼) 24,
40
U
P
e
115
V
S
R
T
Q
f
\filledmedtriangleleft (◀) 24,
40
\filledmedtriangleright (▶)
. . . . . . . 24, 40
\filledmedtriangleup (▲)
24,
40
\FilledRainCloud ( ) . . . . 80
\FilledSectioningDiamond ( )
. . . . . . . . . 81
\FilledSmallCircle ( ) . . 75
\FilledSmallDiamondshape ( )
. . . . . . . . . 75
\FilledSmallSquare ( ) . . 75
\FilledSmallTriangleDown ( )
. . . . . . . . . 75
\FilledSmallTriangleLeft ( )
. . . . . . . . . 75
\FilledSmallTriangleRight
( ) . . . . . . . . . . . . . . 75
\FilledSmallTriangleUp ( ) 75
\FilledSnowCloud ( ) . . . . 80
\FilledSquare ( ) . . . . . . . 75
\filledsquare (◾) . . . . . . . . 24
\FilledSquareShadowA ( ) . 75
\FilledSquareShadowC ( ) . 75
!
u
v
p
s
r
t
`
q
$
C
\filledsquarewithdots ( ) 77
\filledstar (★) . . . . . . . . . 24
\FilledSunCloud ( ) . . . . . 80
\FilledTriangleDown ( ) . . 75
\filledtriangledown (▾) 24, 40
\FilledTriangleLeft ( ) . . 75
\filledtriangleleft (◂) 24, 40
\FilledTriangleRight ( ) . 75
\filledtriangleright (▸)
24,
40
\FilledTriangleUp ( ) . . . 75
\filledtriangleup (▴) . 24, 40
\FilledWeakRainCloud ( ) . 80
finger, pointing . . . . . . see fists
\finpartvoice (a») . . . . . . . 15
ˇ (a) . . . . 15
\finpartvoiceless
»
>
˚
\fint ( ) . . . . . . . . . . . . . . 27
ffl
\fint ( ) . . . . . . . . . . . . . . 28
\Finv (F) . . . . . . . . . . . . . . 51
\Finv (`) . . . . . . . . . . . . . . 51
\Fire ( ) . . . . . . . . . . . . . . 81
fish hook . . . . . . see \strictif
fists . . . . . . . . . . . . . . . . . . 72
\fivedots () . . . . . . . . 23, 61
\FiveFlowerOpen ( ) . . . . . 74
\FiveFlowerPetal ( ) . . . . 74
\FiveStar ( ) . . . . . . . . . . 74
\FiveStarCenterOpen ( ) . . 74
\FiveStarConvex ( ) . . . . . 74
\FiveStarLines ( ) . . . . . . 74
\FiveStarOpen ( ) . . . . . . . 74
\FiveStarOpenCircled ( ) . 74
#
c
b
d
a
"
8
R
P
?
7
9
;
:
<
=
>
@
\FiveStarOpenDotted ( ) . . 74
\FiveStarOutline ( ) . . . . 74
\FiveStarOutlineHeavy ( ) 74
\FiveStarShadow ( ) . . . . . 74
\Fixedbearing (%) . . . . . . . 70
.
\fixedddots ( . . ) . . . . . . . . 61
.
\fixedvdots (..) . . . . . . . . . . 61
fixmath (package) . . . . . . . 100
\fj (F) . . . . . . . . . . . . . . . . 12
\Flag ( ) . . . . . . . . . . . . . . 81
\flap (f) . . . . . . . . . . . . . . 12
\flapr (D) . . . . . . . . . . . . . . 11
\flat ([) . . . . . . . . . . . 62, 78
\flat (♭) . . . . . . . . . . . . . . . 63
\Flatsteel (–) . . . . . . . . . . 70
fletched arrows . . . . . . . 47, 71
florin . . . . . . see \textflorin
flowers . . . . . . . . . . . . . . . . 74
Flynn, Peter . . . . . . . . . . . . 91
\Fog ( ) . . . . . . . . . . . . . . 80
font encodings . . . . . 7, 100, 103
7-bit . . . . . . . . . . . . . . . 7
8-bit . . . . . . . . . . . . . . . 7
ASCII . . . . . . . . . . . . 104
document . . . . . . . . . . 103
Latin 1 . . . . . . . . . . . 104
limiting scope of . . . . . . . 7
LY1 . . . . . . . . . . . . . . . . 7
OT1 7, 9, 13, 94, 100, 101,
103
OT2 . . . . . . . . . . . . . . 90
T1 . . . . . 7, 9, 13, 101, 103
T4 . . . . . . . . . . . 9, 13, 16
T5 . . . . . . . . . . . . . . 9, 13
TS1 . . . . . . . . . . . . . . 103
fontdef.dtx (file) . . . . . 90, 94
fontenc (package) . . 7, 9, 13, 103
\fontencoding . . . . . . . . . . . 7
fonts
Calligra . . . . . . . . . . . . 65
Charter . . . . . . . . . 17, 29
Computer Modern . 87, 89,
101
Courier . . . . . . . . . . . . 17
Garamond . . . . . . . 17, 29
Helvetica . . . . . . . . . . . 17
Symbol . . . . . . . . . 50, 90
Times Roman . . . . 17, 89
Type 1 . . . . . . . . . . . . 99
Utopia . . . . . . . . . . 17, 29
Zapf Chancery . . . . . . . 65
Zapf Dingbats . . . . 71, 73
\fontsize . . . . . . . . . . . 87, 89
\Football (o) . . . . . . . . . . . 76
\forall (∀) . . . . . . . . . . . . . 51
\forall (∀) . . . . . . . . . . . . 51
\Force (l) . . . . . . . . . . . . . 70
\Forward (·) . . . . . . . . . . . . 79
\ForwardToEnd (¸) . . . . . . . 79
\ForwardToIndex (¹) . . . . 79
1
\FourAsterisk ( ) . . . . . . . 74
\FourClowerOpen ( ) . . . . . 74
\FourClowerSolid ( ) . . . . 74
V
W
c) . . . . . . . . . 35
\Fourier (
\fourier ( c
) . . . . . . . . . 35
Fourier transform (F) . . . . see
alphabets, math
\FourStar ( ) . . . . . . . . . . 74
\FourStarOpen ( ) . . . . . . . 74
\fourth (4) . . . . . . . . . . . . 63
fractions . . . . . . . . . . . . . . . 64
fraktur . . . see alphabets, math
Frege logic symbols 47, 52, 62, 64
\frown (_) . . . . . . . . . . . . . 30
\frown (⌢) . . . . . . . . . . . . . 48
frown symbols . . . . . . . . . . . 48
\frowneq (!) . . . . . . . . . . . . 48
\frowneqsmile (') . . . . . . . 48
\frownie (/) . . . . . . . . . . . 78
\frownsmile () . . . . . . . . . 48
\frownsmileeq ()) . . . . . . . 48
\Frowny (§) . . . . . . . . . . . . 80
\FS (␜) . . . . . . . . . . . . . . . . 69
\FullFHBO (Ž) . . . . . . . . . . 80
\fullmoon (M) . . . . . . . . . . 68
\fullmoon (#) . . . . . . . . . . 68
\fullnote () . . . . . . . . . . . 78
5
6
G
\G (a
Ÿ) . . . . . . . . . . . . . . . . . 13
g (esvect package option) . . . 59
\Game (G) . . . . . . . . . . . . . . 51
\Game (a) . . . . . . . . . . . . . . 51
\Gamma (Γ) . . . . . . . . . . . . . 49
\gamma (γ) . . . . . . . . . . . . . 49
\gammaup (γ) . . . . . . . . . . . . 50
\Ganz (¯ ) . . . . . . . . . . . . . . 79
\GaPa (<) . . . . . . . . . . . . . . 79
Garamond (font) . . . . . . 17, 29
\gcd (gcd) . . . . . . . . . . . . . 49
\ge . . . . . . . . . . . . . . see \geq
\Gemini (R) . . . . . . . . . . . . 68
\Gemini (â) . . . . . . . . . . . . 68
\gemini (^) . . . . . . . . . . . . 68
genealogical symbols . . . . . . 78
\geneuro (A
C) . . . . . . . . . . . 17
\geneuronarrow (B
C) . . . . . . 17
\geneurowide (C
C) . . . . . . . . 17
gensymb (package) . . . . . . . . 67
\Gentsroom (x) . . . . . . . . . . 76
geometric shapes . . . . . . 74–76
\geq (¥) . . . . . . . . . . . . . . . 38
\geq (≥) . . . . . . . . . . . . 37, 38
\geq (≥) . . . . . . . . . . . . . . . 39
\geqclosed (⊵) . . . . . . . 39, 40
\geqdot (u) . . . . . . . . . . . . . 39
\geqq (¯) . . . . . . . . . . . . . . 38
\geqq (=) . . . . . . . . . . . . . . 37
\geqq (≧) . . . . . . . . . . . . . . 39
\geqslant (>) . . . . . . . . . . 37
\geqslant (⩾) . . . . . . . . . . . 39
\geqslantdot (⪀) . . . . . . . . 39
116
german (keystroke package option)
. . . . . . . . . 69
\gets . . . . . . . see \leftarrow
\gg (") . . . . . . . . . . . . . . . . 38
\gg () . . . . . . . . . . . . . . . 37
\gg (≫) . . . . . . . . . . . . . . . 39
\ggcurly (Ï) . . . . . . . . . . . 31
\ggg (Ï) . . . . . . . . . . . . . . . 38
\ggg (≫) . . . . . . . . . . . . . . 37
\ggg (≫ vs. Ï) . . . . . . . . . 88
\ggg (⋙) . . . . . . . . . . . . . . 39
\gggtr . . . . . . . . . . . see \ggg
\gggtr (⋙) . . . . . . . . . . . . 39
ghosts . . . . . . . . . . . . . . . . . 86
Gibbons, Jeremy . . . . . . . . 106
\gimel (‫ )ג‬. . . . . . . . . . . . . 50
\gimel (ℷ) . . . . . . . . . . . . . . 50
\girl (B) . . . . . . . . . . . . . . 68
\glotstop (b) . . . . . . . . . . . 12
\glottal (?) . . . . . . . . . . . . 12
\gluon (QPPPPPPR) . . . . . . . . . . 67
gluons . . . . . . . . . . . . . . . . . 70
\gnapprox (Ë) . . . . . . . . . . 38
\gnapprox () . . . . . . . . . . 37
\gnapprox (⪊) . . . . . . . . . . . 39
\gneq (­) . . . . . . . . . . . . . . 38
\gneq () . . . . . . . . . . . . . . 37
\gneqq (³) . . . . . . . . . . . . . 38
\gneqq () . . . . . . . . . . . . . 37
\gneqq (≩) . . . . . . . . . . . . . 39
\gnsim (Å) . . . . . . . . . . . . . 38
\gnsim () . . . . . . . . . . . . . 37
\gnsim (≵) . . . . . . . . . . . . . 39
Go boards . . . . . . . . . . . . . . 76
Go stones . . . . . . . . . . . . . . 76
goban . . . . . . . . . . . . . . . . . 76
\Goofy . . . . . . . . . . . . . . . . 85
graphics (package) . . . . . . . . 90
graphicx (package) . . . 16, 87, 90
\grave (`) . . . . . . . . . . . . . 56
\gravis (à) . . . . . . . . . . . . . 16
greater-than signs . . . . . . . see
inequalities
Greek . . . . . . . . . . . . . . 49, 50
blackboard bold . . . . . . 65
bold . . . . . . . . . . 49, 100
upright . . . . . . . . . . . . 50
Gregorio, Enrico . . . . . . 91, 92
\GS (␝) . . . . . . . . . . . . . . . . 69
\gtr (>) . . . . . . . . . . . . . . . 39
\gtrapprox (Ç) . . . . . . . . . . 38
\gtrapprox (') . . . . . . . . . 37
\gtrapprox (⪆) . . . . . . . . . . 39
\gtrclosed (⊳) . . . . . . . 39, 40
\gtrdot (Í) . . . . . . . . . . . . 38
\gtrdot (m) . . . . . . . . . . . . 37
\gtrdot (⋗) . . . . . . . . . . . . . 39
\gtreqless (½) . . . . . . . . . . 38
\gtreqless (R) . . . . . . . . . 37
\gtreqless (⋛) . . . . . . . . . . 39
\gtreqlessslant (O) . . . . . . 39
\gtreqqless (¿) . . . . . . . . . 38
\gtreqqless (T) . . . . . . . . . 37
\HB (B) . . . . . . . . . . . . . . . . 84
\Hman (ˇ) . . . . . . . . . . . . . 84
\gtreqqless (⪌)
\gtrless (») . .
\gtrless (≷) . .
\gtrless (≷) . . .
\Hb (b) . . . . .
\HBar ( ) . . . .
\hbar (~) . . . .
\hbipropto (ˆ)
\HC (C) . . . . . .
84
75
90
23
84
\Hmillion (7) . . . . . . . . . . 84
\Hc (c) . . . . . . . . . . . . . . . . 84
\hcrossing () . . . . . . . . . . 32
\Ho (o) . . . . . . . . . . . . . . . 84
Holt, Alexander . . . . . . . 1, 104
\HCthousand (6) . . . . . . . . 84
\HD (D) . . . . . . . . . . . . . . . 84
\holter (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
39
38
37
39
\gtrneqqless (ó) . . . . . . . . 39
\gtrsim (Á) . . . . . .
\gtrsim (&) . . . . . .
\gtrsim (≳) . . . . . . .
\guillemotleft («) .
\guillemotright (»)
\guilsinglleft (‹) .
\guilsinglright (›)
\gvertneqq (µ) . . . .
\gvertneqq () . . .
\gvertneqq (≩) . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
H
\H (a̋) . . . . . . . . . . . . . .
h (esvect package option)
\h (ả) . . . . . . . . . . . . . .
\HA (A) . . . . . . . . . . .
. . . 38
. . . 37
. . . 39
9, 102
9, 102
9, 103
9, 103
. . . 38
. . . 37
. . . 39
.
.
.
.
.
.
.
.
.
.
.
.
13
59
13
84
\Ha (a) . . . . . . . . . . . . . . . 84
háček . . . . . . . . . . see accents
\Hail ( ) . . . . . . . . . . . . . . 80
\Halb (˘ “ ) . . . . . . . . . . . . . . 79
half note . . see musical symbols
\HalfCircleLeft ( ) . . . . . . 75
\HalfCircleRight ( ) . . . . . 75
\HalfFilledHut ( ) . . . . . . 81
\halflength (p) . . . . . . . . . 16
\halfnote () . . . . . . . . . . . 78
\HalfSun ( ) . . . . . . . . . . . 80
Hamiltonian (H) see alphabets,
math
\HandCuffLeft ( ) . . . . . . . 72
\HandCuffLeftUp ( ) . . . . . 72
\HandCuffRight ( ) . . . . . . 72
\HandCuffRightUp ( ) . . . . 72
\HandLeft ( ) . . . . . . . . . . 72
\HandLeftUp ( ) . . . . . . . . 72
\HandPencilLeft ( ) . . . . . 72
\HandRight ( ) . . . . . . . . . 72
\HandRightUp ( ) . . . . . . . 72
hands . . . . . . . . . . . . . see fists
\Handwash (Ü) . . . . . . . . . . 80
\HaPa (<) . . . . . . . . . . . . . . 79
harmony (package) . 79, 104, 105
harpoons . . . . . . . . . . 41, 43, 46
\hash (#) . . . . . . . . . . . . . . 63
hash mark . . . . . . . . . . . see \#
\hat (ˆ) . . . . . . . . . . . . . . . 56
\hateq (≙) . . . . . . . . . . . . . 32
\hausaB (B) . . . . . . . . . . . . 12
\hausab (b) . . . . . . . . . . . . 12
\hausaD (T) . . . . . . . . . . . . 12
\hausad (D) . . . . . . . . . . . . 12
\hausaK (K) . . . . . . . . . . . . 12
\hausak (k) . . . . . . . . . . . . 12
s
r
....
....
....
...
....
\Hd (d) . . . . . . . . .
\hdotdot () . . . . . .
\hdots (⋯) . . . . . . .
\Hdual (¸) . . . . . . .
\HE (E) . . . . . . . . .
\He (e) . . . . . . . . .
heads . . . . . . . . . . .
\Heart (Œ) . . . . . . .
hearts (suit) . . . . . .
\heartsuit (♥) . . . .
\heartsuit (♡) . . . .
Hebrew . . . . . . . . . .
Helvetica (font) . . . .
\HERMAPHRODITE (€)
\Hermaphrodite (})
\hexagon (7) . . . . .
\Hexasteel (’) . . . .
\hexstar (A) . . . . .
\HF (F) . . . . . . . . . .
\HF (F) . . . . . . . .
\Hf (f) . . . . . . . .
\hfil . . . . . . . . . . .
\HG (G) . . . . . . . . . .
\Hg (g) . . . . . . . . .
\HH . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
51,
...
...
.
.
.
.
.
.
. . . . 84
. 23, 61
. . . . 61
. . . . 84
. . . . 84
. . . . 84
see faces
. . . . . 80
62–64, 77
. . . . . 62
. . . . . 63
. . 50, 65
. . . . . 17
. . . . . 70
. . . . . 70
. . . . . 74
. . . . . 70
. . . . . 73
. . . . . 67
. . . . . 84
. . . . . 84
. . . . . 92
. . . . . 84
. . . . . 84
. . . . . 79
\HH (H) . . . . . . . . . . . . . . . . 84
\Hh (h) . . . . . . . . . . . . . . . 84
\Hhundred (3) . . . . . . . . . . . 84
\HI (I) . . . . . . . . . . . . . . . 84
\Hi (i) . . . . . . . . . . . . . . . . 84
\Hibl (˝) . . . . . . . . . . . . 84
\Hms (´)
\HN (N)
\Hn (n)
\HO (O) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
84
84
84
84
) . . . . . . . . . . . 60
holtpolt (package) . . . . 60, 104
\hom (hom) . . . . . . . . . . . . . 49
\Home ( Home ) . . . . . . . . . 69
\Homer (
) ...
\Hone (|) . . . . . . . . . .
\hookb () . . . . . . . .
\hookd () . . . . . . . .
\hookd (D) . . . . . . . .
\hookdownminus (⌐) .
\hookg () . . . . . . . .
\hookh ($) . . . . . . . .
\hookheng (%) . . . . . .
\hookleftarrow (←-) .
\hookleftarrow (↩) .
\hookrevepsilon () .
\hookrightarrow (,→)
\hookrightarrow (↪)
\hookupminus (⨽) . . .
Horn, Berthold . . . . .
\HP (P) . . . . . . . . .
\Hp (p) . . . . . . . . . . .
\Hplural (˙) . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
85
84
12
12
12
63
12
12
12
41
44
12
41
44
63
66
84
84
84
\Hplus (+) . . . . . . . . . . . . . 84
\HQ (Q) . . . . . . . . . . . . . . . 84
\Hq (q) . . . . . . . . . . . . . . . . 84
\Hquery (?)
\HR (R) . .
\Hr (r) .
\HS (S) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
84
84
84
84
\Hibp (ˆ) . . . . . . . . . . . . . 84
\Hibs (¨) . . . . . . . . . . . . . 84
\Hs (s) . . . . . . . . . . . . . . . . 84
\Hibw (˜) . . . .
hieroglf (package)
hieroglyphics . . .
Hilbert space (H)
math
\hill (a) . . . . .
. . . . . . . . . 15
\HJ (J) . . .
\Hj (j) . .
\HK (K) . . .
\Hk (k) √
..
\hksqrt (
\HL (L) . .
\Hl (l) . .
\HM (M) . .
.
.
.
.
.
.
.
.
\Hslash (/)
\hslash (})
\Hsv (˚) .
\HT (T) . .
\HT (␉) . . .
\Ht (t) . .
\Hten (2) .
{
.
.
.
.
.
.
.
.
)
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . 84
. 84, 104, 105
. . . . . . . . . 84
see alphabets,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
84
84
84
84
93
84
84
84
\Hm (m) . . . . . . . . . . . . . . . 84
117
\Hscribe (¯) . . . . . . . . . . . 84
..
.
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
84
51
84
84
69
84
84
\Hthousand (4) . . . . . . . . . . 84
\Htongue (˘) . . . . . . . . . . 84
\HU (U) . . . . . . . . . . . . . . . . 84
\Hu (u) . . . . . . . . . . . . . . . . 84
Hungarian umlaut . see accents
\Hut ( ) . . . . . . . . . . . . . . . 81
\HV (V) . . . . . . . . . . . . . . . . 84
\Hv (v) .
\hv (") . .
\Hvbar (|)
\HW (W) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
84
12
84
84
\Hw (w) . . . . . . . . . . . . . . . 84
\HX (X) . . . . . . . . . . . . . . . . 84
\Hx (x) . . . . . . . . . . . . . . . . 84
\HXthousand (5) . . . . . . . . . 84
\HY (Y) . . . . . . . . . . . . . . . 84
\Hy (y) . . . . . . . . .
hyphen, discretionary
\HZ (Z) . . . . . . . . .
\Hz (z) . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 84
103
. 84
. 84
I
\i (ı) . . . . . . . . . . . . . . . . . 13
\ialign . . . . . . . . . . 91, 93, 95
\ibar (¯i ) . . . . . . . . . . . . . . 12
IBM PC . . . . . . . . . . . 69, 101
Icelandic staves . . . . . . . . . . 85
\IceMountain ( ) . . . . . . . . 81
.
\iddots ( . . ) . . . . . . . . . . . . 62
\iddots () R. . . R. . . . . . . . . . 94
\idotsint ('
··· ) . . . . . . . 25
\idotsint (
) . . . . . . . . 27
\idotsint (∫…∫) . . . . . . . . . . 29
\iff . see \Longleftrightarrow
ifsym (package) . 67, 75, 80, 81,
88, 90, 104, 105
igo (package) . . . . . . . . 76, 104
\igocircle ( ) . . . . . . . . . 76
\igocircle ( ) . . . . . . . . . 76
\igocross ( ) . . . . . . . . . . 76
\igocross ( ) . . . . . . . . . . 76
\igonone ( ) . . . . . . . . . . . 76
\igonone ( ) . . . . . . . . . . . 76
\igosquare ( ) . . . . . . . . . 76
\igosquare ( ) . . . . . . . . . 76
\igotriangle ( ) . . . . . . . . 76
\igotriangle
RRRR( ) . . . . . . . . 76
\iiiint (% ) . . . . . . . . . 25
\iiiint (
) . . . . . . . . . . . 27
ˇ
\iiiint ( ) . . . . . . . . . . . 28
\iiiint µ
(⨌) . . . . . . . . . . . 29
\iiint (RRR
) . . . . . . . . . . . . 26
\iiint (# ) . . . . . . . . . . . 25
\iiint ( ) . . . . . . . . . 25, 27
˝
\iiint ( ) . . . . . . . . . . . . 28
\iiint ´
(∭) . . . . . . . . . . . . . 29
\iint (RR) . . . . . . . . . . . . . . 26
\iint (! ) . . . . . . . . . . . . . 25
\iint ( ) . . . . . . . . . . . 25, 27
˜
\iint ( ) . . . . . . . . . . . . . . 28
\iint (∬) . . . . . . . . . . . . . . 29
\Im (=) . . . . . . . . . . . . . . . . 51
\im (j) . . . . . . . . . . . . . . . . 51
\imath (ı) . . . . . . . . . . . 51, 56
\impliedby see \Longleftarrow
}
}
|
|
~
~


\implies
see \Longrightarrow
and \vdash
impulse train . . . . . . . . see sha
\in (P) . . . . . . . . . . . . . . . . 51
\in (∈) . . . . . . . . . . . . . . . . 51
\in (∈) . . . . . . . . . . . . . . . . 51
\in (∈) . . . . . . . . . . . . . . . . 51
inches . . . . . . . see \second and
\textquotedbl
\incoh (˚) . . . . . . . . . . . . . 36
independence
probabilistic . . . . . . . . . 93
statistical . . . . . . . . . . . 93
stochastic . . . . . see \bot
\independent (⊥
⊥) . . . . . . . . 93
\Industry (I) . . . . . . . . . . 76
inequalities . . . . . . . . . 8, 37–39
inexact differential . . see \dbar
\inf (inf) . . . . . . . . . . . . . . 49
infinity (∞) . . . . . . . see \infty
\Info (i) . . . . . . . . . . . . . . 76
information symbols . . . . . . 76
informator symbols . . . . . . . 82
\infty (8) . . . . . . . . . . . . . 63
\infty (∞) . . . . . . . . . . . . . 62
\infty (∞) . . . . . . . . . . . . . 63
\inipartvoice (a
–ˇ) . . . . . . . 15
\inipartvoiceless
(a
– ) . . . . 15
˚
\injlim (inj lim) . . . . . . . . . 49
\inplus (A) . . . . . . . . . . . . 30
\Ins ( Ins ) . . . . . . . . . . . . 69
³
\int (R) . . . . . . . . . . . . . . . 26
\int ( ) . . . . . . . . . . . . . . . 25
r
\int ( ) . . . . . . . . . . . . . . . 25
\int (∫) . . . . . . . . . . . . . . . 29
€
\intclockwise ( ) . . . . . . . 29
integers (Z) see alphabets, math
integrals . . . . . 25–29, 63, 92–93
integrals (wasysym package option) . . . . . . . . . . . . . 25
\intercal (|) . . . . . . . . . . . 21
\intercal (⊺) . . . . . . . . . . . 51
\interleave (9) . . . . . . . . . 21
intersection . . . . . . . . see \cap
\Interval ( ) . . . . . . . . . . 81
\inva ( ) . . . . . . . . . . . . . . 12
\invamp (M) . . . . . . . . . . . . 21
\invbackneg (⨽) . . . . . . . . . 63
\invdiameter () . . . . . . . . 78
\inve (U) . . . . . . . . . . . . . . 12
\InversTransformHoriz ( ) 35
™
\InversTransformVert ( ) .
inverted symbols . 10–12, 16,
\invf (,) . . . . . . . . . . . . . . .
\invglotstop (d) . . . . . . . .
\invh (&) . . . . . . . . . . . . . .
\invlegr (I) . . . . . . . . . . . .
\invm (5) . . . . . . . . . . . . . .
\invneg () . . . . . . . . . . . .
\invneg (⨼) . . . . . . . . . . . .
\invr (G) . . . . . . . . . . . . . .
118
35
90
12
12
12
12
12
30
63
12
\invscr (K) . . . . . .
\invscripta () . . .
\invv () . . . . . . . .
\invw (Z) . . . . . . . .
\invy (\) . . . . . . . .
\iota (ι) . . . . . . . . .
\iotaup (ι) . . . . . . .
\ipagamma ( ) . . . . .
\IroningI (¯) . . . .
\IroningII (°) . . .
\IroningIII (±) . .
irony mark (? ) . . . . .
\Irritant ( ) . . . .
\ismodeledby (=|) . .
ISO character entities
isoent (package) . . . .
J
\j () . . . . . . . .
\JackStar ( ) .
\JackStarBold (
Jewish star . . . .
\jmath () . . . . .
\Joch ( ) . . . . .
\Join (Z) . . . . .
\Join (&) . . . . .
\joinrel . . . . .
\Jupiter (E) . .
\Jupiter (Å) . . .
\jupiter (X) . .
2
..
..
)
..
..
..
..
..
..
..
..
..
3
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . 13
. . . 74
. . . 74
73, 74
51, 56
. . . 81
. . . 30
. . . 23
. . . 90
. . . 68
. . . 68
. . . 68
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
12
12
12
12
12
49
50
12
80
80
80
90
81
90
103
103
K
\k ( ˛) . . . . . . . . . . . . . . . . . 13
\kappa (κ) . . . . . . . . . . . . . 49
\kappaup (κ) . . . . . . . . . . . . 50
\ker (ker) . . . . . . . . . . . . . . 49
ket . . . . . . . . . . . . . . . . . . . 53
\Keyboard (Ï) . . . . . . . . . . 69
keyboard symbols . . . . . . . . 69
keys, computer . . . . . . . . . . 69
keystroke (package) 69, 104, 105
\keystroke (
) . . . . . . . . 69
king . . . . . . . see chess symbols
knight . . . . . . see chess symbols
Knuth, Donald E. . . 7, 100, 106
symbols by . . . . . . . 76, 79
\Kr ( l
) . . . . . . . . . . . . . . 79
\kreuz (6) . . . . . . . . . . . . . 78
\kside (O) . . . . . . . . . . . . . 82
\Kutline (R) . . . . . . . . . . . 71
L
\L (L) . . . . . . . . . . . . . . . . . . 9
\l (l) . . . . . . . . . . . . . . . . . . 9
\labdentalnas (4) . . . . . . . 11
\labvel . . . . . . . . . . . . . . . 15
\Ladiesroom (y) . . . . . . . . . 76
Lagrangian (L) . see alphabets,
math
\Lambda (Λ) . . . . . . . . . . . . 49
\lambda (λ) . . . . . . . . . . . . 49
\lambdabar (o) . . . . . . . . . . 63
\lambdaslash (n)
\lambdaup (λ) . .
Lamport, Leslie .
\land . . . . . . %. .
\landdownint ( )
.
..
..
..
.
.
.
.
.
.
. . . . . . 63
. . . . . . 50
. . 104, 106
see \wedge
. . . . . . 28
\landdownint# (⨚) . . . . . . . . 29
\landupint ( ) . . . . . . . . . . 28
\landupint (⨙)
\Langle (<) . .
\lAngle (hh) . . .
\langle (h) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . 29
. . . 65
. . . 55
20, 53
\langle (⟨) . . . . . . . . . . . . . 54
\langlebar (n) . . . . . . . . . . 54
\Laplace ( s
c) . . . . . . . . . 35
s) . . . . . . . . . 35
\laplace ( c
Laplace transform (L) . . . . see
alphabets, math
Laplacian (∆) . . . . . see \Delta
Laplacian (∇2 ) . . . . see \nabla
\largecircle (◯) . . . . . . . . 74
\largediamond (◇) . . . . . . 74
\largelozenge (◊) . . . . . . . 74
W)
\largepencil (
. . . . . . . 72
\largepentagram (…) . . . . . 74
\largesquare (◻) . . . . . . . . 74
\largestar (☆) . . . . . . . . . 74
\largestarofdavid (✡) . . . 74
\largetriangledown (▽) . . 40
\largetriangleleft (◁) . . 40
\largetriangleright (▷) . 40
\largetriangleup (△) . . . . 40
\LArrow ( ← ) . . . . . . . . . . 69
\larrowfill . . . . . . . . . . . . 60
\Laserbeam (a) . . . . . . . . 70
LATEX . . . . . . . . . . . . . . . . . 1,
7, 25, 49, 53, 61, 62, 71, 82,
87, 90–96, 99–101, 103, 104,
106
LATEX 2ε . 1, 7, 8, 18–20, 30, 36,
41, 57, 61, 62, 66, 87, 88, 90,
93, 94, 98–103, 106
latexsym (package) 20, 30, 36, 41,
62, 87, 104, 105
\latfric (/) . . . . . . . . . . . . 11
Latin 1 . . . . . . 7, 101, 103, 104
table . . . . . . . . . . . . . 102
laundry symbols . . . . . . . . . 80
\Lbag (P) . . . . . . . . . . . . . . 52
\lbag (N) . . . . . . . . . . . . . . . 52
⎧
⎪
⎪
\lbrace ( ⎨) . . . . . . . . . . . 54
⎪
⎩ . . . . . . . . . . . . . 65
\Lbrack ([)⎪
\lBrack ([[) . . . . . . . . . . . . . 55
LCD digits . . . . . . . . . . . . . 67
\lCeil (dd) . . . . . . . . . . . . . . 55
\lceil (d) . . . . . . . . . . . . . . 53
⎡⎢
\lceil ( ⎢⎢⎢) . . . . . . . . . . . . . 54
⎢⎢
\lcirclearrowdown
(ÿ) . . . 43
\lcirclearrowleft (⤾) . . . 43
\lcirclearrowright (⟳) . . 43
\lcirclearrowup (↻) . . . . . 43
\lcircleleftint (∲) . . . . . . 29
\lcirclerightint (∲) . . . . . 29
\lcm (lcm) . . . . . . . . . . . . . 99
\lcorners (v) . . . . . . . . . . . 52
\lcurvearrowdown (⤸) . . . . . 43
\lcurvearrowleft (º) . . . . 43
\lcurvearrowne (¼) . . . . . . 43
\lcurvearrownw (½) . . . . . . 43
\lcurvearrowright (↷) . . . . 43
\lcurvearrowse (¿) . . . . . . 43
\lcurvearrowsw (¾) . . . . . . 43
\lcurvearrowup (¹) . . . . . . . 43
\ldbrack (v) . . . . . . . . . . . . 54
\ldotp (.) . . . . . . . . . . . . . . 61
\ldots (. . .) . . . . . . . . . . . . 61
\le . . . . . . . . . . . . . . see \leq
\leadsto ({) . . . . . . . . 30, 41
\leadsto (↝) . . . . . . . . . . . 44
leaf . . . . . . . . . . see \textleaf
\Left . . . . . . . . . . . . . . . . . 85
\left . . . . . . . . . 53, 55, 87, 89
\LEFTarrow () . . . . . . . . . . 78
\Leftarrow (⇐) . . . . . . 20, 41
\Leftarrow (⇐) . . . . . . . . . 43
\leftarrow (Ð) . . . . . . . . . 42
\leftarrow (←) . . . . . . . . . 41
\leftarrow (←) . . . . . . . . . . 43
\leftarrowtail () . . . . . 41
\leftarrowtail (↢) . . . . . . 44
\leftarrowtriangle (^) . . 42
\leftbarharpoon (Ü) . . . . . 43
\LEFTCIRCLE (G) . . . . . . . . . 78
\LEFTcircle (G
#) . . . . . . . . . 78
\Leftcircle Ñ(I) . . . . . . . . . 78
Ñ
\leftevaw ( ÑÑ) . . . . . . . . . . 55
\leftfilledspoon (r)
\leftfootline (z) . . .
\leftfree (‚) . . . . . .
\lefthalfcap (⌜) . . . .
\lefthalfcup (⌞) . . . .
\leftharpoonccw (↽) .
\leftharpooncw (↼) . .
\leftharpoondown (â)
\leftharpoondown ())
\leftharpoonup (à) . .
\leftharpoonup (() . .
\leftleftarrows (Ð) .
\leftleftarrows (⇔) .
\leftleftarrows (⇇) .
\leftleftharpoons (Ø)
\leftlsquigarrow (¢)
\leftmapsto (↤) . . . . .
\leftModels (ò) . . . . .
\leftmodels (â) . . . . .
\leftmoon (K) . . . . . . .
119
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
47
32
32
23
23
46
46
43
41
43
41
42
41
44
43
44
44
32
32
68
\leftmoon ($) . . . . . . . . . . 68
\leftp (v) . . . . . . . . . . . . . . 16
\leftpitchfork (Š) . . . . . . 47
\leftpointright (
) . . . . 72
\leftpropto (∝) . . . . . . . . . 32
\Leftrightarrow (⇔) . . . . . 41
\Leftrightarrow (⇔) . . . . . 44
\leftrightarrow (Ø) . . . . . 42
\leftrightarrow (↔) . . . . . 41
\leftrightarrow (↔) . . . . . 44
\leftrightarroweq (-) . . . . 42
\leftrightarrows (Ô) . . . . 42
\leftrightarrows () . . . . 41
\leftrightarrows (⇆) . . . . 44
\leftrightarrowtriangle (])
. . . . . . . . . 42
\leftrightharpoon (à) . . . 43
\leftrightharpoondownup (⥊)
. . . . . . . . . 46
\leftrightharpoons (è) . . 43
\leftrightharpoons () . . 41
\leftrightharpoons (⇋) . . . 46
\leftrightharpoonsfill . . . 60
\leftrightharpoonupdown (⥋)
. . . . . . . . . 46
\Leftrightline (Ô) . . . . . . 32
\leftrightline (Ð) . . . . . . 32
\leftrightsquigarrow (ú) 42
\leftrightsquigarrow (!) 41
\leftrightsquigarrow (↭) . 44
\leftrsquigarrow (↜) . . . . 44
\Leftscissors (S) . . . . . . . 71
\leftslice (2) . . . . . . . . . . 21
\leftslice (⪦) . . . . . . . . . . 32
\leftspoon (⟜) . . . . . . . . . 47
\leftsquigarrow (ø) . . . . 42
\leftsquigarrow (f) . . . . . 42
\leftt (n) . . . . . . . . . . . . . . 16
\lefttherefore () . . . 23, 61
\leftthreetimes ($) . . . . . 63
\leftthreetimes (h) . . . . . 21
\leftthreetimes (⋋) . . . . . . 23
\leftthumbsdown (
) . . . . 72
\leftthumbsup (
) . . . . . . 72
\lefttorightarrow (ü) . . . 42
\Lefttorque (&) . . . . . . . . 70
\leftturn (") . . . . . . . . . . 78
\leftVdash (ê) . . . . . . . . . . 32
\leftvdash (⊣)
Ð . . . . . . . . . . 32
Ð
\leftwave ( ÐÐ) . . . . . . . . . . 55
R
D
U
\leftY (*) . . .
legal symbols . .
\legm (6) . . . .
\legr (E) . . . .
\length (q) . . .
\Leo (ä) . . . . .
\leo () . . . . .
\leq (¤) . . . . .
\leq (≤) . . . . .
\leq (≤) . . . . .
\leqclosed (⊴)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . 23
8, 18, 102
. . . . . 11
. . . . . 11
. . . . . 16
. . . . . 68
. . . . . 68
. . . . . 38
. . 37, 38
. . . . . 39
. . 39, 40
\leqdot (t) . . . . . . .
\leqq (®) . . . . . . . .
\leqq (5) . . . . . . . .
\leqq (≦) . . . . . . . .
\leqslant (6) . . . .
\leqslant (⩽) . . . . .
\leqslantdot (⩿) . .
\less (<) . . . . . . . .
less-than signs . . see
\lessapprox (Æ) . . .
\lessapprox (/) . . .
\lessapprox (⪅) . . .
\lessclosed (⊲) . . .
\lessdot (Ì) . . . . .
\lessdot (l) . . . . .
\lessdot (⋖) . . . . . .
\lesseqgtr (¼) . . . .
\lesseqgtr (Q) . . .
\lesseqgtr (⋚) . . . .
\lesseqgtrslant (N)
\lesseqqgtr (¾) . . .
. . . . . . 39
. . . . . . 38
. . . . . . 37
. . . . . . 39
. . . . . . 37
. . . . . . 39
. . . . . . 39
. . . . . . 39
inequalities
. . . . . . 38
. . . . . . 37
. . . . . . 39
. . . 39, 40
. . . . . . 38
. . . . . . 37
. . . . . . 39
. . . . . . 38
. . . . . . 37
. . . . . . 39
. . . . . . 39
. . . . . . 38
\lesseqqgtr (S) . . . . . . . . . 37
\lesseqqgtr (⪋)
\lessgtr (º) . .
\lessgtr (≶) . .
\lessgtr (≶) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
39
38
37
39
\lessneqqgtr (ò) . . . . . . . . 39
\lesssim (À) . . .
\lesssim (.) . . .
\lesssim (≲) . . . .
\Letter ( ) . . . .
\Letter (B vs. )
\Letter (B) . . . .
letter-like symbols
letters . . . . . . . . .
barred . . . . .
non-ASCII . .
slashed . . . .
variant
Ñ Latin
Ñ
\levaw ( ÑÑ) . . . . .
.
.
.
.
. . . . . . . 38
. . . . . . . 37
. . . . . . . 39
. . . . . . . 81
. . . . . . . 88
. . . . . . . . 69
. . . . . 51, 52
see alphabets
. . . . . . . . 91
......... 9
. . . . . . . . 92
. . . . . . . . 50
. . . . . . . . 55
\LF (␊) . 7. . . . . . . . . . . . . . . 69
7
\lfilet (77) . . . . . . . . . . . . . 54
\lFloor (bb) .
\lfloor (b) .
⎢⎢
\lfloor ( ⎢⎢⎢)
\lg (lg) . 
.⎢⎣. .
. . . . . . . . . . . . 55
. . . . . . . . . . . . 53
. . . . . . . . . . . . 54
. . . . . . . . . . . . 49
\lgroup () . . . . . .
⎧
⎪
⎪
⎪
\lgroup ( ⎪
) .....
⎪
⎩
\LHD () . . . . . . . . .
\lhd (C) . . . . . . . . .
\lhd (⊲) . . . . . . . . .
\lhdbend (~) . . . .
\lhookdownarrow (3)
\lhookleftarrow (2)
\lhooknearrow (4) .
\lhooknwarrow (⤣) .
. . . . . . 53
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
.
.
.
.
.
.
.
.
.
...
...
20,
39,
...
...
...
...
...
54
21
21
40
76
44
44
44
44
\lhookrightarrow (↪) . . . . 44
\lhooksearrow (⤥) . . . . . . . 44
\lhookswarrow (6) . . . . . . . 44
\lhookuparrow (1) . . . . . . . . 44
\Libra (æ) . . . . . . . . . . . . . 68
\libra (a) . . . . . . . . . . . . 68
Lie derivative (L) see alphabets,
math
life-insurance symbols . . . . . 95
\lightbulb (A) . . . . . . . . . . 98
lightbulb.mf (file) . . . . 96, 97
lightbulb.sty (file) . . . 98, 99
lightbulb10.2602gf (file) . . 97
lightbulb10.dvi (file) . . . . 97
lightbulb10.mf (file) . . 96–98
lightbulb10.tfm (file) . . . . 98
\Lightning (E vs. ) . . . . . 88
\Lightning ( ) . . . . . . . . . 80
\Lightning (E) . . . . . . . . . . 69
\lightning ( ) . . . . . . . . . . 42
\lightning ( vs. ) . . . . . . 88
\lightning (☇) . . . . . . . . . . 44
\lightning () . . . . . . . . . . 78
\lim (lim) . . . . . . . . . . . 49, 99
\liminf (lim inf) . . . . . 49, 100
limits . . . . . . . . . . . . . . . . . 49
\limsup (lim sup) . . . . 49, 100
linear implication see \multimap
linear logic symbols . . 20, 30, 36
\Lineload (L) . . . . . . . . . . 70
linguistic symbols . . . . . 10–13
)
\Lisa (
\lJoin (X)
\ll (!) . . .
\ll () . .
\ll (≪) . .
.
.
.
.
\llangle (⟪)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
85
31
38
37
39
. . . . . . . . . . . 54
\llap . . . . . . .
\llbracket (~)
\llceil (V) . . .
\llcorner (z) .
\llcorner (x) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
93
53
52
52
52
\llcorner (⌞) . . . . . . . . . . . 54
\llcurly (Î) . . . .
\Lleftarrow (W) .
\Lleftarrow (⇚) .
\llfloor (T) . . . . .
\lll (Î) . . . . . . . .
\lll (≪) . . . . . . .
\lll (≪ vs. Î) . .
\lll (⋘) . . . . . . .
\llless . . . . . . . .
\llless (⋘) . . . .
\llparenthesis
 (L)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . 31
. . . . 41
. . . . 44
. . . . 52
. . . . 38
. . . . 37
. . . . 88
. . . . 39
see \lll
. . . . . 39
. . . . . 52
\lmoustache () . . . . . . . . 53
⎧
⎪
⎪
⎪
\lmoustache ( ⎪
) . . . . . . . . 54
⎪
⎭
120
\ln (ln) . . . . . . . . . . . . . . . 49
\lnapprox (Ê) . . . . . . . . . . 38
\lnapprox () . . . . . . . . . . 37
\lnapprox (⪉) . . . . . . . . . . . 39
\lneq (¬) . . . . . . . . . . . . . . 38
\lneq () . . . . . . . . . . . . . . 37
\lneqq (²) . . . . . . . . . . . . . 38
\lneqq () . . . . . . . . . . . . . 37
\lneqq (≨) . . . . . . . . . . . . . 39
\lnot . . . . . . . . . . . . see \neg
\lnot (¬) . . . . . . . . . . . . . . 63
\lnsim (Ä) . . . . . . . . . . . . . 38
\lnsim () . . . . . . . . . . . . . 37
\lnsim (≴) . . . . . . . . . . . . . 39
local ring (O) . . see alphabets,
math
\log (log) . . . . . . . . . . . 49, 99
log-like symbols . . . . . . 49, 100
logical operators
and . . . . . . . . . see \wedge
not . . . see \neg and \sim
or . . . . . . . . . . . see \vee
\logof () . . . . . . . . . . . . . 30
lollipop . . . . . . . see \multimap
long division . . . . . . . . . . . . 57
longdiv (package) . . . . . . . . . 57
\Longleftarrow (⇐=) . . . . . 41
\Longleftarrow (⇐Ô) . . . . . 43
\longleftarrow (←Ð) . . . . . 43
\longleftarrow (←−) . . . . . 41
\Longleftrightarrow (⇐⇒) 41
\Longleftrightarrow (⇐⇒) 43
\longleftrightarrow (←→) . 43
\longleftrightarrow (←→) 41
\Longmapsfrom (⇐=\) . . . . . . 42
\longmapsfrom (←−[) . . . . . . 42
\Longmapsto (=⇒) . . . . . . . 42
\longmapsto (z→) . . . . . . . . 43
\longmapsto (7−→) . . . . . . . 41
\LongPulseHigh (
) . . . . . 67
\LongPulseLow (
) . . . . . 67
\Longrightarrow (=⇒) . . . . 41
\Longrightarrow (Ô⇒) . . . . 43
\longrightarrow (Ð→) . . . . 43
\longrightarrow (−→) . . . . 41
\looparrowdownleft (î) . . 42
\looparrowdownright (ï) . . 42
\looparrowleft (ì) . . . . . . 42
\looparrowleft (") . . . . . . 41
\looparrowleft (↫) . . . . . . 43
\looparrowright (í) . . . . . 42
\looparrowright (#) . . . . . 41
\looparrowright (↬) . . . . . 43
\Loosebearing ($) . . . . . . . 70
\lor . . . . . . . . . . . . . see \vee
\LowerDiamond ( ) . . . . . . . 75
lowering . . . see \textlowering
\lozenge (♦) . . . . . . . . 62, 63
\lozenge (◊) . . . . . . . . . . . . 74
\Lparen (() . . . . . . . . . . . . . 65
\lrcorner ({) . . . . . . . . . . . 52
\lrcorner (y) . . . . . . . . . . . 52
&
'
o
\lrcorner (⌟) . . . . . . . . . . . 54
\lrJoin . . . . .
\lrtimes (\) . .
L
P
\lsem ( P
) ...
P
P
P
\lsemantic
N ...
\Lsh (è) . . . . .
\Lsh () . . . . .
\Lsh (↰) . . . . .
\Lsteel (™) . .
\ltimes (
) . .
\ltimes (n) . .
\ltimes (⋉) . .
\ltriple . . . .
Luecking, Dan .
\lVert (k) . . .
\lVert (||) . . . .
\lvert (|) . . . .
\lvertneqq (´)
\lvertneqq ( )
\lvertneqq
Ð (≨)
Ð
\lwave ( ÐÐ) . . .
_
_
\lWavy ( _
_
_) . .
^^_
_
\lwavy ( ^^^) . . .
\lz (1) .^^. . . . .
\M . . . .
\M ( ´)
\m . ¯
...
\m ( )
\ma (¯¯
×)
macron
\macron
M
...
...
...
...
...
....
(ā) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . see \Join
. . . . . . . . . . 31
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
. . . . . . . . 54
see \ldbrack
. . . . . . . . 42
. . . . . . . . 41
. . . . . . . . 43
. . . . . . . . 70
. . . . . . . . 22
. . . . . . . . 21
. . . . . . . . 23
. . . . . . . . 55
. . . . . . . . 93
. . . . . . . . 53
. . . . . . . . 55
. . . . . . . . 53
. . . . . . . . 38
. . . . . . . . 37
. . . . . . . . 39
. . . . . . . . . . 55
. . . . . . . . . . 54
. . . . . . . . . . 54
. . . . . . . . . . 11
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
...
...
...
...
see
....
.... 9
. . . 82
.... 9
. . . 82
. . . 82
accents
. . . 16
\Maggie (
) . . . . . . . . . 85
magical signs . . . . . . . . . . . . 85
majuscules . . . . . . . . . . . . . 49
\makeatletter . . . . . . . . . . 94
\makeatother . . . . . . . . . . . 94
\MALE (‚) . . . . . . . . . . . . . . 70
\Male (|) . . . . . . . . . . . . . . 70
\male (♂) . . . . . . . . . . . . . . 70
\MaleMale (ƒ) . . . . . . . . . . 70
\maltese (z) . . . . . . . . . . . . 8
\maltese (✠) . . . . . . . . . . . 63
\manboldkidney () . . . . . . . 79
\manconcentriccircles ($) 79
\manconcentricdiamond (%) 79
\mancone (#) . . . . . . . . . . . 79
\mancube () . . . . . . . . . . . 79
\manerrarrow (y) . . . . . . . 79
\manfilledquartercircle (!) 79
manfnt (package) 76, 79, 104, 105
\manhpennib () . . . . . . . . . 79
\manimpossiblecube () . . . 79
\mankidney () . . . . . . . . . . 79
\manlhpenkidney () . . . . . . 79
\manpenkidney ()
. . . . . . . 79
\manquadrifolium (&) . . . . 79
\manquartercircle ( ) . . . . 79
\manrotatedquadrifolium (')
. . . . . . . . . 79
\manrotatedquartercircle (")
. . . . . . . . . 79
\manstar () . . . . . . . . . . . 79
\mantiltpennib () . . . . . . 79
\mantriangledown (7) . . . . . 79
\mantriangleright (x) . . . . 79
\mantriangleup (6) . . . . . . 79
\manvpennib () . . . . . . . . . . 79
\Mappedfromchar () . . . . . . . 48
\mappedfromchar () . . . . . . . 48
\Mapsfrom (⇐\) . . . . . . . . . . 42
\mapsfrom (←[) . . . . . . . . . . 42
\Mapsfromchar (û) . . . . . . . . 49
\Mapsfromchar (\) . . . . . . . . 48
\mapsfromchar (ß) . . . . . . . . 49
\mapsfromchar ([) . . . . . . . . 48
\Mapsto (⇒) . . . . . . . . . . . . 42
\mapsto (7→) . . . . . . . . . . . . 41
\mapsto (↦) . . . . . . . . . . . . 44
\Mapstochar (ú) . . . . . . . . . . 49
\Mapstochar () . . . . . . . . . . 48
\mapstochar (Þ) . . . . . . . . . . 49
\Marge (
) . . . . . . . . . 85
\markera (x) . . . . . . . . . . . 82
\markerb (y) . . . . . . . . . . . 82
married . . . . . see \textmarried
\Mars (D) . . . . . . . . . . . . . . 68
\Mars (Ä) . . . . . . . . . . . . . . 68
\mars (♂) . . . . . . . . . . . . . . 68
\MartinVogel (ÿ) . . . . . . . . 80
marvosym (package) . 17, 62, 64,
68–71, 76, 79, 80, 88
matbbol (package) . . . . . . . . 65
\mate (m) . . . . . . . . . . . . . . 82
material biconditional . . . . . . .
. see \leftrightarrow and
\equiv
material conditional . . . . . . see
\rightarrow and \supset
material equivalence . . . . . . . .
. see \leftrightarrow and
\equiv
material implication . . . . . . see
\rightarrow and \supset
math alphabets . . . . . . . . . . 65
math-text . . . . . . . . . . . . . . 20
mathabx (package) . . 22, 24, 26,
30–32, 36–38, 40, 42, 43, 49,
51–54, 56, 58, 62, 63, 68, 76,
87, 88, 104, 105, 107
\mathaccent . . . . . . . . . . . . 91
\mathbb . . . . . . . . . . . . . . . 65
\mathbbm . . . . . . . . . . . . . . 65
121
\mathbbmss . . . . . . . . . . . . . 65
\mathbbmtt . . . . . . . . . . . . . 65
mathbbol (package) . . . . . . . 65
\mathbf . . . . . . . . . . . . . . 100
\mathbin . . . . . . . . . . . . . . 99
\mathbold . . . . . . . . . . . . . 100
mathcal (euscript package option)
. . . . . . . . . 65
\mathcal . . . . . . . . . . . . . . 65
\mathcent (¢) . . . . . . . . . . . 51
\mathchoice . . . . . . . . . 92, 93
\mathclose . . . . . . . . . . . . . 99
mathcomp (package) . . . . . . 62
mathdesign (package) 17, 23, 29,
51, 55, 64, 104
\mathdollar ($) . . . . . . . . . 20
mathdots (package) . 56, 61, 62,
94, 104, 105
\mathds . . . . . . . . . . . . . . . 65
\mathellipsis (. . .) . . . . . . 20
mathematical symbols . . 20–66
\mathfrak . . . . . . . . . . . . . . 65
\mathit . . . . . . . . . . . . . . . 65
\mathnormal . . . . . . . . . . . . 65
\mathop . . . . . . . . . . . . . . . 99
\mathopen . . . . . . . . . . . . . . 99
\mathord . . . . . . . . . . . . . . 99
\mathpalette . . . . . . . . . . . 93
\mathparagraph (¶) . . . . . . 20
\mathpunct . . . . . . . . . . . . . 99
\mathpzc . . . . . . . . . . . . . . 65
\mathrel . . . . . . . . . . . 90, 99
\mathring (˚) . . . . . . . . 56, 57
\mathrm . . . . . . . . . . . . . . . 65
mathrsfs (package) . . . . 65, 104
mathscr (euscript package option)
. . . . . . . . . 65
\mathscr . . . . . . . . . . . . . . 65
\mathsection (§) . . . . . . . . 20
\mathsterling (£) . . . . . 20, 51
mathtools (package) . 34, 58, 59,
104, 105
\mathunderscore ( ) . . . . . . 20
\max (max) . . . . . . . . . . . . . 49
Maxwell-Stefan diffusion coefficient . . . . . . . . . . . . see
\DH
\maya . . . . . . . . . . . . . . . . . 62
\Mb ( ¯
´˘) . . . . . . . . . . . . . . . 82
\mb ( ¯) . . . . . . . . . . . . . . . 82
˘ ) . . . . . . . . . . . . . . 82
\Mbb ( ¯´
˘¯˘) . . . . . . . . . . . . . . 82
\mBb ( ¯
˘´˘¯) . . . . . . . . . . . . . . 82
\mbB ( ¯¯
˘˘´
\mbb ( ¯¯) . . . . . . . . . . . . . . 82
˘˘
mbboard (package) . . . . 65, 104
\mbbx ( ¯¯ ) . . . . . . . . . . . . 82
˘˘˘. . . . . . . . . . . . . . . 93
\mbox . .¯¯
\measuredangle (>) . . . . . . 63
\measuredangle (]) . . . . . . 63
\measuredangle (∡) . . . . . . 63
mechanical scaling . . . . . 96, 98
\medbackslash (∖) . . . . . . . 23
\medbullet () . . . . . . . . . . 21
\medcirc () . . . . . . . . . . . . 21
\medcircle (◯) . . . . . . . . . . 23
\meddiamond (◇) . . . . . . . . . 24
\medlozenge (◊) . . . . . . . . . 74
\medslash (∕) . . . . . . . . . . . 23
\medsquare (◻) . . . . . . . . . . 24
\medstar (☆) . . . . . . . . . . . 24
\medstarofdavid (✡) . . . . . 74
\medtriangledown (▽) . 24, 40
\medtriangleleft (◁) . 24, 40
\medtriangleright (▷) . 24, 40
\medtriangleup (△) . . . 24, 40
\medvert (∣) . . . . . . . . . . . . 23
\medvertdot () . . . . . . . . . 23
\Mercury (A) . . . . . . . . . . . . 68
\Mercury (Â) . . . . . . . . . . . . 68
\mercury (') . . . . . . . . . . . . 68
\merge (!) . . . . . . . . . . . . . 21
METAFONT . . . . . 66, 96, 97, 99
METAFONTbook symbols . . . 79
metre (package) . 16, 56, 82, 104,
105
metre . . . . . . . . . . . . . . . . . 82
metrical symbols . . . . . . . . . 82
\mho (f) . . . . . . . . . . . . 62, 63
micro . . . . . . . . . . see \textmu
\micro (µ) . . . . . . . . . . . . . 67
Microsoft® Windows® . . . 103
\mid (|) . . . . . . . . . . . . . 30, 54
\middle . . . . . . . . . . . . . . . 53
\midtilde ({) . . . . . . . . . . . 16
millesimal sign . . . . . . . . . see
\textperthousand
\min (min) . . . . . . . . . . 49, 99
minim . . . . see musical symbols
minus . . . . . . . see \textminus
\minus (−) . . . . . . . . . . . . . 23
\minusdot () . . . . . . . . . . . 23
\minushookdown (¬) . . . . . . 63
\minushookup (⨼) . . . . . . . . 63
\minuso (
) . . . . . . . . . 21, 91
minutes, angular . . . see \prime
miscellaneous symbols . . 62–64,
77–86
“Missing $ inserted” . . . . 20
\Mmappedfromchar () . . . . . . 48
\mmappedfromchar () . . . . . . 48
\Mmapstochar () . . . . . . . . . 48
\mmapstochar () . . . . . . . . . 48
MnSymbol (package) 23, 24, 29,
32, 33, 37, 39, 40, 43–48, 50,
51, 54, 56–58, 61, 63, 64, 74,
104, 105
\Mobilefone (H) . . . . . . . . . 69
\mod . . . . . . . . . . . . . . . . . . 49
\models (|=) . . . . . . . . . 30, 90
\models (⊧) . . . . . . . . . . . . 33
moduli space . . . see alphabets,
math
monetary symbols . . . . . 17, 65
\moo () . . . . . . . . . . . . . . . 21
\Moon (K) . . . . . . . . . . . . . . 68
\Moon (Á) . . . . . . . . . . . . . . 68
\morepawns (S) . . . . . . . . . . 82
\moreroom (U) . . . . . . . . . . 82
\Mountain ( ) . . . . . . . . . . 81
mouse . . . . see \ComputerMouse
\MoveDown (») . . . . . . . . . . . 79
\moverlay . . . . . . . . . . . . . . 94
\MoveUp (º) . . . . . . . . . . . . 79
\mp (∓) . . . . . . . . . . . . . . . . 20
\mp (∓) . . . . . . . . . . . . . . . . 23
\mu (µ) . . . . . . . . . . . . . . . . 49
\multimap (() . . . . . . . 30, 31
\multimap (⊸) . . . . . . . . . . 47
\multimapboth () . . . . . . 31
\multimapbothvert (•) . . . . 31
\multimapdot () . . . . . . . . 31
\multimapdotboth () . . . . 31
\multimapdotbothA () . . . 31
\multimapdotbothAvert (˜) . 31
\multimapdotbothB () . . . 31
\multimapdotbothBvert (—) . 31
\multimapdotbothvert (–) . . 31
\multimapdotinv () . . . . . 31
\multimapinv () . . . . . . . . 31
multiple accents per character 94
\Mundus (m) . . . . . . . . . . . . 80
Museum of Icelandic Sorcery and
Witchcraft . . . . . . . . . 86
musical symbols
19, 62, 63, 78,
79
musixtex (package) . . . . . . . . 79
\muup (µ) . . . . . . . . . . . . . . 50
\MVAt (@) . . . . . . . . . . . . . . 80
\MVEight (8) . . . . . . . . . . . . 62
\MVFive (5) . . . . . . . . . . . . 62
\MVFour (4) . . . . . . . . . . . . 62
\MVNine (9) . . . . . . . . . . . . 62
\MVOne (1) . . . . . . . . . . . . . 62
\MVRightarrow (:) . . . . . . . 80
\MVSeven (7) . . . . . . . . . . . . 62
\MVSix (6) . . . . . . . . . . . . . 62
\MVThree (3) . . . . . . . . . . . . 62
\MVTwo (2) . . . . . . . . . . . . . 62
\MVZero (0) . . . . . . . . . . . . 62
N
\nabla (∇) . . . . . . . . . . . . . 62
\nabla (∇) . . . . . . . . . . . . . 63
\NAK (␕) . . . . . . . . . . . . . . . 69
\napprox () . . . . . . . . . . . 32
\napprox (≉) . . . . . . . . . . . . 33
\napproxeq (6) . . . . . . . . . . 31
\napproxeq (≊̸) . . . . . . . . . . 33
\nasymp (-) . . . . . . . . . . . . 31
\nasymp (≭) . . . . . . . . . . . . . 48
nath (package) . . . . . 52, 55, 104
\natural (\) . . . . . . . . . 62, 78
\natural (♮) . . . . . . . . . . . . 63
natural numbers (N) . . . . . see
alphabets, math
navigation symbols . . . . . . . 79
\nbackapprox (̸) . . . . . . . . 33
\nbackapproxeq (̸) . . . . . . . 33
122
\nbackcong (≌̸) . . . . . . . . . .
\nbackeqsim (̸) . . . . . . . . .
\nbacksim (*) . . . . . . . . . . .
\nbacksim (∽̸) . . . . . . . . . . .
\nbacksimeq (+) . . . . . . . . .
\nbacksimeq (⋍̸) . . . . . . . . .
\nbacktriplesim (̸) . . . . . .
\NBSP ( ) . . . . . . . . . . . . . .
\nBumpeq ()) . . . . . . . . . . . .
\nBumpeq (≎̸) . . . . . . . . . . . .
\nbumpeq (() . . . . . . . . . . . .
\nbumpeq (≏̸) . . . . . . . . . . . .
\ncirceq (≗̸) . . . . . . . . . . . .
\ncirclearrowleft (↺̸) . . .
\ncirclearrowright (↻̸) . .
\nclosedequal (̸) . . . . . . .
\ncong () . . . . . . . . . . . . .
\ncong () . . . . . . . . . . . . .
\ncong (≇) . . . . . . . . . . . . .
\ncurlyeqprec (¸) . . . . . . .
\ncurlyeqprec (⋞̸) . . . . . . .
\ncurlyeqsucc (¹) . . . . . . .
\ncurlyeqsucc (⋟̸) . . . . . . .
\ncurvearrowdownup (̸) . . .
\ncurvearrowleft (↶̸) . . . .
\ncurvearrowleftright (̸)
\ncurvearrownesw (̸) . . . .
\ncurvearrownwse (̸) . . . .
\ncurvearrowright (↷̸) . . . .
\ncurvearrowrightleft (̸)
\ncurvearrowsenw (̸) . . . .
\ncurvearrowswne (̸) . . . .
\ncurvearrowupdown (̸) . . .
\ndasharrow (⇢̸) . . . . . . . . .
\ndasheddownarrow (⇣̸) . . . .
\ndashedleftarrow (⇠̸) . . . .
\ndashednearrow (̸) . . . . .
\ndashednwarrow (̸) . . . . .
\ndashedrightarrow (⇢̸) . . .
\ndashedsearrow (̸) . . . . .
\ndashedswarrow (̸) . . . . .
\ndasheduparrow (⇡̸) . . . . . .
\ndashleftarrow (⇠̸) . . . . .
\ndashrightarrow (⇢̸) . . . .
\nDashV (+) . . . . . . . . . . . .
\nDashv (+) . . . . . . . . . . . .
\ndashV (/) . . . . . . . . . . . .
\ndashv (') . . . . . . . . . . . .
\ndashv (⊣̸) . . . . . . . . . . . .
\ndashVv (/) . . . . . . . . . . .
33
33
31
33
31
33
33
69
31
33
31
33
33
46
46
33
32
30
33
32
33
32
33
44
46
44
44
44
46
44
44
44
44
46
44
44
45
45
45
45
45
45
46
46
32
32
32
32
34
32
\nddtstile ( ) . . .
\ndiagdown (̸) . . .
\ndiagup (̸) . . . . .
\ndivides (∤) . . . . .
\nDoteq (≑̸) . . . . . . .
\ndoteq (≐̸) . . . . . . .
\ndoublefrown (̸) .
\ndoublefrowneq (̸)
\ndoublesmile (̸) .
\ndoublesmileeq (̸)
\nDownarrow (⇓̸) . . .
\ndownarrow (↓̸) . . .
35
34
34
34
33
33
48
48
48
48
45
45
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\ndownarrowtail (̸) . .
\ndowndownarrows (⇊̸) .
\ndownfilledspoon (̸)
\ndownfootline (̸) . . .
\ndownfree (⫝̸) . . . . . .
\ndownharpoonccw (⇂̸) .
\ndownharpooncw (⇃̸) . .
\ndownlsquigarrow (̸)
\ndownmapsto (↧̸) . . . .
\ndownModels (̸) . . . .
\ndownmodels (̸) . . . .
\ndownpitchfork (⫛̸) .
\ndownrsquigarrow (̸)
\ndownspoon (⫰̸) . . . . .
\ndownuparrows (̸) . .
\ndownupharpoons (⥯̸) .
\ndownVdash (⍑̸) . . . . .
\ndownvdash (⊤̸) . . . . .
\ndststile (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
45
45
47
33
33
46
46
45
45
33
33
47
45
47
45
46
33
33
) . . . . . . . . . 35
\ndtstile ( ) . . . . . . . . . . 35
\ndttstile ( ) . . . . . . . . . 35
\ne . . . . . . . . . . . . . . see \neq
\ne (≠) . . . . . . . . . . . . . . . . 34
\Nearrow (t) . . . . . . . . . . . 42
\Nearrow (⇗) . . . . . . . . . . . 43
\nearrow (Õ) . . . . . . . . . . . 42
\nearrow (%) . . . . . . 41, 93, 94
\nearrow (↗) . . . . . . . . . . . 43
\nearrowtail ($) . . . . . . . . 43
\nefilledspoon (t) . . . . . . 47
\nefootline (|) . . . . . . . . . 32
\nefree („) . . . . . . . . . . . . 32
\neg (¬) . . . . . . . . . . . . . . . 62
\neg (¬) . . . . . . . . . . . . . . . 63
negation . . . see \neg and \sim
\neharpoonccw (D) . . . . . . . 46
\neharpooncw (L) . . . . . . . . 46
\nelsquigarrow (¤) . . . . . . 43
\nemapsto (,) . . . . . . . . . . 43
\neModels (ô) . . . . . . . . . . 32
\nemodels (ä) . . . . . . . . . . 32
\nenearrows (”) . . . . . . . . 43
\nepitchfork (Œ) . . . . . . . . 47
\Neptune (H) . . . . . . . . . . . 68
\Neptune (È) . . . . . . . . . . . 68
\neptune ([) . . . . . . . . . . . . 68
\neq () . . . . . . . . . . . . . . . 32
\neq (,) . . . . . . . . . . . . . . . 37
\neq (≠) . . . . . . . . . . . . . . . 34
\neqbump (̸) . . . . . . . . . . . . 33
\neqcirc (≖̸) . . . . . . . . . . . . 33
\neqdot (⩦̸) . . . . . . . . . . . . . 33
\neqfrown (̸) . . . . . . . . . . . 48
\neqsim (≂̸) . . . . . . . . . . . . . 33
\neqslantgtr (¹) . . . . . . . . 38
\neqslantgtr (⪖̸) . . . . . . . . 39
\neqslantless (¸) . . . . . . . 38
\neqslantless (⪕̸) . . . . . . . 39
\neqsmile (̸) . . . . . . . . . . . 48
\nequal (≠) . . . . . . . . . . . . . 33
\nequalclosed (̸) . . . . . . . 33
\nequiv (.) . . . . . . .
\nequiv (≢) . . . . . . . .
\nequivclosed (̸) . .
\nersquigarrow (¬) .
\nespoon (l) . . . . . .
\Neswarrow () . . . .
\neswarrow (%
.) . . . .
\neswarrow (⤡) . . . .
\neswarrows (š) . . .
\neswbipropto (‰) . .
\neswcrossing (‘) . .
\neswharpoonnwse (R)
\neswharpoons (Z) . .
\neswharpoonsenw (V)
\Neswline (Ö) . . . . .
\neswline (Ò) . . . . .
\Neutral ({) . . . . . .
\neVdash (ì) . . . . . .
\nevdash (Ü) . . . . . .
\newextarrow . . . . . .
\newmoon (N) . . . . . .
\newmoon ( ) . . . . . .
\newtie (
a) . . . . . . . .
\nexists (E) . . . . . . .
\nexists (@) . . . . . . .
\nexists (∄) . . . . . . .
\nfallingdotseq (≒̸) .
\nfrown (⌢̸) . . . . . . . .
\nfrowneq (̸) . . . . . .
\nfrowneqsmile (̸) . .
\nfrownsmile (̸) . . .
\nfrownsmileeq (̸) . .
\NG (Ŋ) . . . . . . . . . . .
\ng (ŋ) . . . . . . . . . . .
\ngeq (§) . . . . . . . . .
\ngeq () . . . . . . . . .
\ngeq (≱) . . . . . . . . .
\ngeqclosed (⋭) . . . .
\ngeqdot (̸) . . . . . . .
\ngeqq (±) . . . . . . . .
\ngeqq () . . . . . . . .
\ngeqq (≧̸) . . . . . . . .
\ngeqslant () . . . .
\ngeqslant (≱) . . . . .
\ngeqslantdot (⪀̸) . .
\ngets (↚) . . . . . . . .
\ngg (4) . . . . . . . . .
\ngg (≫̸) . . . . . . . . . .
\nggg (⋙̸) . . . . . . . .
\ngtr (£) . . . . . . . . .
\ngtr (≯) . . . . . . . . .
\ngtr (≯) . . . . . . . . .
\ngtrapprox (É) . . . .
\ngtrapprox (#) . . . .
\ngtrclosed (⋫) . . . .
\ngtrdot (⋗̸) . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 31
. . 33
. . 33
. . 43
. . 47
. . 43
93, 94
. . 43
. . 43
. . 23
. . 33
. . 46
. . 46
. . 46
. . 32
. . 32
. . 70
. . 32
. . 32
. . 60
. . 68
. . 68
. . 13
. . 51
. . 51
. . 51
. . 33
. . 48
. . 48
. . 48
. . 48
. . 48
... 9
... 9
. . 38
37, 38
. . 39
39, 40
. . 39
. . 38
. . 37
. . 39
. . 37
. . 39
. . 39
. . 46
. . 38
. . 39
. . 39
. . 38
. . 37
. . 39
. . 38
. . 38
39, 40
. . 39
\ngtreqless (⋛̸) . . . . . . . . . 39
\ngtreqlessslant (̸) . . . . . 39
\ngtreqqless (⪌̸) . . . . . . . . 39
\ngtrless (&) . . . . . . . . . . . 38
\ngtrless (≹) . . . . . . . . . . . 39
123
\ngtrsim (Ã) . . . . . . . . . . . 38
\ngtrsim (!) . . . . . . . . . . . . 38
\nhateq (≙̸) . . . . . . . . . . . . . 33
\nhookleftarrow (↩̸) . . . . . 46
\nhookrightarrow (↪̸) . . . . 46
\ni (3) . . . . . . . . . . . . . 51, 92
\ni (∋) . . . . . . . . . . . . . . . . 51
\nialpha () . . . . . . . . . . . . 12
\nibar . . . . . . . . see \ownsbar
\nibeta () . . . . . . . . . . . . . 12
\NibLeft ( ) . . . . . . . . . . . 72
\NibRight ( ) . . . . . . . . . . 72
nibs . . . . . . . . . . . . . . . . . . 72
\NibSolidLeft ( ) . . . . . . . 72
\NibSolidRight ( ) . . . . . . 72
nicefrac (package) . 64, 104, 105
\nichi ([) . . . . . . . . . . . . . 12
\niepsilon () . . . . . . . . . . 12
\nigamma () . . . . . . . . . . . . 12
\niiota ()) . . . . . . . . . . . . . 12
\nilambda (2) . . . . . . . . . . . 12
\nin (∉) . . . . . . . . . . . . . . . 51
\niomega (>) . . . . . . . . . . . . 12
\niphi (C) . . . . . . . . . . . . . 12
\niplus (B) . . . . . . . . . . . . 30
\nisigma (O) . . . . . . . . . . . . 12
\nitheta (S) . . . . . . . . . . . . 12
\niupsilon (V) . . . . . . . . . . 12
\niv ( ) . . . . . . . . . . . . . . . 52
\nj (7) . . . . . . . . . . . . . . . . 12
\nlcirclearrowdown (̸) . . 45
\nlcirclearrowleft (⤾̸) . . 45
\nlcirclearrowright (⟳̸) . 45
\nlcirclearrowup (↻̸) . . . . 45
\nlcurvearrowdown (⤸̸) . . . . 45
\nlcurvearrowleft (̸) . . . . 45
\nlcurvearrowne (̸) . . . . . 45
\nlcurvearrownw (̸) . . . . . 45
\nlcurvearrowright (↷̸) . . . 45
\nlcurvearrowse (̸) . . . . . 45
\nlcurvearrowsw (̸) . . . . . 45
\nlcurvearrowup (̸) . . . . . . 45
\nleadsto (↝̸) . . . . . . . . . . 46
\nLeftarrow (ö) . . . . . . . . 42
\nLeftarrow (:) . . . . . . . . 41
\nLeftarrow (⇍) . . . . . . . . 45
\nleftarrow (Ú) . . . . . . . . 42
\nleftarrow (8) . . . . . . . . 41
\nleftarrow (↚) . . . . . . . . . 45
\nleftarrowtail (↢̸) . . . . . 45
\nleftfilledspoon (̸) . . . 47
\nleftfootline (̸) . . . . . . 33
\nleftfree (̸) . . . . . . . . . . 33
\nleftharpoonccw (↽̸) . . . . 46
\nleftharpooncw (↼̸) . . . . . 46
\nleftleftarrows (⇇̸) . . . . 45
\nleftlsquigarrow (̸) . . . . 45
\nleftmapsto (↤̸) . . . . . . . . 45
\nleftModels (̸) . . . . . . . . 33
\nleftmodels (̸) . . . . . . . . 33
\nleftpitchfork (̸) . . . . . 47
\nLeftrightarrow (ø) . . . . 42
\nLeftrightarrow (<) . . . . 41
\nLeftrightarrow (⇎) . . . . 45
\nleftrightarrow (Ü) . . . . 42
\nleftrightarrow (=) . 20, 41
\nleftrightarrow (↮) . . . . 45
\nleftrightarrows (⇆̸) . . . . 45
\nleftrightharpoondownup (⥊̸)
. . . . . . . . . 46
\nleftrightharpoons (⇋̸) . . 46
\nleftrightharpoonupdown (⥋̸)
. . . . . . . . . 46
\nLeftrightline (̸) . . . . . 33
\nleftrightline (̸) . . . . . 33
\nleftrightsquigarrow (̸) 46
\nleftrsquigarrow (↜̸) . . . . 45
\nleftspoon (⟜̸) . . . . . . . . 47
\nleftVdash (̸) . . . . . . . . . 33
\nleftvdash (⊣̸) . . . . . . . . . 33
\nleq (¦) . . . . . . . . . . . . . . 38
\nleq () . . . . . . . . . . . 37, 38
\nleq (≰) . . . . . . . . . . . . . . 39
\nleqclosed (⋬) . . . . . . 39, 40
\nleqdot (̸) . . . . . . . . . . . . 39
\nleqq (°) . . . . . . . . . . . . . 38
\nleqq () . . . . .
\nleqq (≦̸) . . . . .
\nleqslant (
) .
\nleqslant (≰) . .
\nleqslantdot (⩿̸)
\nless (¢) . . . . .
\nless (≮) . . . . .
\nless (≮) . . . . .
\nlessapprox (È)
\nlessapprox (")
\nlessclosed (⋪)
\nlessdot (⋖̸) . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..
..
39,
...
37
39
37
39
39
38
37
39
38
38
40
39
\nlesseqgtr (⋚̸) . . . . . . . . . 39
\nlesseqgtrslant (̸) . . . . . 39
\nlesseqqgtr (⪋̸) . . . . . . . . 39
\nlessgtr (') . . . . . . .
\nlessgtr (≸) . . . . . . .
\nlesssim (Â) . . . . . .
\nlesssim ( ) . . . . . . .
\nlhookdownarrow (̸) .
\nlhookleftarrow (̸)
\nlhooknearrow (̸) . .
\nlhooknwarrow (⤣̸) . .
\nlhookrightarrow (↪̸)
\nlhooksearrow (⤥̸) . .
\nlhookswarrow (̸) . .
\nlhookuparrow (̸) . . .
\nll (3) . . . . . . . . . .
\nll (≪̸) . . . . . . . . . . .
\nLleftarrow (⇚̸) . . . .
\nlll (⋘̸) . . . . . . . . .
\nmapsto (↦̸) . . . . . . .
\nmid (-) . . . . . . . . . . .
\nmid (∤) . . . . . . . . . .
\nmodels (⊭) . . . . . . . .
\nmultimap (⊸̸) . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
38
39
38
38
45
45
45
44
44
44
44
44
38
39
44
39
46
30
34
34
47
\nndtstile ( ) . . . . . . . . . 35
\nNearrow (⇗̸) . . . . . . . . . . 44
\nnearrow (1) . . . . . . . . . . . 42
\nnearrow (↗̸) . . . . . . . . . . 44
\nnearrowtail (̸) . . . . . . . 44
\nnefilledspoon (̸) . . . . . 47
\nnefootline (̸) . . . . . . . . 33
\nnefree (̸) . . . . . . . . . . . 33
\nneharpoonccw (̸) . . . . . . 46
\nneharpooncw (̸) . . . . . . . 46
\nnelsquigarrow (̸) . . . . . 44
\nnemapsto (̸) . . . . . . . . . 45
\nneModels (̸) . . . . . . . . . 33
\nnemodels (̸) . . . . . . . . . 33
\nnenearrows (̸) . . . . . . . 45
\nnepitchfork (̸) . . . . . . . 47
\nnersquigarrow (̸) . . . . . 45
\nnespoon (̸) . . . . . . . . . . 47
\nNeswarrow (̸) . . . . . . . . 45
\nneswarrow (⤡̸) . . . . . . . . 45
\nneswarrows (̸) . . . . . . . 45
\nneswharpoonnwse (̸) . . . 46
\nneswharpoons (̸) . . . . . . 46
\nneswharpoonsenw (̸) . . . 46
\nNeswline (̸) . . . . . . . . . 33
\nneswline (̸) . . . . . . . . . 33
\nneVdash (̸) . . . . . . . . . . 33
\nnevdash (̸) . . . . . . . . . . 33
\nnststile ( ) . . . . . . . . . 35
\nntstile ( ) . . . . . . . . . . 34
\nnttstile ( ) . . . . . . . . . 34
\nNwarrow (⇖̸) . . . . . . . . . . 45
\nnwarrow (0) . . . . . . . . . . . 42
\nnwarrow (↖̸) . . . . . . . . . . 45
\nnwarrowtail (̸) . . . . . . . 45
\nnwfilledspoon (̸) . . . . . 47
\nnwfootline (̸) . . . . . . . . 33
\nnwfree (̸) . . . . . . . . . . . 33
\nnwharpoonccw (̸) . . . . . . 46
\nnwharpooncw (̸) . . . . . . . 46
\nnwlsquigarrow (̸) . . . . . 45
\nnwmapsto (̸) . . . . . . . . . 45
\nnwModels (̸) . . . . . . . . . 33
\nnwmodels (̸) . . . . . . . . . 33
\nnwnwarrows (̸) . . . . . . . 45
\nnwpitchfork (̸) . . . . . . . 47
\nnwrsquigarrow (̸) . . . . . 45
\nNwsearrow (̸) . . . . . . . . 45
\nnwsearrow (⤢̸) . . . . . . . . 45
\nnwsearrows (̸) . . . . . . . 45
\nnwseharpoonnesw (̸) . . . 46
\nnwseharpoons (̸) . . . . . . 46
\nnwseharpoonswne (̸) . . . 46
\nNwseline (̸) . . . . . . . . . 33
\nnwseline (̸) . . . . . . . . . 33
\nnwspoon (̸) . . . . . . . . . . 47
\nnwVdash (̸) . . . . . . . . . . 33
\nnwvdash (̸) . . . . . . . . . . 33
\NoBleech (Ì) . . . . . . . . . . 80
\NoChemicalCleaning (¨) . . 80
nointegrals (wasysym package option) . . . . . . . . . . . . . 25
124
\NoIroning (²) . . . . . . . . . 80
non-commutative division . . 60
nonbreaking space . . . . . . . . 69
norm . . see \lVert and \rVert
\NoSun ( ) . . . . . . . . . . . . . 80
not . . . . . . . . . . . . . . see \neg
\not . . . . . . . . . . . . . . . 32, 92
not equal (= vs. =) . . . . . . . 32
\notasymp () . . . . . . . . . . 32
\notbackslash (−)
\ . . . . . . . 68
\notbot (M) . . . . . . . . . . . . 51
\notdivides () . . . . . . . . . 32
\notequiv () . . . . . . . . . . 32
\notin (R) . . . . . . . . . . . . . 51
\notin (<) . . . . . . . . . . . . . 51
\notin (6∈) . . . . . . . . . . . . . 51
\notin (∉) . . . . . . . . . . . . . . 51
\notni (=) . . . . . . . . . . . . . 51
\notowner (S) . . . . . . . . . . . 51
\notowns . . see \notowner and
\notni
\notperp (M) . . . . . . . . . . . 32
\notslash (−)
/
. . . . . . . . . . 68
\notsmallin () . . . . . . . . . 51
\notsmallowns () . . . . . . . . 51
\nottop (L) . . . . . . . . . . . . 51
\NoTumbler () . . . . . . . . . . 80
\novelty (N) . . . . . . . . . . . 82
\nowns (∌) . . . . . . . . . . . . . . 51
\nparallel (∦) . . . . . . . . . . 30
\nparallel (∦) . . . . . . . . . . 34
\nperp (⊥̸) . . . . . . . . . . . . . 34
\npitchfork (⋔̸) . . . . . . . . . 47
\nplus (`) . . . . . . . . . . . . . 21
\nprec (¢) . . . . . . . . . . . . . 32
\nprec (⊀) . . . . . . . . . . . . . 30
\nprec (⊀) . . . . . . . . . . . . . 33
\nprecapprox (È) . . . . . . . . 32
\nprecapprox (7) . . . . . . . . 31
\nprecapprox (⪷̸) . . . . . . . . 33
\npreccurlyeq (¦) . . . . . . . 32
\npreccurlyeq ($) . . . . . . . 31
\npreccurlyeq (⋠) . . . . . . . 33
\npreceq (ª) . . . . . . . . . . . 32
\npreceq () . . . . . . . . . . . 30
\npreceq (⪯̸) . . . . . . . . . . . . 33
\npreceqq (9) . . . . . . . . . . . 31
\nprecsim (Â) . . . . . . . . . . 32
\nprecsim () . . . . . . . . . . . 31
\nprecsim (≾̸) . . . . . . . . . . . 33
\nrcirclearrowdown (̸) . . 45
\nrcirclearrowleft (⟲̸) . . 45
\nrcirclearrowright (⤿̸) . 45
\nrcirclearrowup (↺̸) . . . . 45
\nrcurvearrowdown (⤹̸) . . . . 45
\nrcurvearrowleft (↶̸) . . . . 45
\nrcurvearrowne (̸) . . . . . 45
\nrcurvearrownw (̸) . . . . . 45
\nrcurvearrowright (̸) . . . 45
\nrcurvearrowse (̸) . . . . . 45
\nrcurvearrowsw (̸) . . . . . 45
\nrcurvearrowup (̸) . . . . . . 45
\nRelbar (̸) . . . . . . . . .
\nrelbar (̸) . . . . . . . . .
\nrestriction (↾̸) . . . . .
\nrhookdownarrow (̸) . . .
\nrhookleftarrow (↩̸) . .
\nrhooknearrow (⤤̸) . . . .
\nrhooknwarrow (̸) . . . .
\nrhookrightarrow (̸) . .
\nrhooksearrow (̸) . . . .
\nrhookswarrow (⤦̸) . . . .
\nrhookuparrow (̸) . . . . .
\nRightarrow (÷) . . . . . .
\nRightarrow (;) . . . . .
\nRightarrow (⇏) . . . . . .
\nrightarrow (Û) . . . . . .
\nrightarrow (9) . . . . .
\nrightarrow (↛) . . . . . .
\nrightarrowtail (↣̸) . .
\nrightfilledspoon (̸)
\nrightfootline (̸) . . .
\nrightfree (̸) . . . . . . .
\nrightharpoonccw (⇀̸) . .
\nrightharpooncw (⇁̸) . .
\nrightleftarrows (⇄̸) . .
\nrightleftharpoons (⇌̸)
\nrightlsquigarrow (↝̸) .
\nrightmapsto (↦̸) . . . . .
\nrightModels (⊯) . . . . .
\nrightmodels (⊭) . . . . .
\nrightpitchfork (̸) . .
\nrightrightarrows (⇉̸) .
\nrightrsquigarrow (̸) .
\nrightspoon (⊸̸) . . . . . .
\nrightsquigarrow (↝̸) . .
\nrightVdash (⊮) . . . . . .
\nrightvdash (⊬) . . . . . .
\nrisingdotseq (≓̸) . . . . .
\nRrightarrow (⇛̸) . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
34
34
46
45
45
45
45
45
45
45
45
42
41
45
42
41
45
45
47
33
33
46
46
44
46
44
44
33
33
47
44
44
47
46
33
33
33
44
\nsdtstile ( ) . . . .
\nSearrow (⇘̸) . . . . .
\nsearrow (↘̸) . . . . .
\nsearrowtail (̸) . .
\nsefilledspoon (̸)
\nsefootline (̸) . . .
\nsefree (̸) . . . . . .
\nseharpoonccw (̸) .
\nseharpooncw (̸) . .
\nselsquigarrow (̸)
\nsemapsto (̸) . . . .
\nseModels (̸) . . . .
\nsemodels (̸) . . . .
\nsenwarrows (̸) . .
\nsenwharpoons (̸) .
\nsepitchfork (̸) . .
\nsersquigarrow (̸)
\nsesearrows (̸) . .
\nsespoon (̸) . . . . .
\nseVdash (̸) . . . . .
\nsevdash (̸) . . . . .
\nshortmid (.) . . . . .
\nshortmid (∤) . . . . .
\nshortparallel (/) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
34
44
44
44
47
33
33
46
46
44
45
33
33
45
46
47
45
45
47
33
33
30
33
30
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\nshortparallel (∦) . . . . . .
\nsim () . . . . . . . . . . . . . .
\nsim (/) . . . . . . . . . . . . . .
\nsim (≁) . . . . . . . . . . . . . .
\nsimeq () . . . . . . . . . . . .
\nsimeq (;) . . . . . . . . . . . .
\nsimeq (≄) . . . . . . . . . . . . .
\nsmile (⌣̸) . . . . . . . . . . . . .
\nsmileeq (̸) . . . . . . . . . . .
\nsmileeqfrown (̸) . . . . . . .
\nsmilefrown (≭) . . . . . . . .
\nsmilefrowneq (̸) . . . . . . .
\nsqdoublefrown (̸) . . . . . .
\nsqdoublefrowneq (̸) . . . .
\nsqdoublesmile (̸) . . . . . .
\nsqdoublesmileeq (̸) . . . .
\nsqeqfrown (̸) . . . . . . . . .
\nsqeqsmile (̸) . . . . . . . . .
\nsqfrown (̸) . . . . . . . . . . .
\nsqfrowneq (̸) . . . . . . . . .
\nsqfrowneqsmile (̸) . . . . .
\nsqfrownsmile (̸) . . . . . . .
\nsqsmile (̸) . . . . . . . . . . .
\nsqsmileeq (̸) . . . . . . . . .
\nsqsmileeqfrown (̸) . . . . .
\nsqsmilefrown (̸) . . . . . . .
\nSqsubset (̸) . . . . . . . . . .
\nsqSubset (–) . . . . . . . . . .
\nsqsubset (‚) . . . . . . . . . .
\nsqsubset (a) . . . . . . . . . .
\nsqsubset (⊏̸) . . . . . . . . . .
\nsqsubseteq (†) . . . . . . . .
\nsqsubseteq (@) . . . . . . . .
\nsqsubseteq (⋢) . . . . . . . .
\nsqsubseteqq (Ž) . . . . . . .
\nsqsubseteqq (̸) . . . . . . .
\nSqsupset (̸) . . . . . . . . . .
\nsqSupset (—) . . . . . . . . . .
\nsqsupset (ƒ) . . . . . . . . . .
\nsqsupset (b) . . . . . . . . . .
\nsqsupset (⊐̸) . . . . . . . . . .
\nsqsupseteq (‡) . . . . . . . .
\nsqsupseteq (A) . . . . . . . .
\nsqsupseteq (⋣) . . . . . . . .
\nsqsupseteqq () . . . . . . .
\nsqsupseteqq (̸) . . . . . . .
\nsqtriplefrown (̸) . . . . . .
\nsqtriplesmile (̸) . . . . . .
\nsquigarrowdownup (̸) . .
\nsquigarrowleftright (̸)
\nsquigarrownesw (̸) . . . .
\nsquigarrownwse (̸) . . . . .
\nsquigarrowrightleft (̸)
\nsquigarrowsenw (̸) . . . .
\nsquigarrowswne (̸) . . . .
\nsquigarrowupdown (̸) . . .
\nsststile (
33
32
30
33
32
31
33
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
37
37
37
36
37
37
36
37
37
37
37
37
37
36
37
37
36
37
37
37
48
48
45
45
45
45
45
45
45
45
) . . . . . . . . . 34
\nststile ( ) . . . . . . . . . . 34
\nsttstile ( ) .
\nSubset (–) . . .
\nSubset (>) . . . .
\nSubset (⋐̸) . . . .
125
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
34
37
36
37
\nsubset (‚) . . . . . .
\nsubset (⊄) . . . . . . .
\nsubseteq (†) . . . . .
\nsubseteq (*) . . . .
\nsubseteq (⊈) . . . . .
\nsubseteqq (Ž) . . . .
\nsubseteqq (") . . . .
\nsubseteqq (⫅̸) . . . .
\nsucc (£) . . . . . . . .
\nsucc () . . . . . . . .
\nsucc (⊁) . . . . . . . .
\nsuccapprox (É) . . .
\nsuccapprox (8) . . .
\nsuccapprox (⪸̸) . . .
\nsucccurlyeq (§) . .
\nsucccurlyeq (%) . .
\nsucccurlyeq (⋡) . .
\nsucceq («) . . . . . .
\nsucceq () . . . . . .
\nsucceq (⪰̸) . . . . . . .
\nsucceqq (:) . . . . . .
\nsuccsim (Ã) . . . . .
\nsuccsim () . . . . . .
\nsuccsim (≿̸) . . . . . .
\nSupset (—) . . . . . .
\nSupset (?) . . . . . . .
\nSupset (⋑̸) . . . . . . .
\nsupset (ƒ) . . . . . .
\nsupset (⊅) . . . . . . .
\nsupseteq (‡) . . . . .
\nsupseteq (+) . . . .
\nsupseteq (⊉) . . . . .
\nsupseteqq () . . . .
\nsupseteqq (#) . . . .
\nsupseteqq (⫆̸) . . . .
\nSwarrow (⇙̸) . . . . .
\nswarrow (↙̸) . . . . .
\nswarrowtail (̸) . .
\nswfilledspoon (̸)
\nswfootline (̸) . . .
\nswfree (̸) . . . . . .
\nswharpoonccw (̸) .
\nswharpooncw (̸) . .
\nswlsquigarrow (̸)
\nswmapsto (̸) . . . .
\nswModels (̸) . . . .
\nswmodels (̸) . . . .
\nswnearrows (̸) . .
\nswneharpoons (̸) .
\nswpitchfork (̸) . .
\nswrsquigarrow (̸)
\nswspoon (̸) . . . . .
\nswswarrows (̸) . .
\nswVdash (̸) . . . . .
\nswvdash (̸) . . . . .
\ntdtstile (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
37
37
37
36
37
37
36
37
32
30
33
32
31
33
32
31
33
32
30
33
31
32
31
33
37
36
37
37
37
37
36
37
37
36
37
45
45
45
47
33
33
46
46
45
45
33
33
45
46
47
45
47
45
33
33
) . . . . . . . . . 34
ntheorem (package)
\nthickapprox (5)
\nto (↛) . . . . . . . .
\ntriangleeq (≜̸) .
\ntriangleleft (š)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
62
31
46
40
40
\ntriangleleft (6) . . . . . .
\ntriangleleft (⋪) . . . . 39,
\ntrianglelefteq (ž) . . . .
\ntrianglelefteq (5) . . . .
\ntrianglelefteq (⋬) . . 39,
\ntrianglelefteqslant (R)
\ntriangleright (›) . . . . .
\ntriangleright (7) . . . . .
\ntriangleright (⋫) . . . 39,
\ntrianglerighteq (Ÿ) . . . .
\ntrianglerighteq (4) . . .
\ntrianglerighteq (⋭) . 39,
\ntrianglerighteqslant (S)
\ntriplefrown (̸) . . . . . . .
\ntriplesim (≋̸) . . . . . . . . .
\ntriplesmile (̸) . . . . . . .
\ntststile (
39
40
40
39
40
40
40
39
40
40
39
40
40
48
33
48
) . . . . . . . . . 35
\nttstile ( ) . . . . . . . . . . 35
\ntttstile (
) . . . . . . . . . 35
\ntwoheaddownarrow (↡̸) . . . 45
\ntwoheadleftarrow (h) . . . 31
\ntwoheadleftarrow (↞̸) . . 45
\ntwoheadnearrow (̸) . . . . 45
\ntwoheadnwarrow (̸) . . . . 45
\ntwoheadrightarrow (g) . . 31
\ntwoheadrightarrow (↠̸) . . 45
\ntwoheadsearrow (̸) . . . . 45
\ntwoheadswarrow (̸) . . . . 45
\ntwoheaduparrow (↟̸) . . . . . 45
\nu (ν) . . . . . . . . . . . . . . . . 49
nuclear power plant . see \SNPP
\NUL (␀) . . . . . . . . . . . . . . . 69
null set . . . . . . . . . . . . . 62, 63
number . . . . . see \textnumero
number sets see alphabets, math
numbers . . . . . . . . . . see digits
circled . . . . . . . . . . 73, 76
\NumLock ( Num ) . . . . . . . . 69
\nUparrow (⇑̸) . . . . . . . . . . . 45
\nuparrow (↑̸) . . . . . . . . . . . 45
\nuparrowtail (̸) . . . . . . . 45
\nUpdownarrow (⇕̸) . . . . . . . 45
\nupdownarrow (↕̸) . . . . . . . 45
\nupdownarrows (̸) . . . . . . 45
\nupdownharpoonleftright (̸)
. . . . . . . . . 46
\nupdownharpoonrightleft (̸)
. . . . . . . . . 46
\nupdownharpoons (⥮̸) . . . . . 46
\nUpdownline (∦) . . . . . . . . 33
\nupdownline (∤) . . . . . . . . 33
\nupfilledspoon (̸) . . . . . . 47
\nupfootline (̸) . . . . . . . . 33
\nupfree (̸) . . . . . . . . . . . . 33
\nupharpoonccw (↿̸) . . . . . . . 46
\nupharpooncw (↾̸) . . . . . . . 46
\nuplsquigarrow (̸) . . . . . . 45
\nupmapsto (↥̸) . . . . . . . . . . 45
\nupModels (̸) . . . . . . . . . 33
\nupmodels (̸) . . . . . . . . . . 33
\nuppitchfork (⋔̸) . .
\nuprsquigarrow (̸) .
\nupspoon (⫯̸) . . . . . .
\nupuparrows (⇈̸) . . .
\nupVdash (⍊̸) . . . . .
\nupvdash (⊥̸) . . . . . .
\nuup (ν) . . . . . . . . .
\nvargeq («) . . . . . .
\nvarleq (ª) . . . . . .
\nvarparallel () . .
\nvarparallelinv ()
\nVDash (*) . . . . . . .
\nVDash (3) . . . . . . .
\nVDash (⊯) . . . . . . .
\nVdash (.) . . . . . . .
\nVdash (1) . . . . . . .
\nVdash (⊮) . . . . . . .
\nvDash (*) . . . . . . .
\nvDash (2) . . . . . . .
\nvDash (⊭) . . . . . . .
\nvdash (&) . . . . . . .
\nvdash (0) . . . . . . .
\nvdash (⊬) . . . . . . .
\nVvash (.) . . . . . . .
\Nwarrow (v) . . . . . .
\Nwarrow (⇖) . . . . . .
\nwarrow (Ô) . . . . . .
\nwarrow (-) . . . . . .
\nwarrow (↖) . . . . . .
\nwarrowtail (%) . . .
\nwfilledspoon (u) .
\nwfootline (}) . . . .
\nwfree (…) . . . . . . .
\nwharpoonccw (E) . .
\nwharpooncw (M) . . .
\nwlsquigarrow (¥) .
\nwmapsto (-) . . . . .
\nwModels (õ) . . . . .
\nwmodels (å) . . . . .
\nwnwarrows (•) . . .
\nwpitchfork () . . .
\nwrsquigarrow (­) .
\Nwsearrow () . . . .
\nwsearrow (&) . . . .
\nwsearrow (⤢) . . . .
\nwsearrows (›) . . .
\nwsebipropto (‹) . .
\nwsecrossing (“) . .
\nwseharpoonnesw (S)
\nwseharpoons (_) . .
\nwseharpoonswne (W)
\Nwseline (×) . . . . .
\nwseline (Ó) . . . . .
\nwspoon (m) . . . . . .
\nwVdash (í) . . . . . .
\nwvdash (Ý) . . . . . .
O
\O (Ø) . . . . . .
\o (ø) . . . . . . .
o (o) . . . . . . . .
\oast (⊛) . . . .
\oasterisk (f)
126
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
41,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
47
45
47
45
33
33
50
38
38
31
31
32
30
34
32
31
34
32
30
34
32
30
34
32
42
43
42
93
43
43
47
32
32
46
46
43
43
32
32
43
47
43
43
93
43
43
23
32
46
46
46
32
32
47
32
32
. 9
. 9
49
24
24
\obackslash (n) . . . . . . . . . 24
\obackslash (⦸) . . . . . . . . . 24
\obar (:) . . . . . . . . . . . . . . 21
\Obelus (
) . . . . . . . . . . . 82
\obelus ( ) . . . . . . . . . . . 82
\Obelus* ( ·· ) . . . . . . . . . . . 82
\obelus* ( ·· ) . . . . . . . . . . . 82
\oblong (@) . . . . . . . . . . . . 21
\obot (k) . . . . . . . . . . . . . . 24
\obslash (;) . . . . . . . . . . . 21
\oc () . . . . . . . . . . . . . . . . . 20
\ocirc (e) . . . . . . . . . . . . . 24
\ocirc (⊚) . . . . . . . . . . . . . 24
\ocircle (#) . . . . . . . . . . . 21
\ocoasterisk (g) . . . . . . . . 24
\octagon (8) . . . . . . . . . . . 74
\Octosteel (‘) . . . . . . . . . . 70
\od (a) . . . . . . . . . . . . . . . . 15
\odiv˚(c) . . . . . . . . . . . . . . 24
\odot (d) . . . . . . . . . . . . . . 24
\odot () . . . . . . . . . . . . . . 20
\odot (⊙) . . . . . . . . . . . . . . 24
\odplus ( ) . . . . . . . . . . . . 24
\OE (Œ) . . . . . . . . . . . . 9, 103
\oe (œ) . . . . . . . . . . . . . 9, 103
\officialeuro (e) . . . . . . . 17
\offinterlineskip . . . . . . . 91
ogonek . . . . . . . . . see accents
\ogreaterthan (=) . . . . . . . 21
{
. . . . . . . . . . . . . 15
\ohill (a)
ohm . . . . . . . . . . see \textohm
\ohm (Ω) . . . . . . . . . . . . . . . 67
\Ohne (a/) . . . . . . . . . . . . . . 79
\OHORN (Ơ) . . . . . . . . . . . . . . 9
\ohorn (ơ)) . . . . . . . . . . . . . . 9
\oiiint ( ) . . . . . . . . . . . 27
ˆ
\oiiint ( ) . . . . . . . . . . . 29
L
\oiiintclockwise ( ) . . . . 27
D
\oiiintctrclockwise ( ) . 27
·
\oiint () . . . . . . . . . . . . . 26
\oiint ( ) . . . . . . . . . . 25, 27
‚
\oiint ( ) . . . . . . . . . . . . . 28
†
\oiint ( ) . . . . . . . . . . . . . 29
\oiint (∯) . . . . .H. . . . .
\oiintclockwise ( ) . .
@
\oiintctrclockwise ( )
¶
\oint (H) . . . . . . . . . . .
\oint ( ) . . . . . . . . . . .
...
...
..
...
...
29
27
27
26
25
\oint (∮) . . . . . . . . . .
\ointclockwise ( ) . .
ı
\ointclockwise ( ) . . .
„
\ointclockwise ( ) . . .
\ointctrclockwise ( )
\ointctrclockwise ( )
‚
\ointctrclockwise ( )
old-style digits . . . . . . .
\oldstylenums . . . . . .
\oleft (h) . . . . . . . . .
\olessthan (<) . . . . . .
.
.
.
.
.
.
.
.
.
.
.
29
27
28
29
27
28
29
18
18
24
21
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\Omega (Ω) . . . . . . . . . . . . . 49
\omega (ω) . . . . . . . . . . . . . 49
\omegaup (ω) . . . . . . . . . . . 50
\ominus (a) . . . . . . . . . . . . 24
\ominus () . . . . . . . . . . . . 20
\ominus (⊖) . . . . . . . . . . . . 24
\onlymove (F) . . . . . . . . . . 82
\oo ( ◦◦) . . . . . . . . . . . . . . . 82
\oo (@) . . . . . . . . . . . . . . . 12
\ooalign . . . . . . . . . . . 91, 92
\open (z) . . . . . . . . . . . . . . 16
open unit disk (D) . . . . . . see
alphabets, math
\openJoin ([) . . . . . . . . . . . 31
\openo (=) . . . . . . . . . . . . . . 12
\openo (c) . . . . . . . . . . . . . 12
\openo (l) . . . . . . . . . . . . . 12
\opentimes (]) . . . . . . . . . . 31
operators
binary . . . . . . . . . . 20–24
logical see logical operators
set . . . . . see set operators
unary . . . . . . . . . . . . . 20
\oplus (`) . . . . . . . . . . . . . 24
\oplus (⊕) . . . . . . . . . . 20, 90
\oplus (⊕) . . . . . . . . . . . . . 24
\opposbishops (o) . . . . . . . 82
\opposition (W) . . . . . . . . 68
optical scaling . . . . . . . . . . . 96
options . . . see package options
or . . . . . . . . . . . . . . . see \vee
\oright (i) . . . . . . . . . . . . 24
\OrnamentDiamondSolid ( ) 77
orthogonal to . . . . . . see \bot
\oslash (m) . . . . . . . . . . . . 24
\oslash () . . . . . . . . . . . . 20
\oslash (⊘) . . . . . . . . . . . . 24
\ostar (⍟) . . . . . . . . . . . . . 24
\otimes (b) . . . . . . . . . . . . 24
\otimes (⊗) . . . . . . . . . . . . 20
\otimes (⊗) . . . . . . . . . . . . 24
\otop (j) . . . . . . . . . . . . . . 24
\otriangle (d) . . . . . . . 24, 40
\otriangleup (o) . . . . . . . . 24
ovals . . . . . . . . . . . . . . . . . . 75
\ovee (>) . . . . . . . . . . . . . . 21
_
\overarc (a
) . . . . . . . . . . . . 16
q
hkkikkj
\overbrace (
) . . . . . . . 58
©
\overbrace ( ) . . . . . . . . . . 58
\overbrace (
z}|{
) . . . . . . . . 58
z}|{
\overbrace (
) . . . . . . . . 57
\overbracket ( ) . . . . . . . . 58
\overbracket ”( ) . . . . . 95, 96
\overbridge (a) . . . . . . . . . 15
hkkk j
\overgroup (
) ......
³µ
\overgroup ( ) . . . . . . .
−) . . . .
\overleftarrow (←
Ð) . .
\overleftharpoon (↼
→)
\overleftrightarrow (←
. . 58
. . 58
. . 57
. . 58
. 58
\overline ( ) . . . . . . . . 20, 57
x) . . . . 58
\overlinesegment (z
z{
\overparenthesis ( )
⇒) .
\Overrightarrow (=
overrightarrow (package)
→) .
\overrightarrow (−
⇀)
\overrightharpoon (Ð
\overring (x) . . . . . .
\overset . . . . . . . . . .
\overt (⦶) . . . . . . . . .
\ovoid (l) . . . . . . . . .
\owedge (?) . . . . . . . .
\owns . . . . . . . . . . . . .
\owns (Q) . . . . . . . . . .
\owns (3) . . . . . . . . . .
\owns (∋) . . . . . . . . . .
\ownsbar (W) . . . . . . . .
. 95, 96
. . . . 57
57, 104
. . . . 57
. . . . 58
. . . . 16
. . . . 91
. . . . 24
. . . . 24
. . . . 21
see \ni
. . . . 51
. . . . 51
. . . . 51
. . . . 51
P
\P (¶) . . . . . . . . . . . . . . 8, 102
\p ( ) . . . . . . . . . . . . . . . . . 82
\p@ ˙. . . . . . . . . . . . . . . . . . . 94
package options
a (esvect) . . . . . . . . . . . 59
b (esvect) . . . . . . . . . . . 59
bbgreekl (mathbbol) . . . 65
c (esvect) . . . . . . . . . . . 59
crescent (fge) . . . . . . . . 56
d (esvect) . . . . . . . . . . . 59
e (esvect) . . . . . . . . . . . 59
f (esvect) . . . . . . . . . . . 59
g (esvect) . . . . . . . . . . . 59
german (keystroke) . . . . 69
h (esvect) . . . . . . . . . . . 59
integrals (wasysym) . . . . 25
mathcal (euscript) . . . . . 65
mathscr (euscript) . . . . . 65
nointegrals (wasysym) . . 25
sans (dsfont) . . . . . . . . . 65
varg (txfonts/pxfonts) . . 50
packages
longdiv . . . . . . . . . . . . . 57
accents . . . 56, 94, 104, 105
amsbsy . . . . . . . . . . . . 100
amsfonts 20, 30, 36, 41, 62,
65
amsmath . 7, 49, 56, 91, 99
amssymb . 7, 20, 30, 36, 41,
56, 62, 65, 104, 105, 107
amstext . . . . . . . . . 92, 93
ar . . . . . . . . . . . . 67, 104
arcs . . . . . . . . 16, 104, 105
arev . . . . . 64, 78, 104, 105
ascii . . . . 69, 101, 104, 105
bbding . 71–75, 77, 88, 104,
105
bbm . . . . . . . . . . . 65, 104
bbold . . . . . . . . . . 65, 104
bm . . . . . . . 100, 104, 105
braket . . . . . . . . . . . . . 53
calligra . . . . . . 65, 104, 105
calrsfs . . . . . . . . . . . . . 65
127
cancel . . . . . . . . . . . . . 57
cclicenses . . . . 18, 104, 105
centernot . . . . . . . . . . . 92
chancery . . . . . . . . . . . 104
chemarr . . . . . 59, 104, 105
chemarrow . . . . 47, 60, 104
cmll . . . 20, 23, 30, 36, 104
dblaccnt . . . . . . . . . . . . 94
dictsym . . . . . 84, 104, 105
dingbat 72, 77, 88, 104, 105
dsfont . . . . . . . . . 65, 104
epsdice . . . . . . 81, 104, 105
esint . . . . . . . . . . 28, 104
esvect . . . . . . . . . 59, 104
eufrak . . . . . . . . . . . . . 65
eurosym . . . . . 17, 104, 105
euscript . . . . . 65, 104, 105
extarrows . . . . 60, 104, 105
extpfeil . . . . . . 60, 104, 105
extraipa . . . . . . . . 15, 104
fc . . . . . . . . . . . . . . 9, 13
fclfont . . . . . . . . . . . . 104
feyn . . . . . . . . 70, 104, 105
fge . 47, 52, 56, 62, 64, 104,
105
fixmath . . . . . . . . . . . 100
fontenc . . . . . 7, 9, 13, 103
gensymb . . . . . . . . . . . . 67
graphics . . . . . . . . . . . . 90
graphicx . . . . . . . 16, 87, 90
harmony . . . . . 79, 104, 105
hieroglf . . . . . 84, 104, 105
holtpolt . . . . . . . . 60, 104
ifsym 67, 75, 80, 81, 88, 90,
104, 105
igo . . . . . . . . . . . . 76, 104
isoent . . . . . . . . . . . . . 103
keystroke . . . . 69, 104, 105
latexsym . 20, 30, 36, 41, 62,
87, 104, 105
manfnt . . . 76, 79, 104, 105
marvosym 17, 62, 64, 68–71,
76, 79, 80, 88
matbbol . . . . . . . . . . . . 65
mathabx . . . . . . 22, 24, 26,
30–32, 36–38, 40, 42, 43, 49,
51–54, 56, 58, 62, 63, 68, 76,
87, 88, 104, 105, 107
mathbbol . . . . . . . . . . . 65
mathcomp . . . . . . . . . . 62
mathdesign . 17, 23, 29, 51,
55, 64, 104
mathdots 56, 61, 62, 94, 104,
105
mathrsfs . . . . . . . . 65, 104
mathtools . . 34, 58, 59, 104,
105
mbboard . . . . . . . . 65, 104
metre . 16, 56, 82, 104, 105
MnSymbol . . . . 23, 24, 29,
32, 33, 37, 39, 40, 43–48, 50,
51, 54, 56–58, 61, 63, 64, 74,
104, 105
musixtex . . . . . . . . . . . . 79
nath . . . . . . . . . 52, 55, 104
nicefrac . . . . . 64, 104, 105
ntheorem . . . . . . . . . . . 62
overrightarrow . . . . 57, 104
phaistos . . . . . 83, 104, 105
phonetic . . . 12, 15, 90, 104
pifont 9, 71–75, 77, 90, 104,
105
polynom . . . . . . . . . . . . 57
protosem . . . . 83, 104, 105
psnfss . . . . . . . . . . . . . 73
pxfonts . . 20, 21, 27, 30, 31,
36, 38, 41, 42, 48, 50, 51, 62,
63, 65, 87, 101
rotating . . . . . . . . . 18, 69
savesym . . . . . . . . . . . . 87
semtrans . 13, 16, 104, 105
simplewick . . . . . . . . . . 96
simpsons . . . . . . . 85, 104
skak . . . . . . . . 82, 104, 105
skull . . . . . . . . 76, 104, 105
slashed . . . . . . . . . . . . . 92
staves . . . . . . . . . 85, 104
stmaryrd . . . . . . 21, 25, 30,
36, 40, 42, 48, 52, 53, 88, 91,
104, 105
t4phonet . 13, 16, 104, 105
textcomp . . . . . . . . . . . 7,
8, 13, 17–19, 41, 56, 64, 67,
78, 87, 101, 103–105
timing . . . . . . . . . . . . . 67
tipa . 10, 11, 13, 15, 16, 90,
104, 105
tipx . . . . . . . . 11, 104, 105
trfsigns . . . . 35, 51, 60, 104
trsym . . . . . . . 35, 104, 105
turnstile . . 34, 35, 104, 105
txfonts 20, 21, 27, 30, 31, 36,
38, 41, 42, 48, 50, 51, 62, 63,
65, 87, 89, 101, 104, 105
type1cm . . . . . . . . . . . . 87
ulsy . . . . . . 24, 48, 90, 104
underscore . . . . . . . . . . . 8
undertilde . . . . 59, 104, 105
units . . . . . . . . . . . . . . 64
universa . . 76, 80, 104, 105
universal 71, 73, 76, 80, 104,
105
upgreek . . . . . 50, 104, 105
upquote . . . . . . . . . . . 101
url . . . . . . . . . . . . . . . 101
vietnam . . . . . . . . . . . 104
vntex . . . . . . . . . . . . 9, 13
wasysym . 12, 17, 19–21, 25,
30, 36, 38, 41, 61–63, 67, 68,
70, 73, 74, 78, 88, 104, 105
wsuipa 11, 15, 16, 88, 90, 94,
104, 105
yfonts . . . . . . 65, 104, 105
yhmath
57, 59, 62, 94, 104
Pakin, Scott . . . . . . . . . 1, 104
\PaperLandscape ( ) . . . . . 81
\PaperPortrait ( ) . . . . . . 81
par . . . . . . . . . . . . see \invamp
paragraph mark . . . . . . . see \P
parallel . see also \varparallel
\parallel (k) . . . . . . . . 30, 54
\parallel (∥) . . . . . . . . . . . 33
\ParallelPort (Ñ) . . . . . . . 69
\parr (`) . . . . . . . . . . . . . . 23
\partial (B ) . . . . . . . . . . . . 51
\partial (∂) . . . . . . . . . . . . 51
\partialslash (C ) . . . . . . . 51
\partialvardint (∫…∫) . . . . 64
\partialvardlanddownint (⨚) 64
\partialvardlandupint (⨙) 64
\partialvardlcircleleftint
(∲) . . . . . . . . . . . . . . 43
\partialvardlcircleleftint
(∲) . . . . . . . . . . . . . . 64
\partialvardlcirclerightint
(∲) . . . . . . . . . . . . . . 43
\partialvardlcirclerightint
(∲) . . . . . . . . . . . . . . 64
\partialvardoiint (∯) . . . 64
\partialvardoint (∮) . . . . . 64
\partialvardrcircleleftint
(∳) . . . . . . . . . . . . . . 43
\partialvardrcircleleftint
(∳) . . . . . . . . . . . . . . 64
\partialvardrcirclerightint
(∳) . . . . . . . . . . . . . . 43
\partialvardrcirclerightint
(∳) . . . . . . . . . . . . . . 64
\partialvardstrokedint (⨏) 64
\partialvardsumint (⨋) . . . 64
\partialvartint (∫…∫) . . . . . 64
\partialvartlanddownint (⨚) 64
\partialvartlandupint (⨙) 64
\partialvartlcircleleftint
(∲) . . . . . . . . . . . . . . 43
\partialvartlcircleleftint
(∲) . . . . . . . . . . . . . . 64
\partialvartlcirclerightint
(∲) . . . . . . . . . . . . . . 43
\partialvartlcirclerightint
(∲) . . . . . . . . . . . . . . 64
\partialvartoiint (∯) . . . 64
\partialvartoint (∮) . . . . . 64
\partialvartrcircleleftint
(∳) . . . . . . . . . . . . . . 43
\partialvartrcircleleftint
(∳) . . . . . . . . . . . . . . 64
\partialvartrcirclerightint
(∳) . . . . . . . . . . . . . . 43
\partialvartrcirclerightint
(∳) . . . . . . . . . . . . . . 64
\partialvartstrokedint (⨏) 64
\partialvartsumint (⨋) . . . 64
particle-physics symbols . . . . 70
parts per thousand . . . . . . see
\textperthousand
\partvoice (a
–ˇ») . . . . . . . . . . 15
\partvoiceless
(a
– ») . . . . . . . 15
\passedpawn (r) ˚. . . . . . . . . 82
128
pawn . . . . . . see chess symbols
\Peace ( ) . . . . . . . . . . . . . 77
) . . . . . . . .
) . . . . .
\PencilLeftUp () . . . . . . .
\PencilRight () . . . . . . .
\PencilRightDown () . . . .
\PencilRightUp () . . . . . .
\PencilLeft (
72
\PencilLeftDown (
72
72
72
72
72
pencils . . . . . . . . . . . . . . . . 72
\pentagon (D) . . . . . . . . . . 74
\pentagram („) . . . . . . . . . . 24
people . . . . . . . . . . . . see faces
percent sign . . . . . . . . . see \%
\permil (h) . . . . . . . . . . . . 19
\Perp (y) . . . . . . . . . . . . . . 31
\perp (⊥) . . . . . . . . . . . 30, 93
\perp (⊥) . . . . . . . . . . . . . . 33
\perthousand (‰) . . . . . . . 67
\Pfund (£) . . . . . . . . . . . . . 17
\PgDown ( Page ↓ ) . . . . . . . 69
\PgUp ( Page ↑ ) . . . . . . . . . 69
phaistos (package) . 83, 104, 105
Phaistos disk . . . . . . . . . . . . 83
pharmaceutical prescription
see
\textrecipe
\PHarrow (J) . . . . . . . . . . . . 83
\PHbee (h)
. . . . . . . . . . . . 83
\PHbeehive (X) . . . . . . . . 83
\PHboomerang (R) . . . . . . . 83
\PHbow (K) . . . . . . . . . . . . . . 83
\PHbullLeg (b) . . . . . . . . . . 83
\PHcaptive (D) . . . . . . . . . 83
\PHcarpentryPlane (S) . . . 83
\PHcat (c) . . . . . . . . . . . . 83
\PHchild (E) . . . . . . . . . . . 83
\PHclub (M) . . . . . . . . . . . . . 83
\PHcolumn (W) . . . . . . . . . . . 83
\PHcomb (U) . . . . . . . . . . . . 83
\PHdolium (T) . . . . . . . . . . 83
\PHdove (f) . . . . . . . . . . . 83
\PHeagle (e) . . . . . . . . . . . 83
\PHflute (o)
. . . . . . . . . . . 83
\PHgaunlet (H) . . . . . . . . . 83
\PHgrater (p)
. . . . . . . . . . 83
\PHhelmet (G) . . . . . . . . . . 83
\PHhide (a) . . . . . . . . . . . 83
\PHhorn (Z)
\Phi (Φ) . .
\phi (φ) . .
\phiup (φ)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
83
49
49
50
\PHlid (Q) . . . . . . . . . . . . . 83
\PHlily (m)
. . . . . . . . . . . . 83
\PHmanacles (N)
. . . . . . . . 83
\PHmattock (O) . . . . . . . . . 83
\Phone ( ) . . . . . . . . . . . . . 77
\phone () . . . . . . . . . . . . . 78
\PhoneHandset ( ) . . . . . . . 77
phonetic (package) 12, 15, 90, 104
phonetic symbols . . . . . . 10–13
\photon (::::) . . . . . . . . . 67
photons . . . . . . . . . . . . . . . 70
\PHoxBack (n) . . . . . . . . . . 83
\PHpapyrus (k) . . . . . . . . . . 83
\PHpedestrian (A) . . . . . . 83
\PHplaneTree (i) . . . . . . . . 83
\PHplumedHead (B) . . . . . 83
\PHram (d) . . . . . . . . . . . . 83
\PHrosette (l) . . . . . . . . . 83
pitchfork symbols . . . . . . . . 47
\piup (π) . . . . . . . . . . . . . . 50
\planck (h̄) . . . . . . . . . . . . 12
\Plane ( ) . . . . . . . . . . . . . 77
planets . . . . . . . . . . . . . . . . 68
playing cards . . . . see card suits
Plimsoll line 91, see also \minuso
\Plus ( ) . . . . . . . . . . . . . . 72
\plus (+) . . . . . . . . . . . . . . 23
plus-or-minus sign . . . . see \pm
\PlusCenterOpen ( ) . . . . . 72
\pluscirc () . . . . . . . . . . 22
\PlusOutline ( ) . . . . . . . . 72
plusses . . . . . . . . . . . . . . . . 72
\PlusThinCenterOpen ( ) . . 72
\Pluto (I) . . . . . . . . . . . . . 68
\Pluto (É) . . . . . . . . . . . . . 68
\pluto (\) . . . . . . . . . . . . . 68
\pm (±) . . . . . . . . . . . . . . . . 20
\pm (±) . . . . . . . . . . . . . . . . 23
\pm ( ) . . . . . . . . . . . . . . . 82
˙. . . . . . . . . . . . . . . . . 100
\pmb ¯
\pmod . . . . . . . . . . . . . . . . . 49
\pod . . . . . . . . . . . . . . . . . . 49
\pointer () . . . . . . . . . . . . 78
pointing finger . . . . . . . see fists
\Pointinghand (Z) . . . . . . . 76
\polishhook (~) . . . . . . . . . 16
'
&
\polter (
(
)
) . . . . . . . . . . . 60
\PHsaw (P) . . . . . . . . . . . . . 83
\PHshield (L) . . . . . . . . . . 83
\PHship (Y) . . . . . . . . . . . 83
\PHsling (V) . . . . . . . . . . . 83
\PHsmallAxe (r) . . . . . . . . 83
\PHstrainer (q)
. . . . . . . 83
\PHtattooedHead (C) . . . . 83
\PHtiara (I) . . . . . . . . . . . 83
\PHtunny (g) . . . . . . . . . . 83
\PHvine (j) . . . . . . . . . . . . 83
\PHwavyBand (s) . . . . . . . . . 83
\PHwoman (F) . . . . . . . . . . . 83
physical symbols . . . . . . . . . 67
\Pi (Π) . . . . . . . . . . . . . . . . 49
\pi (π) . . . . . . . . . . . . . . . . 49
\Pickup (A) . . . . . . . . . . . . 69
pifont (package) 9, 71–75, 77, 90,
104, 105
pilcrow . . . . . . . . . . . . . see \P
pipe . . . . . . . . . see \textpipe
\Pisces (ë) . . . . . . . . . . . . 68
\pisces (f) . . . . . . . . . . . . 68
\Pisymbol . . . . . . . . . . . . . . 90
\pitchfork (&) . . . . . . . . . . 63
\pitchfork (t) . . . . . . . . . . 30
\pitchfork (⋔) . . . . . . . . . . 47
polygons . . . . . . . . . . . . . . . 74
polynom (package) . . . . . . . . 57
polynomial division . . . . . . . 57
PostScript 50, 66, 71, 81, 90, 99
PostScript fonts . . . . . . . 71, 90
\pounds (£) . . . . . . 8, 102, 103
power set (P) . . see alphabets,
math
\powerset (℘) . . . . . . . . . . . 51
\Pp ( ˙) . . . . . . . . . . . . . . . . 82
\pp ( ˙˙ ) . . . . . . . . . . . . . . 82
\ppm ( ˙ ) . . . . . . . . . . . . . . 82
˙˙) . . . . . . . . . . . . . . . 82
\Ppp ( ¯
˙˙
\ppp ( ˙˙ ) . . . . . . . . . . . . . . 82
˙
\Pppp ( ˙˙) . . . . . . . . . . . . . . 82
˙
\pppp ( ˙ ) . . . . . . . . . . . . . 82
˙
\Ppppp ( ˙) . . . . . . . . . . . . . 82
˙
\ppppp ( ˙˙ ) . . . . . . . . . . . . 82
˙
\Pr (Pr) .˙ . . . . . . . . . . . . . . 49
\prec (≺) . . . . . . . . . . . . . . 30
\prec (≺) . . . . . . . . . . . . . . 32
\precapprox (Æ) . . . . . . . . . 31
\precapprox (w) . . . . . . . . . 30
\precapprox (⪷) . . . . . . . . . 32
\preccurlyeq (¤) . . . . . . . . 31
\preccurlyeq (4) . . . . . . . . 30
\preccurlyeq (≼) . . . . . . . . 32
\precdot (Ì) . . . . . . . . . . . 31
\preceq () . . . . . . . . . . . . 30
\preceq (⪯) . . . . . . . . . . . . . 32
\preceqq () . . . . . . . . . . . . 31
129
\precnapprox (Ê) . . . . . . . . 32
\precnapprox () . . . . . . . . 30
\precnapprox (⪹) . . . . . . . . 33
\precneq (¬) . . . . . . . . . . . 32
\precneqq () . . . . . . . . . . 31
\precnsim (Ä) . . . . . . . . . . 32
\precnsim () . . . . . . . . . . 30
\precnsim (⋨) . . . . . . . . . . . 33
\precsim (À) . . . . . . . . . . . 31
\precsim (-) . . . . . . . . . . . 30
\precsim (≾) . . . . . . . . . . . . 32
prescription . . see \textrecipe
\prime (0) . . . . . . . . . . . . . . 62
\prime (′) . . . . . . . . . . . . . . 63
\Printer (Ò) . . . . . . . . . . . 69
printer’s fist . . . . . . . . see fists
probabilistic
Q independence . . 93
\prod ( ) . . . . . . . . . . . . . 25
\prod (∏) . . . . . . . . . . . . . . 29
\projlim (proj lim) . . . . . . . 49
pronunciation symbols . . . . see
phonetic symbols
proof, end of . . . . . . . . . . . . 62
\propto (9) . . . . . . . . . . . . 63
\propto (∝) . . . . . . . . . . . . 30
\propto (∝) . . . . . . . . . . . . 33
proto-Semitic symbols . . . . . 83
protosem (package) 83, 104, 105
\ProvidesPackage . . . . . . . 104
\PrtSc ( PrtSc ) . . . . . . . . . 69
\ps ( ) . . . . . . . . . . . . . . 82
\Psi (Ψ) . . . . . . . . . . . . . . . 49
\psi (ψ) . . . . . . . . . . . . . . . 49
\psiup (ψ) . . . . . . . . . . . . . 50
psnfss (package) . . . . . . . . . . 73
\Pu (‰ ) . . . . . . . . . . . . . . . . 79
pulse diagram symbols . . . . . 67
\PulseHigh ( ) . . . . . . . . . 67
\PulseLow ( ) . . . . . . . . . 67
punctuation . . . . . . . . . . . . . 9
\pwedge (U) . . . . . . . . . . . . 12
pxfonts (package) 20, 21, 27, 30,
31, 36, 38, 41, 42, 48, 50, 51,
62, 63, 65, 87, 101
\Pxp ( ˙) . . . . . . . . . . . . . . . 82
\pxp ( ˙˙ ) . . . . . . . . . . . . . . 82
$
%
˙
Q
Q.E.D. . . . . . . . . . . . . . . . . 62
\qside (M) . . . . . . . . . . . . . 82
\Quadrad (]]) . . . . . . . . . . . . 56
\quadrad (]]) . . . . . . . . . . . . 56
\Quadras ([[) . . . . . . . . . . . . 56
\quadras ([[) . . . . . . . . . . . . 56
quarter note see musical symbols
\quarternote (♩) . . . . . . . . 78
\quarternote (♩) . . . . . . . . . 78
quaternions (H)
see alphabets,
math
quaver . . . see musical symbols
queen . . . . . . see chess symbols
\quotedblbase („) . . . . . 9, 103
\quotesinglbase (‚) . . . 9, 103
R
\R ( ∼) . . . . . . . . . . . . . . . . 82
\r (å) . . . . . . . . . . . . . . . . . 13
\r ( ∼) . . . . . . . . . . . . . . . . 82
\Radiation ( ) . . . . . . . . . 81
radicals . . see \sqrt and \surd
\Radioactivity (j) . . . . . . 70
\Rain ( ) . . . . . . . . . . . . . . 80
\RainCloud ( ) . . . . . . . . . 80
raising . . . . . see \textraising
\RaisingEdge ( ) . . . . . . . . 67
\Rangle (>) . . . . . . . . . . . . 65
\rAngle (ii) . . . . . . . . . . . . . 55
\rangle (i) . . . . . . . . . . 20, 53
\rangle (⟩) . . . . . . . . . . . . . 54
\ranglebar (s) . . . . . . . . . . 54
\RArrow ( → ) . . . . . . . . . . 69
\rarrowfill . . . . . . . . . . . . 60
rational numbers (Q) . . . . . see
alphabets, math
rationalized Planck constant see
\hbar
\Rbag (Q) . . . . . . . . . . . . . . 52
\rbag (O) . . . . . . . . . . . . . . . 52
⎫
⎪
⎪
\rbrace ( ⎬) . . . . . . . . . . . 54
⎪
⎭ . . . . . . . . . . . . . 65
\Rbrack (])⎪
\rBrack (]]) . . . . . . . . . . . . . 55
\rc (a
) . . . . . . . . . . . . . . . . 15
\rCeil (ee) . . . . . . . . . . . . . . 55
\rceil (e) . . . . . . . . . . . . . . 53
⎤⎥
\rceil ( ⎥⎥⎥) . . . . . . . . . . . . . 54
⎥⎥
\rcirclearrowdown
(û) . . . 44
\rcirclearrowleft (⟲) . . . 44
\rcirclearrowright (⤿) . . 44
\rcirclearrowup (↺) . . . . . 44
\rcircleleftint (∳) . . . . . . 29
\rcirclerightint (∳) . . . . . 29
\rcorners (w) . . . . . . . . . . . 52
\rcurvearrowdown (⤹) . . . . . 44
\rcurvearrowleft (↶) . . . . 44
\rcurvearrowne (Ä) . . . . . . 44
\rcurvearrownw (Å) . . . . . . 44
\rcurvearrowright (À) . . . . 44
\rcurvearrowse (Ç) . . . . . . 44
\rcurvearrowsw (Æ) . . . . . . 44
\rcurvearrowup (Á) . . . . . . . 44
\rdbrack (w) . . . . . . . . . . . . 54
\Re (<) . . . . . . . . . . . . . . . . 51
real numbers (R) see alphabets,
math
recipe . . . . . . see \textrecipe
\recorder () . . . . . . . . . . . 78
\Rectangle ( ) . . . . . . . . . . 75
\RectangleBold ( ) . . . . . . . 75
rectangles . . . . . . . . . . . . . . 75
\RectangleThin ( ) . . . . . . . 75
\Rectpipe (˜) . . . . . . . . . . . 70
u
v
t
\Rectsteel (”) . . . . . . . . . . 70
reduced quadrupole moment see
\rqm
\reflectbox . . . . . . . . . . . . 90
registered trademark . . . . . see
\textregistered
relational symbols . . . . . . . . 30
binary 30–32, 34–39, 47, 48
negated binary . . . . 30–33
triangle . . . . . . . . . 39, 40
\Relbar (=) . . . . . . . . . 48, 90
\Relbar (Ô) . . . . . . . . . . . . 33
\relbar (−) . . . . . . . . . 48, 90
\relbar (Ð) . . . . . . . . . . . . 33
\resizebox . . . . . . . . . . . . . 87
\Respondens (∼) . . . . . . . . . 82
\respondens ( ∼) . . . . . . . . . 82
\restoresymbol . . . . . . . . . 87
\restriction . . . . . . . . . . see
\upharpoonright
\restriction (æ) . . . . . . . . 42
\restriction (↾) . . . . . . . . 46
retracting see \textretracting
\Return ( ←- ) . . . . . . . . . . 69
return . .Ñ. . . see carriage return
Ñ
\revaw ( ÑÑ) . . . . . . . . . . . . . 55
\revD () . . . . . . . . . .
.
\revddots ( . . ) . . . . . .
\reve () . . . . . . . . . .
\reveject (f) . . . . . . .
\revepsilon () . . . . .
reverse solidus . . . . . . .
\textbackslash
reversed symbols . . . . .
\reversedvideodbend (
\revglotstop (c) . . . .
\Rewind (¶) . . . . . . . .
\RewindToIndex (´) .
\RewindToStart
(µ) . .
?
.
.
.
.
.
.
.
.
.
.
. . 12
. . 94
. . 12
. . 12
12, 90
. . see
...
)
...
...
...
...
.
.
.
.
.
.
90
76
12
79
79
79
?
\rfilet (??) . . . . . . . . . . . . . 54
\rFloor (cc) . . . . . . . .
\rfloor (c) . . . . . . . .
⎥⎥
\rfloor ( ⎥⎥⎥) . . . . . . .
⎥
\rgroup (⎦) . . . . . . .
⎫
⎪
⎪
⎪
\rgroup ( ⎪
) ......
⎪
⎭
\RHD () . . . . . . . . . .
\rhd (B) . . . . . . . . . .
\rhd (⊳) . . . . . . . . . .
\rho (ρ) . . . . . . . . . .
\rhookdownarrow (;) .
\rhookleftarrow (↩)
\rhooknearrow (⤤) . .
\rhooknwarrow (=) . .
\rhookrightarrow (8)
\rhooksearrow (?) . .
\rhookswarrow (⤦) . .
\rhookuparrow (9) . . .
130
. . . . . 55
. . . . . 53
. . . . . 54
. . . . . 53
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
...
...
20,
39,
...
...
...
...
...
...
...
...
...
54
21
21
40
49
44
44
44
44
44
44
43
43
\rhoup (ρ) . . . . . . . . . . .
\right . . . . . . . . 53, 55,
\rightangle (∟) . . . . . . .
\RIGHTarrow () . . . . . . .
\Rightarrow (⇒) . . . . .
\Rightarrow (⇒) . . . . . .
\rightarrow (Ñ) . . . . . .
\rightarrow (→) . . . . . .
\rightarrow (→) . . . . . . .
\rightarrowtail () . . .
\rightarrowtail (↣) . . .
\rightarrowtriangle (_)
\rightbarharpoon (Ý) . .
\RIGHTCIRCLE (H) . . . . . .
\RIGHTcircle (H
#) . . . . . .
\Rightcircle (J) . . . . . .
\RightDiamondÑ ( ) . . . . .
Ñ
\rightevaw ( ÑÑ) . . . . . . . .
..
87,
..
..
20,
..
..
..
..
..
..
..
..
..
..
..
..
\rightfilledspoon (p)
\rightfootline (x) . . .
\rightfree (€) . . . . . . .
\righthalfcap (⌝) . . . .
\righthalfcup (⌟) . . . .
\rightharpoonccw (⇀) .
\rightharpooncw (⇁) . .
\rightharpoondown (ã)
\rightharpoondown (+)
\rightharpoonup (á) . .
\rightharpoonup (*) . .
\rightleftarrows (Õ) .
\rightleftarrows () .
\rightleftarrows (⇄) .
\rightleftharpoon (á)
\rightleftharpoons (é)
\rightleftharpoons (
)
\rightleftharpoons (*
))
\rightleftharpoons (⇌)
\rightleftharpoonsfill
\rightlsquigarrow (↝) .
\rightmapsto (↦) . . . . .
\rightModels (⊫) . . . . .
\rightmodels (⊧) . . . . .
\rightmoon (L) . . . . . . .
\rightmoon (%) . . . . . . .
\rightp (w) . . . . . . . . . .
\rightpitchfork (ˆ) . .
\rightpointleft (
) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
47
32
32
23
23
46
46
43
41
43
41
42
41
43
43
43
41
41
46
60
43
43
32
32
68
68
16
47
72
\rightpointright (
) .
\rightpropto (Ž) . . . . . .
\rightrightarrows (Ñ) .
\rightrightarrows (⇒) .
\rightrightarrows (⇉) . .
\rightrightharpoons (Ù)
\rightrsquigarrow (¨) . .
\Rightscissors (Q) . . . .
\rightslice (3) . . . . . . .
\rightslice (⪧) . . . . . . .
\rightspoon (⊸) . . . . . .
\rightsquigarrow (ù) .
\rightsquigarrow ( ) . .
\rightsquigarrow (↝) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
72
32
42
41
43
43
43
71
21
32
47
42
41
44
?
L
N
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
50
89
64
78
41
43
42
41
43
41
43
42
43
78
78
78
75
. . 55
\rightt (o) . . . . . . . . .
\righttherefore () . .
\rightthreetimes (%)
\rightthreetimes (i)
\rightthreetimes (⋌) .
\rightthumbsdown (
)
\rightthumbsup (
) .
\righttoleftarrow (ý)
\Righttorque (') . . . .
\rightturn (!) . . . . .
\rightVdash (⊩) . . . . .
\rightvdash (⊢)
.....
Ð
Ð
\rightwave ( ÐÐ) . . . . . .
d
u
\rightY (() . . . . .
\ring (˚) . . . . . . .
ring equal to . . . . .
ring in equal to . . .
\riota ( ) . . . . . . .
\rip (O) . . . . . . . .
\risingdotseq ()
\risingdotseq (:)
\risingdotseq (≓)
\rJoin (Y) . . . . . .
\rlap . . . . . .. . . .
.
.
.
.
.
.
.
.
.
.
...
23,
...
...
...
...
...
...
...
...
...
...
16
61
63
21
23
72
72
42
70
78
32
32
. . . . 55
. . . . . . . 23
. . . . . . . 57
see \circeq
see \eqcirc
. . . . . . . 12
. . . . . . . 76
. . . . . . . 31
. . . . . . . 30
. . . . . . . 32
. . . . . . . 31
. . . . 75, 93
\rmoustache () . . . . . . . . 53
⎫
⎪
⎪
⎪
\rmoustache ( ⎪
) . . . . . . . . 54
⎪
⎩
rook . . . . . . . see chess symbols
roots . . . . . . . . . . . . see \sqrt
\rotatebox . . . . . . . . . . 16, 90
rotated symbols . . 10–12, 16, 90
rotating (package) . . . . . 18, 69
\rotm (m) . . . . . . . . . . . . . . 12
\rotOmega (
) . . . . . . . . . . . 12
\rotr (r) . . . . . . . . . . . . . . 12
\rotvara (A) . . . . . . . . . . . . 12
\rotw (w) . . . . . . . . . . . . . . 12
\roty (y) . . . . . . . . . . . . . . 12
\RoundedLsteel (Ÿ) . . . . . . 70
\RoundedTsteel () . . . . . . . 70
\RoundedTTsteel (ž) . . . . . . 70
\Rparen ()) . . . . . . . . . . . . . 65
- . . . . . . . . . . . . . . . 92
\rqm (I)
\rrangle (⟫)
. . . . . . . . . . . 54
\rrbracket () . . . . . . . . . . 53
\rrceil (W) . . . . . . . . . . . . . 52
\rrfloor (U) . . . . . . . . . . . . 52
\Rrightarrow (V) . . . . . . . 42
\Rrightarrow (⇛) . . . . . . . . 43
\rrparenthesis (M) . . . . . . . 52
\RS (␞) . . . . . . . . . . . . . . . . 69
M
Q
\rsem ( Q
) . . . . . . . . . . . . . 54
Q
Q
Q
\rsemantic
O . . . . . see \rdbrack
\Rsh (é) . . . . . . . . . . . . . . . 42
\Rsh () . . . . . . . . . . . . . . . 41
\Rsh (↱) . . . . . . . . . . . . . . . 43
\rtimes () . . . . . . . . . . . . 22
\rtimes (o) . . . . . . . . . . . . 21
\rtimes (⋊) . . . . . . . . . . . . 23
\rtriple . . . . . . . . . . . . . . 55
\rVert (||) . . . . . . . . . . . . . . 55
\rVert (k) . . . . . . . . . . . . . 53
\rvert (|)Ð . . . . . . . . . . . . . . 53
Ð
\rwave ( ÐÐ) . . . . . . . . . . . . . 55
_
_
\rWavy ( _
_
_) . . . . . . . . . . . . 54
^^_
_
\rwavy ( ^^^) . . . . . . . . . . . . . 54
^^
S
\S (§) . . . . . . . . . . . . . . 8, 102
safety-related symbols . . . . . 70
\Sagittarius (è) . . . . . . . . 68
\sagittarius (c) . . . . . . . . 68
\samebishops (s) . . . . . . . . 82
sans (dsfont package option) . 65
I
\satellitedish ( ) . . . . . . 77
\Saturn (F) . . . . . . . . . . . . 68
\Saturn (Æ) . . . . . . . . . . . . 68
\saturn (Y) . . . . . . . . . . . . 68
savesym (package) . . . . . . . . 87
\savesymbol . . . . . . . . . . . . 87
\Sborder ( ) . . . . . . . . . . . 77
\scalebox . . . . . . . . . . . . . . 87
scaling
mechanical . . . . . . . 96, 98
optical . . . . . . . . . . . . . 96
\scd () . . . . . . . . . . . . . . . 12
\scg () . . . . . . . . . . . . . . . 12
\schwa () . . . . . . . . . . . . . . 11
\schwa (e) . . . . . . . . . . . . . 12
Schwartz distribution spaces see
alphabets, math
\sci (*) . . . . . . . . . . . . . . . 11
scientific symbols . . . . . . 67–70
\ScissorHollowLeft ( ) . . 71
\ScissorHollowRight ( ) . 71
\ScissorLeft ( ) . . . . . . . 71
\ScissorLeftBrokenBottom ( )
. . . . . . . . . 71
\ScissorLeftBrokenTop ( ) 71
\ScissorRight ( ) . . . . . . . 71
\ScissorRightBrokenBottom
( ) . . . . . . . . . . . . . . 71
\ScissorRightBrokenTop ( ) 71
scissors . . . . . . . . . . . . . . . . 71
\scn (:) . . . . . . . . . . . . . . . 11
\scoh (˝) . . . . . . . . . . . . . . 36
\Scorpio (ç) . . . . . . . . . . . 68
\scorpio (b) . . . . . . . . . . . 68
\scr (J) . . . . . . . . . . . . . . . 11
script letters see alphabets, math
\scripta () . . . . . . . . . . . . 11
\scriptg () . . . . . . . . . . . . 12
\scriptscriptstyle . . . 92, 93
\scriptstyle . . . . . . . . 92, 93
\scriptv (Y) . . . . . . . . . . . . 12
\Scroll ( Scroll ) . . . . . . . . 69
\scu (W) . . . . . . . . . . . . . . . 12
S
131
\scy (]) . . . . . . . . . . . . . . . 12
\sddtstile (
) . . . . . . . . . 35
\sdststile (
) . . . . . . . . . 35
\sdtstile (
) . . . . . . . . . . 35
\sdttstile ( ) .
seagull . . . . . see
\Searrow (u) . . .
\Searrow (⇘) . . .
\searrow (×) . . .
\searrow (&) . . .
\searrow (↘) . . .
\searrowtail (')
\sec (sec) . . . . . .
. . . . . . . . 35
\textseagull
. . . . . . . . 42
. . . . . . . . 43
. . . . . . . . 42
. . . . . 41, 93
. . . . . . . . 43
. . . . . . . . 43
. . . . . . . . 49
\Sech (ˇ “) )== . . . . . . . . . . . . . . 79
==
=
\SechBl ( ˇ “ =)=
\SechBR ( ˇ “ ==)
=
\SechBr ( ˇ “ )
\SechBL (==ˇ “ )
. . . . . . . . . . . . 79
. . . . . . . . . . . . 79
. . . . . . . . . . . . 79
. . . . . . . . . . . . 79
\second (2) . . . . . . . . . . . . . 63
seconds, angular . . see \second
\secstress (i) . . . . . . . . . . . 16
section mark . . . . . . . . . see \S
\SectioningDiamond ( ) . . 81
\see (l) . . . . . . . . . . . . . . 82
\sefilledspoon (w) . . . . . . 47
\sefootline () . . . . . . . . . 32
\sefree (‡) . . . . . . . . . . . . 32
segmented digits . . . . . . . . . 67
\seharpoonccw (G) . . . . . . . 46
\seharpooncw (O) . . . . . . . . 46
\selectfont . . . . . . . . . . . . . 7
\selsquigarrow (§) . . . . . . 43
semantic valuation . . . . . . . see
\llbracket/\rrbracket
and \ldbrack/\rdbrack
\semapsto (/) . . . . . . . . . . 43
semibreve . see musical symbols
semidirect products . . 21, 22, 63
semiquaver see musical symbols
semitic transliteration . . 13, 16
\seModels (÷) . . . . . . . . . . 32
\semodels (ç) . . . . . . . . . . 32
semtrans (package) . 13, 16, 104,
105
\senwarrows (Ÿ) . . . . . . . . 43
\senwharpoons ([) . . . . . . . 46
\SePa ( @ ) . . . . . . . . .
\separated (•) . . . . .
\sepitchfork () . . .
\seppawns (q) . . . . .
\SerialInterface (Î)
\SerialPort (Ð) . . . .
\sersquigarrow (¯) .
\sesearrows (—) . . .
\sespoon (o) . . . . . .
set operators
intersection . . . .
union . . . . . . . . .
\setminus (\) . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
79
32
47
82
69
69
43
43
47
see \cap
see \cup
. . . . . 20
\setminus (∖) . . . . . . . . . . . 23
\seVdash (ï) . . . . . . . . . . . 32
\sevdash (ß) . . . . . . . . . . . 32
SGML . . . . . . . . . . . . . . . 103
sha ( ) . . . . . . . . . . . . . . . 90
\sharp (]) . . . . . . . . . . . 62, 78
\sharp (♯) . . . . . . . . . . . . . . 63
\Shift ( Shift ⇑ ) . . . . . . . . 69
\shift (˜) . . . . . . . . . . . . . 20
\Shilling (¡) . . . . . . . . . . . 17
\shneg (ˆ) . . . . . . . . . . . . . 20
\shortdownarrow () . . . . . . 42
\ShortFifty (×) . . . . . . . . 80
\ShortForty (Ù) . . . . . . . . 80
\shortleftarrow ( ) . . . . . 42
\shortmid (p) . . . . . . . . . . . 30
\shortmid (∣) . . . . . . . . . . . 23
\ShortNinetyFive (Ô) . . . . 80
\shortparallel (q) . . . . . . . 30
\shortparallel (∥) . . . . . . 32
\ShortPulseHigh ( ) . . . . . 67
\ShortPulseLow ( ) . . . . . . 67
\shortrightarrow () . . . . 42
\ShortSixty (Ö) . . . . . . . . 80
\ShortThirty (Û) . . . . . . . 80
\shortuparrow () . . . . . . . 42
\showclock . . . . . . . . . . . . . 81
\shpos (´) . . . . . . . . . . . . . 20
\SI (␏) . . . . . . . . . . . . . . . . 69
\Sigma (Σ) . . . . . . . . . . . . . 49
\sigma (σ) . . . . . . . . . . . . . 49
\sigmaup (σ) . . . . . . . . . . . . 50
\sim (∼) . . . . . . . . . 30, 91, 101
\sim (∼) . . . . . . . . . . . . . . . 32
\simeq (') . . . . . . . . . . . . . 30
\simeq (≃) . . . . . . . . . . . . . 32
simplewick (package) . . . . . . 96
simpsons (package) . . . . 85, 104
Simpsons characters . . . . . . . 85
\sin (sin) . . . . . . . . . . . . . . 49
\sincoh (ˇ) . . . . . . . . . . . . 36
\sinh (sinh) . . . . . . . . . . . . 49
\SixFlowerAlternate ( ) . . 74
\SixFlowerAltPetal ( ) . . 74
\SixFlowerOpenCenter ( ) . 74
\SixFlowerPetalDotted ( ) 74
\SixFlowerPetalRemoved ( ) 74
\SixFlowerRemovedOpenPetal
( ) . . . . . . . . . . . . . . 74
\SixStar ( ) . . . . . . . . . . . 74
\SixteenStarLight ( ) . . . 74
sixteenth note . . . . see musical
symbols
\sixteenthnote (♬) . . . . . . 78
skak (package) . . . . 82, 104, 105
skull (package) . . . . 76, 104, 105
\skull ( ) . . . . . . . . . . . . . 76
\slash (/) . . . . . . . . . . . . 101
\slashb () . . . . . . . . . . . . . 12
\slashc (
) . . . . . . . . . . . . . 12
\slashd () . . . . . . . . . . . . . 12
X
"
#
[
A
O
U
M
Q
L
G
K
\slashdiv () . . . . . . . . .
slashed (package) . . . . . . .
\slashed . . . . . . . . . . . .
slashed letters . . . . . . . . .
slashed.sty (file) . . . . . .
\slashu (U) . . . . . . . . . . .
\Sleet ( ) . . . . . . . . . . .
\sliding (ā) . . . . . . . . . .
\smallbosonloop () . . . . .
\SmallCircle ( ) . . . . . .
\SmallCross ( ) . . . . . .
\smalldiamond (◇) . . . . .
\SmallDiamondshape ( )
\smallfrown (a) . . . . . . .
\smallfrown (⌢) . . . . . . .
\SmallHBar ( ) . . . . . . .
\smallin ( ) . . . . . . . . . .
\smallint (∫) . . . . . . . . .
\SmallLowerDiamond ( )
\smalllozenge (◊) . . . . . .
\smallowns () . . . . . . . .
\smallpencil (
) ....
\smallprod (∏) . . . . . . . .
\SmallRightDiamond ( )
\smallsetminus (r) . . . .
\smallsetminus (∖) . . . .
\smallsmile (`) . . . . . . .
\smallsmile (⌣) . . . . . . .
\SmallSquare ( ) . . . . . .
\smallsquare (◽) . . . . . .
\smallstar (☆) . . . . . . . .
\SmallTriangleDown ( )
\smalltriangledown (™) .
\smalltriangledown (▿)
\SmallTriangleLeft ( )
\smalltriangleleft (š) .
\smalltriangleleft (◃)
\SmallTriangleRight ( )
\smalltriangleright (›)
\smalltriangleright (▹)
\SmallTriangleUp ( ) . .
\smalltriangleup (˜) . . .
\smalltriangleup (▵) . .
\SmallVBar ( ) . . . . . . .
\smile (^) . . . . . . . . . . .
\smile (⌣) . . . . . . . . . . .
smile symbols . . . . . . . . .
\smileeq ( ) . . . . . . . . . .
\smileeqfrown (&) . . . . .
\smilefrown (≍) . . . . . . .
\smilefrowneq (() . . . . .
\Smiley (©) . . . . . . . . . .
\smiley (,) . . . . . . . . . .
smiley faces . . . . . . . . 69,
\sndtstile ( ) . . . . . . .
\Snow ( ) . . . . . . . . . . . .
\SnowCloud ( ) . . . . . . .
\Snowflake ( ) . . . . . . .
\SnowflakeChevron ( ) .
E
F

P
O
@
C
B
D
A
`
132
^
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
24,
..
..
24,
..
..
24,
..
..
24,
..
..
..
..
..
..
..
..
..
..
78,
..
..
..
..
..
23
92
92
92
92
12
80
15
70
75
75
24
75
30
48
75
51
63
75
74
51
72
23
75
21
23
30
48
75
24
24
75
24
40
75
24
40
75
24
40
75
24
40
75
30
48
48
48
48
48
48
80
78
80
35
80
80
74
74
_
\SnowflakeChevronBold ( ) 74
snowflakes . . . . . . . . . . . . . . 74
\SNPP ( ) . . . . . . . .
\snststile ( ) . . . .
\sntstile ( ) . . . . .
\snttstile ( ) . . . .
\SO (␎) . . . . . . . . . . .
\SOH (␁) . . . . . . . . . .
space
thin . . . . . . . . . .
space, visible . . . . . . .
\Spacebar (
)
spades (suit) . . . . . . .
\spadesuit (♠) . . . . .
\spadesuit (♠) . . . . .
\Sparkle ( ) . . . . . .
\SparkleBold ( ) . . .
sparkles . . . . . . . . . .
“special” characters . .
\SpecialForty (Ú) .
\sphericalangle (?)
\sphericalangle (^)
\sphericalangle (∢)
\SpinDown () . . . . . . .
\SpinUp () . . . . . . . .
) . .
\spirituslenis (a
\spirituslenis () . .
\splitvert (¦) . . . . .
spoon symbols . . . . . .
\spreadlips (ȧ) . . . .
\sqbullet () . . . . . .
\sqcap ([) . . . . . . . .
\sqcap (u) . . . . . . . .
\sqcap (⊓) . . . . . . . .
\sqcapdot (E) . . . . . .
\sqcapplus (}) . . . . .
\sqcapplus (G) . . . . .
\sqcup (\) . . . . . . . .
\sqcup (t) . . . . . . . .
\sqcup (⊔) . . . . . . . .
\sqcupdot (D) . . . . . .
\sqcupplus (|) . . . . .
\sqcupplus (F) . . . . .
\sqdoublecap (^) . . .
\sqdoublecup (_) . . .
\sqdoublefrown (-) . .
\sqdoublefrowneq (7)
\sqdoublesmile (,) . .
\sqdoublesmileeq (6)
\sqeqfrown (5) . . . . .
\sqeqsmile (4) . . . . .
\sqfrown (+) . . . . . . .
\sqfrowneq (3) . . . . .
\sqfrowneqsmile (9) .
\sqfrownsmile
R (1) . .
\sqiiint ( ) . . . . .
P
\sqiint ( ) . . . . . . .
”
\sqiint ( ) . . . . . . .
\sqint ( ) . . . . . . . .
›
\sqint ( ) . . . . . . . . .
]
)
*
\
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
85
35
35
35
69
69
. . . . 100
...... 8
. . . . 69
62–64, 77
. . . . . 62
. . . . . 63
. . . . . 74
. . . . . 74
. . . . . 74
...... 8
. . . . . 80
. . . . . 63
. . . . . 63
. . . . . 63
. . . . . 75
. . . . . 75
. . . . . 56
. . . . . 56
. . . . . 69
. . . . . 47
. . . . . 15
. . . . . 22
. . . . . 22
. . . . . 20
. . . . . 23
. . . . . 23
. . . . . 21
. . . . . 23
. . . . . 22
. . . . . 20
. . . . . 23
. . . . . 23
. . . . . 21
. . . . . 23
. . . . . 22
. . . . . 22
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 48
. . . . . 27
. . . . . 27
. . . . . 28
. . . . . 27
. . . . . 28
√
\sqrt (
) .......
\sqsmile (*) . . . . . .
\sqsmileeq (2) . . . .
\sqsmileeqfrown (8)
\sqsmilefrown (0) .
\Sqsubset (^) . . . . .
\sqSubset (”) . . . .
\sqsubset (€) . . . .
\sqsubset (@) . . . .
\sqsubset (⊏) . . . . .
\sqsubseteq („) . . .
\sqsubseteq (v) . . .
\sqsubseteq (⊑) . . .
\sqsubseteqq (Œ) . .
\sqsubseteqq (\) . .
\sqsubsetneq (ˆ) . .
\sqsubsetneq (⋤) . .
\sqsubsetneqq () .
\sqsubsetneqq (ö) .
\Sqsupset (_) . . . . .
\sqSupset (•) . . . .
\sqsupset () . . . .
\sqsupset (A) . . . .
\sqsupset (⊐) . . . . .
\sqsupseteq (…) . . .
\sqsupseteq (w) . . .
\sqsupseteq (⊒) . . .
\sqsupseteqq () . .
\sqsupseteqq (]) . .
\sqsupsetneq (‰) . .
\sqsupsetneq (⋥) . .
\sqsupsetneqq (‘) .
\sqsupsetneqq (÷) .
\sqtriplefrown (/) .
\sqtriplesmile (.) .
0)
\Square (
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
57,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
75
\ssdtstile ( ) . . . . . . . . . 35
\ssearrow (%) . . . . . . . . . . . 42
\sslash () . . . . . . . . . . . . 21
. . . . . . . . . . . . 75
\staveIII () . . . . . . . . 85
\staveIV () . . . . . . . . . 85
\staveXLIX (0) . . . . . . . . 85
\staveIX () . . . . . . . . . . 85
\staveXLVI (-)
\staveL (1) . . . . . . . 85, 86
\staveLI (2) . . . . . . . . . 85
\staveXLVII (.) . . . . . . . 85
\staveLII (3) . . . . . . . . 85
\staveXLVIII (/) . . . . . 85
f 0
\Square ( vs.
vs. ) . . . 88
\Square () . . . . . . . . . . . . 73
f
i)
\SquareShadowTopRight (
93
48
48
48
48
37
37
37
36
37
37
36
37
37
37
37
37
37
37
37
37
37
36
37
37
36
37
37
37
37
37
37
37
48
48
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\Square ( ) . . . . . . . . . . . . 75
\square () . . . . . . . . . . . . . 22
\square () . . . . . . . . . . . . 63
\square (◻) . . . . . . . . . . . . 24
square root . . . . . . . see \sqrt
hooked . . . . . see \hksqrt
\SquareCastShadowBottomRight
( ) . . . . . . . . . . . . . . 75
k
m)
\SquareCastShadowTopLeft (
. . . . . . . . . 75
\SquareCastShadowTopRight
( ) ..............
\Squaredot (÷) . . . . . . . . . .
\squaredots (∷) . . . . . . 23,
\Squarepipe (—) . . . . . . . . .
squares . . . . . . . . . . . . . 75,
l
75
64
61
70
76
\SquareShadowA (
) . . . . . . 75
\SquareShadowB (
. . . . . . 75
g
\SquareSolid ( ) . . . . . . . . 75
\Squaresteel (“) . . . . . . . . 70
B
\squarewithdots ( ) . . . .
\squigarrowdownup (³) . .
\squigarrowleftright (↭)
\squigarrownesw (´) . . . .
\squigarrownwse (µ) . . . . .
\squigarrowrightleft (²)
\squigarrowsenw (·) . . . .
\squigarrowswne (¶) . . . .
\squigarrowupdown (±) . . .
\squplus (]) . . . . . . . . . .
\SS (SS) . . . . . . . . . . . . . .
\ss (ß) . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
77
43
43
43
43
43
43
43
43
22
. 9
. 9
\ssststile (
) . . . . . . . . . 35
\sststile (
) . . . . . . . . . . 35
\ssttstile ( ) . . . . . . .
\sswarrow ($) . . . . . . . . .
\stackrel . . . . . . . . . 20,
standard state . . . . . . . . .
\star (?) . . . . . . . . . . .
\star (⋆) . . . . . . . . . . . .
Star of David . . . . . . . .
stars . . . . . . . . . . . . . 63,
statistical independence . .
\staveI (
..
..
91,
..
20,
..
73,
73,
..
35
42
95
91
94
24
74
74
93
) . . . . . . . . . . 85
\staveLXV (@) . . . . . . . . . 86
\staveLXVI (A) . . . . . . . . 86
\staveLXVII (B) . . . . . . . . 86
\staveLXVIII (C) . . . . . . . 86
staves . . . . . . . . . . . . . . . . . 85
staves (package) . . . . . . 85, 104
\staveV () . . . . . . . . . . 85
\staveVI () . . . . . . . . . 85
\staveVII () . . . . . . . . 85
\staveVIII () . . . . . . . 85
\staveX ()
. . . . . . . . . . 85
\staveXI (
)
. . . . . . . . . . 85
\staveXII () . . . . . . . . . 85
\staveXIII () . . . . . . . . 85
\staveXIV () . . . . . . . . 85
\staveXIX () . . . . . . . . 86
\staveXL (') . . . . . . . . . . 86
\staveXLI (() . . . . . . . . . 86
\staveXLII ())
. . . . . . . 86
\staveXLIII (*) . . . . . . . . 86
\staveXLIV (+) . . . . . . . 86
\staveII () . . . . . . . . . . 85
\staveXLV (,) . . . . . . . . 86
. . . . . . . . 86
\staveXV () . . . . . . . . . 85
\staveLIII (4) . . . . . . . . 85
\staveLIV (5) . . . . . . . . 85
\staveLIX (:) . . . . . . . . 85
\staveXVI () . . . . . . . . . 85
\staveXVII () . . . . . . . . 86
\staveLV (6) . . . . . . . . . . 85
\staveXVIII () . . . . . . . 86
\staveLVI (7) . . . . . . . . . 85
\staveXX () . . . . . . . . . 86
\staveXXI () . . . . . . . . 86
\staveLVII (8) . . . . . . . . 85
\staveLVIII (9) . . . . . . . 85
\staveLX (;) . . . . . . . 85
\staveXXII () . . . . . . . . 86
\staveXXIII () . . . . . 86
\staveLXI (<) . . . . . . . . . 85
\staveXXIV () . . . . . . . . 85
\staveXXIX () . . . . . . . 85
\SquareShadowBottomRight (
. . . . . . . . . 75
\staveLXII (=) . . . . . . . . 85
\staveXXV () . . . . . . . . 85
\SquareShadowC (
\staveLXIII (>) . . . . . . . 86
\staveXXVI () . . . . . . . 85
\staveLXIV (?) . . . . . . . . . 86
\staveXXVII () . . . . . . . 85
)
)
h)
. . . . . . 75
j) .
\SquareShadowTopLeft (
75
133
\staveXXVIII () . . . . . . 85
\staveXXX ()
. . . . . . . . 85
\staveXXXI () . . . . . . . . 85
\staveXXXII () . . . . . . 85
\staveXXXIII (
) . . . . . . . 85
\staveXXXIV (!) . . . . . . 85
\staveXXXIX (&) . . . . . . 85
\staveXXXV (")
. . . . . . . 85
\staveXXXVI (#) . . . . . . 85
\staveXXXVII ($) . . . . . 85
\staveXXXVIII (%) . . . . 85
\stdtstile (
) . . . . . . . . . 34
\steaming (♨) . . . . . . . . . . 64
sterling . . . . . . . . . see \pounds
stmaryrd (package) . . 21, 25, 30,
36, 40, 42, 48, 52, 53, 88, 91,
104, 105
stochastic independence see \bot
\StoneMan ( ) . . . . . . . . . . . 81
\Stopsign (!) . . . . . . . . . . 70
˜) . . . . . . .
\StopWatchStart (—) . . . . .
\StopWatchEnd (
\stress (h) . . . .
\strictfi (K) .
\strictif (J) .
\strictiff (L)
\strokedint (⨏)
\StrokeFive ( )
\StrokeFour ( )
\StrokeOne ( ) . .
\StrokeThree ( )
\StrokeTwo ( ) .
◦
\stst (−
) .....
;
::::
:
:::
::
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
81
81
16
31
31
31
29
81
81
81
81
81
91
\stststile (
) . . . . . . . . . 34
\sttstile (
) . . . . . . . . . . 34
\stttstile (
) . . . . . . . . . 34
\STX (␂) . . . . . . . . . . . .
\SUB (␚) . . . . . . . . . . . .
subatomic particles . . . .
\subcorner (a) . . . . . . .
^ (a) . . . .
\subdoublebar
¯
\subdoublevert (a) . . . .
\sublptr (a) . . . "". . . . . .
\subrptr (a¡ ) . . . . . . . . .
subscripts ¿
new symbols used in
\Subset (”) . . . . . . . . .
\Subset (b) . . . . . . . . .
\Subset (⋐) . . . . . . . . . .
\subset (€) . . . . . . . . .
\subset (⊂) . . . . . . . . .
\subset (⊂) . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
69
69
70
15
15
15
15
15
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
92
37
36
37
37
36
37
\subseteq („) . . . . . . .
\subseteq (⊆) . . . . . . .
\subseteq (⊆) . . . . . . . .
\subseteqq (Œ) . . . . . . .
\subseteqq (j) . . . . . .
\subseteqq (⫅) . . . . . . .
\subsetneq (ˆ) . . . . . . .
\subsetneq (() . . . . . .
\subsetneq (⊊) . . . . . . .
\subsetneqq () . . . . . .
\subsetneqq ($) . . . . . .
\subsetneqq (⫋) . . . . . .
\subsetplus (D) . . . . . .
\subsetpluseq (F) . . . .
subsets . . . . . . . . . . . . .
\succ () . . . . . . . . . . .
\succ (≻) . . . . . . . . . . .
\succapprox (Ç) . . . . . .
\succapprox (v) . . . . . .
\succapprox (⪸) . . . . . .
\succcurlyeq (¥) . . . . .
\succcurlyeq (<) . . . . .
\succcurlyeq (≽) . . . . .
\succdot (Í) . . . . . . . .
\succeq () . . . . . . . . .
\succeq (⪰) . . . . . . . . . .
\succeqq () . . . . . . . . .
\succnapprox (Ë) . . . . .
\succnapprox () . . . . .
\succnapprox (⪺) . . . . .
\succneq (­) . . . . . . . .
\succneqq () . . . . . . .
\succnsim (Å) . . . . . . .
\succnsim () . . . . . . .
\succnsim (⋩) . . . . . . . .
\succsim (Á) . . . . . . . .
\succsim (%) . . . . . . . .
\succsim (≿) . . . . . . . . .
such that . . . . . . . . . . .
\suchthat
−) . . . . . . .
P (3
\sum ( ) . . . . . . . . . . .
\sum (∑) . . . . . . . . . . . .
\sumint (⨋) . . . . . . . . . .
\Summit ( ) . . . . . . . . .
\SummitSign ( ) . . . . . .
\Sun (@) . . . . . . . . . . . .
\Sun (À vs.
vs. @) . .
\Sun ( ) . . . . . . . . . . .
\Sun (À) . . . . . . . . . . . .
\sun (☼) . . . . . . . . . . . .
\SunCloud ( ) . . . . . . .
\SunshineOpenCircled (
\sup (sup) . . . . . . . . . .
superscripts
new symbols used in
supersets . . . . . . . . . . . .
\Supset (•) . . . . . . . . .
\Supset (c) . . . . . . . . .
\Supset (⋑) . . . . . . . . . .
\supset () . . . . . . . . .
\supset (⊃) . . . . . . . . .
134
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
36,
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
90,
...
...
...
...
...
...
...
...
...
...
...
...
) .
...
37
36
37
37
36
37
37
36
37
37
36
37
36
36
37
30
32
31
30
32
31
30
32
31
30
32
31
32
30
33
32
31
32
30
33
31
30
32
92
92
25
29
29
81
81
68
88
80
68
78
80
77
49
...
36,
...
...
...
...
...
92
37
37
36
37
37
36
T
\supset (⊃) . . . . . . . . . . . . . 37
\supseteq (…) . . . . . . . . . . 37
\supseteq (⊇) . . . . . . . . . . 36
\supseteq (⊇) . . . . . . . . . . . 37
\supseteqq () . . . . . . . . . . 37
\supseteqq (k) . . . . . . . . . 36
\supseteqq (⫆) . . . . . . . . . . 37
\supsetneq (‰) . . . . . . . . . . 37
\supsetneq ()) . . . . . . . . . 36
\supsetneq (⊋) . . . . . . . . . . 37
\supsetneqq (‘) . . . . . . . . . 37
\supsetneqq (%) . . . . . . . . . 36
\supsetneqq (⫌) . . . . . . . . . 37
\supsetplus (E) . . . . . . . . . 36
\supsetpluseq (G) . . . . . . . 36
`
\surd ( ) . . . . . . . . . . . . . . 62
\SurveySign ( ) . . . . . . . . . 81
\Swarrow (w) . . . . . . . . . . . 42
\Swarrow (⇙) . . . . . . . . . . . 43
\swarrow (Ö) . . . . . . . . . . . 42
\swarrow (.) . . . . . . 41, 93, 94
\swarrow (↙) . . . . . . . . . . . 43
\swarrowtail (&) . . . . . . . . 43
\swfilledspoon (v) . . . . . . 47
\swfootline (~) . . . . . . . . . 32
\swfree (†) . . . . . . . . . . . . 32
\swharpoonccw (F) . . . . . . . 46
\swharpooncw (N) . . . . . . . . 46
\swlsquigarrow (¦) . . . . . . 43
\swmapsto (.) . . . . . . . . . . 43
\swModels (ö) . . . . . . . . . . 32
\swmodels (æ) . . . . . . . . . . 32
\swnearrows (ž) . . . . . . . . 43
\swneharpoons (^) . . . . . . . 46
\swpitchfork (Ž) . . . . . . . . 47
\swrsquigarrow (®) . . . . . . 43
\swspoon (n) . . . . . . . . . . . 47
\swswarrows (–) . . . . . . . . 43
swung dash . . . . . . . . see \sim
\swVdash (î) . . . . . . . . . . . 32
\swvdash (Þ) . . . . . . . . . . . 32
\syl (a) . . . . . . . . . . . . . . . 15
\syllabic (j) . . . . . . . . . . . 16
Symbol (font) . . . . . . . . 50, 90
symbols
actuarial . . . . . . . . . . . 95
alpine . . . . . . . . . . . . . 81
APL . . . . . . . . . . . . . . 68
astrological . . . . . . . . . 68
astronomical . . . . . . . . 68
biological . . . . . . . . . . . 70
body-text . . . . . . . . . 8–19
bold . . . . . . . . . . . . . 100
chess . . . . . . . . . . . . . . 82
clock . . . . . . . . . . . . . . 81
communication . . . . . . . 69
computer hardware . . . . 69
contradiction . . . . . 20, 48
currency . . . . . . . . 17, 65
dangerous bend . . . . . . 76
definition . . . . . . . . 20, 95
dictionary . . . . . 10–13, 84
dingbat . . . . . . . . . 71–77
dot . . . . . . . . 8, 61, 62, 94
electrical . . . . . . . . . . . 67
engineering . . . . . . 67, 70
extensible 57–60, 89, 94–96
Feynman diagram . . . . . 70
Frege logic . . 47, 52, 62, 64
frown . . . . . . . . . . . . . . 48
genealogical . . . . . . . . . 78
general . . . . . . . . . . . . 78
Go stones . . . . . . . . . . 76
information . . . . . . . . . 76
informator . . . . . . . . . . 82
inverted . . . . 10–12, 16, 90
keyboard . . . . . . . . . . . 69
Knuth’s . . . . . . . . . 76, 79
laundry . . . . . . . . . . . . 80
legal . . . . . . . . . 8, 18, 102
letter-like . . . . . . . . 51, 52
life insurance . . . . . . . . 95
linear logic . . . . . 20, 30, 36
linguistic . . . . . . . . 10–13
log-like . . . . . . . . 49, 100
magical signs . . . . . . . . 85
mathematical . . . . . 20–66
METAFONTbook . . . . . 79
metrical . . . . . . . . . . . . 82
miscellaneous 62–64, 77–86
monetary . . . . . . . . 17, 65
musical . 19, 62, 63, 78, 79
navigation . . . . . . . . . . 79
non-commutative division 60
particle physics . . . . . . 70
Phaistos disk . . . . . . . . 83
phonetic . . . . . . . . 10–13
physical . . . . . . . . . . . . 67
pitchfork . . . . . . . . . . . 47
proto-Semitic . . . . . . . . 83
pulse diagram . . . . . . . 67
relational . . . . . . . . . . . 30
reversed . . . . . . . . . . . . 90
rotated . . . . 10–12, 16, 90
safety-related . . . . . . . . 70
scientific . . . . . . . . 67–70
Simpsons characters . . . 85
smile . . . . . . . . . . . . . . 48
spoon . . . . . . . . . . . . . 47
staves . . . . . . . . . . . . . 85
subset and superset
36, 37
technological . . . . . 67–70
TEXbook . . . . . . . . 76, 79
transliteration . . . . . . . 13
upside-down . 10–12, 16, 90,
100–101
variable-sized 25–29, 87, 89
weather . . . . . . . . . . . . 80
zodiacal . . . . . . . . . . . . 68
symbols.tex (file) . . . . 87, 104
\SYN (␖) . . . . . . . . . . . . . . . 69
T
\T . . . . . . . . . . . . . . . . . . . . . 9
\T ( ) . . . . . . . . . . . . . . . . . 16
\T ( ⊗) . . . . . . . . . . . . . . . . 82
.........
\t (a)
\t ( ⊗) . . . . . . . .
t4phonet (package)
105
→
−
− ) ...
\Tab ( −
−
→
\tabcolsep . . . . .
tacks . . . . . . . . . .
\taild () . . . . .
\tailinvr (H) . . .
\taill (0) . . . . . .
\tailn (9) . . . . .
\tailr (F) . . . . . .
\tails (L) . . . . . .
\tailt (P) . . . . . .
\tailz (_) . . . . .
\Takt . . . . . . . . .
\talloblong (8) .
tally markers . . . .
\tan (tan) . . . . . .
\tanh (tanh) . . . .
\Tape ( ) . . . . . .
–
. . . . . . . . 13
. . . . . . . . 82
. 13, 16, 104,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
\Taschenuhr ( ) . . . . .
Tate-Shafarevich group
\tau (τ ) . . . . . . . . . . . .
\Taurus (Q) . . . . . . . . .
\Taurus (á) . . . . . . . . .
\taurus (]) . . . . . . . . .
\tauup (τ) . . . . . . . . . . .
\tccentigrade (℃) . . . .
\tcmu (µ) . . . . . . . . . . .
\tcohm (Ω) . . . . . . . . . .
\tcpertenthousand (‱)
\tcperthousand (‰) . . .
\td (a
..) . . . . . . . . . . . . .
\tddtstile (
) .....
\tdststile (
\tdtstile (
...
...
30,
...
...
...
...
...
...
...
...
...
...
...
...
...
...
69
91
51
12
12
12
12
12
12
12
12
79
21
81
49
49
77
. . . 81
see sha
. . . 49
. . . 68
. . . 68
. . . 68
. . . 50
. . . 62
. . . 62
. . . 62
. . 62
. . . 62
. . . 15
. . . 34
) . . . . . . . . . 34
)
. . . . . . . . . 34
\tdttstile (
) . . . . . . . . 35
technological symbols . . 67–70
\Telefon (T) . . . . . . . . . . . 69
\Telephone ( ) . . . . . . . . 81
Tennent, Bob . . . . . . . . . . . 20
\Tent ( ) . . . . . . . . . . . . . . 81
\Terminus (⊗) . . . . . . . . . . 82
\terminus (⊗) . . . . . . . . . . . 82
\Terminus* (⊕) . . . . . . . . . . 82
\terminus* (⊕) . . . . . . . . . . 82
\tesh (Q) . . . . . . . . . . . . . . 12
testfont.dvi (file) . . . . . . . 98
testfont.tex (file) . . . . 97, 98
TEX
40, 61, 87, 90–99, 101, 106
TEXbook, The . . . . . . 90–95, 99
symbols from . . . . . 76, 79
\text . . . . . . . . . . . . 20, 92, 93
\textacutedbl (˝) . . . . . . . 17
\textacutemacron (´
ā) . . . . . 13
\textacutewedge (´
ǎ) . . . . . . 13
\textadvancing (affi) . . . . . . . 14
\textaolig (") . . . . . . . . . . 11
\textasciiacute (´) . . 17, 102
(
135
\textasciibreve (˘) . . . . . . 17
\textasciicaron (ˇ) . . . . . . 17
\textasciicircum (ˆ) . . 8, 101,
103
\textasciidieresis (¨) 17, 102
\textasciigrave (`) . . . . . . 17
\textasciimacron . . . . . . . 103
\textasciimacron (¯)
17, 102
\textasciitilde (˜) 8, 101, 103
\textasteriskcentered (∗) . 8,
19
\textbabygamma (È) . . . . . . . 10
\textbackslash (\) . . . . 8, 101
\textbaht (฿) . . . . . . . . . . . 17
\textbar (|) . . . . . . 8, 100, 101
\textbarb (b) . . . . . . . . . . . 10
\textbarc (c) . . . . . . . . . . . 10
\textbard (d) . . . . . . . . . . . 10
\textbardbl (‖) . . . . . . . . . 19
\textbardotlessj (é) . . . . . 10
\textbarg (g) . . . . . . . . . . . 10
\textbarglotstop (Ü) . . . . . 10
\textbari (1) . . . . . . . . . . . 10
\textbarl (ł) . . . . . . . . . . . 10
\textbaro (8) . . . . . . . . . . . 10
\textbarrevglotstop (Ý) . . 10
\textbaru (0) . . . . . . . . . . . 10
\textbeltl (ì) . . . . . . . . . . 10
\textbenttailyogh (B) . . . . 11
\textbeta (B) . . . . . . . . . . . 10
\textbigcircle (○) . . . . . . 19
\textbktailgamma (.) . . . . . 11
\textblank (␢) . . . . . . . . . . 19
\textborn (b) . . . . . . . . . . . 78
\textbottomtiebar (a
<) . . . . 14
\textbraceleft ({) . . . . . . . . 8
\textbraceright (}) . . . . . . . 8
\textbrevemacron (˘
ā) . . . . . 14
\textbrokenbar (¦) . . . 19, 102
\textbullet (•) . . . . 8, 19, 103
\textbullseye (ò) . . . . . . . 10
\textcelsius (℃) . . . . . . . . 67
\textceltpal ( ) . . . . . . . . . 10
\textcent (¢) . . . . . . . 17, 102
\textcentoldstyle () . . . . 17
\textchi (X) . . . . . . . . . . . . 10
\textcircled () . . . . . . . . 13
\textcircledP (℗) . . . . . . 18
\textcircumacute (Ż
a) . . . . . 14
\textcircumdot (ˆ
ȧ) . . . . . . . 14
\textcloseepsilon (Å) . . . . 10
\textcloseomega (Ñ) . . . . . . 10
\textcloserevepsilon (Æ) . . 10
\textcolonmonetary (₡) . . . 17
\textcommatailz (Þ) . . . . . . 10
textcomp (package) . . . . . . . 7,
8, 13, 17–19, 41, 56, 64, 67,
78, 87, 101, 103–105
\textcopyleft («) . . . . . . 18
\textcopyright (©) . 8, 18, 102
\textcorner (^) . . . . . . . . . . 10
\textcrb (ă) . . . . . . . . . . . . 10
a
\textcrd (ą) . . . . . . . . . . . . 10
\textcrd (ž) . . . . . . . . . . . . 13
\textcrg (g) . . . . . . . . . . . . 10
\textcrh (è) . . . . . . . . . . . . 10
\textcrh (§) . . . . . . . . . . . . 13
\textcrinvglotstop (Û) . . . 10
\textcrlambda (ň) . . . . . . . 10
\textcrtwo (2) . . . . . . . . . . 10
\textctc (C) . . . . . . . . . . . . 10
\textctd (ć) . . . . . . . . . . . . 10
\textctdctzlig (ćý) . . . . . . 10
\textctesh (š) . . . . . . . . . . 10
\textctinvglotstop (D) . . . 11
\textctj (J) . . . . . . . . . . . . 10
\textctjvar (2) . . . . . . . . . 11
\textctn (ő) . . . . . . . . . . . . 10
\textctstretchc (%) . . . . . . 11
\textctstretchcvar (&) . . . 11
\textctt (ť) . . . . . . . . . . . . 10
\textcttctclig (ťC) . . . . . . 10
\textctturnt (@) . . . . . . . . . 11
\textctyogh (ÿ) . . . . . . . . . 10
\textctz (ý) . . . . . . . . . . . . 10
\textcurrency (¤) . . . 17, 102
\textdagger (†) . . . . . . . 8, 19
\textdaggerdbl (‡) . . . . . 8, 19

\textdbend ( ) . . . . . . . . . 76
\textdblhyphen (-) . . . . . . . 19
\textdblhyphenchar () . . . . 19
\textdblig ()) . . . . . . . . . 11
\textdctzlig (dý) . . . . . . . . 10
\textdegree (°) . . . . . 64, 102
\textdied (d) . . . . . . . . . . . 78
\textdiscount (œ) . . . . . . . 19
\textdiv (÷) . . . . . . . . . . . 64
\textdivorced (c) . . . . . . . 78
\textdollar ($) . . . . . . . 8, 17
\textdollaroldstyle () . . 17
\textdong (₫) . . . . . . . . . . . 17
\textdotacute (§
a) . . . . . . . 14
˙
\textdotbreve (ă)
. . . . . . . 14
\textdoublebaresh (S) . . . . 10
\textdoublebarpipe (}) . . . 10
\textdoublebarpipevar (H) . 11
\textdoublebarslash (=
/ ) . . 10
\textdoublegrave (‚
a) . . . . . 14
\textdoublegrave (a
Ÿ) . . . . . 16
\textdoublepipe ({) . . . . . . 10
\textdoublepipevar (G) . . . 11
\textdoublevbaraccent (İ
a) . 14
\textdoublevbaraccent (a
¼) . 16
\textdoublevertline (Ş) . . 10
\textdownarrow (↓) . . . . . . . 41
\textdownfullarrow (ˇ) . . . 11
\textdownstep (Ť) . . . . . . . . 10
\textdyoghlig (Ã) . . . . . . . 10
\textdzlig (dz) . . . . . . . . . . 10
\texteightoldstyle () . . . 18
\textellipsis (. . . ) . . . . . . . 8
\textemdash (—) . . . . . . . . . 8
\textendash (–) . . . . . . . . . . 8
\textepsilon (E) . . . . . . . . 10
\textepsilon (¢) . . . . . . . . 13
\textesh (S) . . . . . . . . . . . . 10
\textesh (¬) . . . . . . . . . . . . 13
\textestimated (℮) . . . . . . 19
\texteuro (€) . . . . . . . . . . . 17
\texteuro (€) . . . . . . 17, 103
\textexclamdown (¡) . . . . . . . 8
\textfemale (7) . . . . . . . . . 11
\textfishhookr (R) . . . . . . . 11
\textfiveoldstyle () . . . . 18
\textfjlig () . . . . . . . . . . 13
\textflorin (ƒ) . . . . . . . . . . 17
\textfouroldstyle () . . . . 18
\textfractionsolidus (⁄) . . 64
\textfrak . . . . . . . . . . . . . . 65
\textfrbarn (5) . . . . . . . . . 11
\textfrhookd (’) . . . . . . . . 11
\textfrhookdvar (() . . . . . . 11
\textfrhookt (?) . . . . . . . . 11
\textfrtailgamma (-) . . . . . 11
\textg (ě) . . . . . . . . . . . . . 11
\textgamma (G) . . . . . . . . . . 11
\textglobfall (Ů) . . . . . . . 11
\textglobrise (Ű) . . . . . . . 11
\textglotstop (P) . . . . . . . 10
\textglotstopvari (T) . . . . 11
\textglotstopvarii (U) . . . 11
\textglotstopvariii (V) . . 11
\textgoth . . . . . . . . . . . . . . 65
\textgravecircum (Ž
a) . . . . . 14
\textgravedbl () . . . . . . . 17
\textgravedot (đ
a) . . . . . . . 14
\textgravemacron (`
ā) . . . . . 14
\textgravemid (Ź
a) . . . . . . . 14
\textgreater (>) . . 8, 100, 101
\textgrgamma (,) . . . . . . . . 11
\textguarani () . . . . . . . . 17
\texthalflength (;) . . . . . . 10
\texthardsign (ż) . . . . . . . 10
\textheng (0) . . . . . . . . . . . 11
\texthmlig (4) . . . . . . . . . 11
\texthooktop (#) . . . . . . . . . 10
\texthtb (á) . . . . . . . . . . . . 10
\texthtb ( ) . . . . . . . . . . . . 13
\texthtbardotlessj (ê) . . . . 10
\texthtbardotlessjvar (3) . 11
\texthtc (Á) . . . . . . . . . . . . 10
\texthtc (°) . . . . . . . . . . . . 13
\texthtd (â) . . . . . . . . . . . . 10
\texthtd (¡) . . . . . . . . . . . 13
\texthtg (ä) . . . . . . . . . . . . 10
\texthth (H) . . . . . . . . . . . . 10
\texththeng (Ê) . . . . . . . . . 10
\texthtk (Î) . . . . . . . . . . . . 10
\texthtk (¨) . . . . . . . . . . . . 13
\texthtp (Ò) . . . . . . . . . . . . 10
\texthtp (±) . . . . . . . . . . . . 13
\texthtq (Ó) . . . . . . . . . . . . 10
\texthtrtaild (č) . . . . . . . 10
\texthtscg (É) . . . . . . . . . . 10
\texthtt (Ö) . . . . . . . . . . . . 10
\texthtt (º) . . . . . . . . . . . . 13
\texthvlig (ß) . . . . . . . . . . 10
136
\textifsym . . . . . . . . . . . . . 67
\textinterrobang (‽) . . . . . 19
\textinterrobangdown (•) . . 19
\textinvglotstop (Û) . . . . . 10
\textinvomega (;) . . . . . . . 11
\textinvsca (p) . . . . . . . . . 11
\textinvscr (K) . . . . . . . . . 10
\textinvscripta (!) . . . . . . 11
\textinvsubbridge (a
„) . . . . 14
\textiota (Ì) . . . . . . . . . . . 10
\textiota (à) . . . . . . . . . . . 13
\textlambda (ń) . . . . . . . . . 10
\textlangle (〈) . . . . . 56, 101
\textlbrackdbl (〚) . . . . . . . 56
\textleaf (l) . . . . . . . . . . 78
\textleftarrow (←) . . . . . . 41
\textlengthmark (:) . . . . . . 10
\textless (<) . . . . 8, 100, 101
\textlfishhookrlig (I) . . . 11
~
\textlhdbend ( ) . . . . . . . 76
\textlhookfour (#) . . . . . . . 11
\textlhookp (<) . . . . . . . . . 11
\textlhookt (ş) . . . . . . . . . 10
\textlhti (1) . . . . . . . . . . . 11
\textlhtlongi (ę) . . . . . . . . 10
\textlhtlongy (ű) . . . . . . . 10
\textlira (₤) . . . . . . . . . . . 17
\textlnot (¬) . . . . . . . 64, 102
\textlonglegr (Ô) . . . . . . . . 10
\textlooptoprevesh (>) . . . . 11
\textlowering (afl) . . . . . . . 14
\textlptr (¡) . . . . . . . . . . . 10
\textlquill (⁅) . . . . . . . . . 56
\textltailm (M) . . . . . . . . . 10
\textltailn (ñ) . . . . . . . . . 10
\textltailn (©) . . . . . . . . . 13
\textltilde (ë) . . . . . . . . . 10
\textlyoghlig (Ð) . . . . . . . 10
\textmarried (m) . . . . . . . . 78
\textmho (℧) . . . . . . . . . . . 67
\textmidacute (Ÿ
a) . . . . . . . 14
\textminus (−) . . . . . . . . . . 64
\textmu (µ) . . . . . . . . . 67, 102
\textmusicalnote (♪) . . . . . 19
\textnaira (₦) . . . . . . . . . . 17
\textnineoldstyle () . . . . 18
\textnrleg (6) . . . . . . . . . . 11
\textnumero (№) . . . . . . . . . 19
\textObardotlessj (Í) . . . . 10
\textObullseye (9) . . . . . . 11
\textohm (Ω) . . . . . . . . . . . 67
\textOlyoghlig (ŋ) . . . . . . . 10
\textomega (ř) . . . . . . . . . . 10
\textonehalf (½) . . . . 64, 102
\textoneoldstyle . . . . . . . . 18
\textoneoldstyle () . . . . . 18
\textonequarter (¼) . . 64, 102
\textonesuperior (¹) . 64, 102
\textopenbullet (◦) . . . . . . 19
\textopencorner (_) . . . . . . 10
\textopeno (O) . . . . . . . . . . 10
\textopeno (ª) . . . . . . . . . . 13
\textordfeminine (ª) 8, 19, 102
\textordmasculine (º) . . 8, 19,
102
\textovercross
a) . . . . . . . 14
— (‰
\textoverw (a) . . . . . . . . . . 14
\textpalhook (%) . . . . . . . . . 10
\textpalhooklong (ˆ) . . . . . 11
\textpalhookvar (˜) . . . . . . 11
\textparagraph (¶) . . . . 8, 19
\textperiodcentered (·) . 8, 19,
102
\textpertenthousand (‱) . 19
\textperthousand (‰) 19, 103
\textpeso (‘) . . . . . . . . . . . 17
\textphi (F) . . . . . . . . . . . . 10
\textpilcrow (¶) . . . . . . . . 19
\textpipe (|) . . . . . . . . . . . 10
\textpipe (|) . . . . . . . . . . . 13
\textpipevar (F) . . . . . . . . . 11
\textpm (±) . . . . . . . . 64, 102
\textpmhg . . . . . . . . . . . . . . 84
\textpolhook (a˛ ) . . . . . . . . 14
\textprimstress (") . . . . . . 10
\textproto . . . . . . . . . . . . . 83
\textqplig (=) . . . . . . . . . 11
\textquestiondown (¿) . . . . . 8
\textquotedbl (") . . . . 9, 100
\textquotedblleft (“) . . . . . 8
\textquotedblright (”) . . . . 8
\textquoteleft (‘) . . . . . . . . 8
\textquoteright (’) . . . . . . . 8
\textquotesingle (') . . . . . 19
\textquotestraightbase (‚) 19
\textquotestraightdblbase („)
. . . . . . . . . 19
\textraiseglotstop (ij) . . . 10
\textraisevibyi (ğ) . . . . . . 10
\textraising (afi) . . . . . . . . 14
\textramshorns (7) . . . . . . . 10
\textrangle (〉) . . . . . 56, 101
\textrbrackdbl (〛) . . . . . . . 56
\textrecipe (“) . . . . . . 19, 89
\textrectangle (¨) . . . . . . . 11
\textreferencemark (※) 19, 20
\textregistered (®) 8, 18, 102
\textretracting (affl) . . . . . . 14
\textretractingvar (˚) . . . 11
\textrevapostrophe (\) . . . . 10
\textreve (9) . . . . . . . . . . . 10
\textrevepsilon (3) . . . 10, 90
\textreversedvideodbend (
. . . . . . . . . 76
\textrevglotstop (Q) . . . .
\textrevscl (v) . . . . . . . .
\textrevscr (z) . . . . . . . .
\textrevyogh (ź) . . . . . . .
\textrhooka ( ) . . . . . . . .
\textrhooke (*) . . . . . . . .
\textrhookepsilon (+) . . .
\textrhookopeno (:) . . . . .
\textrhookrevepsilon (Ç)
\textrhookschwa (Ä) . . . . .
)
.
.
.
.
.
.
.
.
.
.
10
11
11
10
11
11
11
11
10
11
\textrhoticity (~) . . . . .
\textrightarrow (→) . . .
\textringmacron (˚
ā) . . . .
\textroundcap (“
a) . . . . .
\textrptr (¿) . . . . . . . . .
\textrquill (⁆) . . . . . . .
\textrtaild (ã) . . . . . . .
\textrtaild (ð) . . . . . . .
\textrtailhth (/) . . . . .
\textrtaill (í) . . . . . . . .
\textrtailn (ï) . . . . . . .
\textrtailr (ó) . . . . . . .
\textrtails (ù) . . . . . . .
\textrtailt (ú) . . . . . . .
\textrtailt (») . . . . . . .
\textrtailz (ü) . . . . . . .
\textrthook ($) . . . . . . . .
\textrthooklong (´) . . . .
\textsca (À) . . . . . . . . . .
\textscaolig (q) . . . . . .
\textscb (à) . . . . . . . . . .
\textscdelta (r) . . . . . .
\textsce (ď) . . . . . . . . . .
\textscf (s) . . . . . . . . . .
\textscg (å) . . . . . . . . . .
\textsch (Ë) . . . . . . . . . .
\textschwa (@) . . . . . . . .
\textschwa (¡) . . . . . . . .
\textsci (I) . . . . . . . . . .
\textscj (ĺ) . . . . . . . . . .
\textsck (t) . . . . . . . . . .
\textscl (Ï) . . . . . . . . . .
\textscm (w) . . . . . . . . .
\textscn (ð) . . . . . . . . . .
\textscoelig (Œ) . . . . . .
\textscomega (ś) . . . . . .
\textscp (x) . . . . . . . . . .
\textscq (y) . . . . . . . . . .
\textscr (ö) . . . . . . . . . .
\textscripta (A) . . . . . .
\textscriptg (g) . . . . . .
\textscriptv (V) . . . . . .
\textscriptv (¬) . . . . . . .
\textscu (Ú) . . . . . . . . . .
\textscy (Y) . . . . . . . . . .
\textseagull (a
) . . . . . .
\textsecstress (­) . . . . .
\textsection (§) . . . . . .
\textservicemark (℠) . . .
\textsevenoldstyle () .
\textsixoldstyle () . . .
\textsoftsign (ž) . . . . . .
\textspleftarrow (˝) . . .
\textsterling (£) . . . . .
\textstretchc (Â) . . . . .
\textstretchcvar ($) . . .
\textstyle . . . . . . . . 92,
\textsubacute (a) . . . . .
\textsubarch (a)› . . . . . .
\textsubbar (a)“ . . . . . . .
¯
\textsubbridge (a
”) . . . . .
\textsubcircum (a) . . . . .
\textsubdot (a) ˆ. . . . . . .
˙
137
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8,
..
..
..
..
..
8,
..
..
93,
..
..
..
..
..
..
11
41
14
14
11
56
11
13
11
11
10
10
10
10
13
10
10
11
10
11
10
11
10
11
10
10
10
13
10
10
11
10
11
10
10
10
11
11
10
10
10
10
13
10
10
14
10
19
18
18
18
10
11
17
10
11
99
14
14
14
14
14
14
\textsubdoublearrow (˙) . . 11
\textsubgrave (a) . . . . . . . 14
‹ (a) . . . . 14
\textsublhalfring
–
\textsubplus (aff) . . . . . . . . 14
\textsubrhalfring (a» ) . . . . 14
\textsubrightarrow (¯) . . . 11
\textsubring (a) . . . . . . . . 14
\textsubsquare˚(a
«) . . . . . . . 14
\textsubtilde (a) . . . . . . . 14
\textsubumlaut ˜(a) . . . . . . . 14
\textsubw (a
—) . . ¨. . . . . . . . . 14
\textsubwedge (a) . . . . . . . 14
ˇ
\textsuperimposetilde
(a
&) . 14
\textsuperscript . . . . . . . . 15
\textsurd (√) . . . . . . . . . . . 64
\textswab . . . . . . . . . . . . . . 65
\textsyllabic (a) . . . . . . . 15
\texttctclig (tC)" . . . . . . . . 10
\textteshlig (Ù) . . . . . . . . 10
\textteshlig (œ) . . . . . . . . 13
\texttheta (T) . . . . . . . . . . 10
\textthorn (þ) . . . . . . . . . . 10
\textthornvari (P) . . . . . . . 11
\textthornvarii (Q) . . . . . . 11
\textthornvariii (R) . . . . . 11
\textthornvariv (S) . . . . . . 11
\textthreeoldstyle () . . . 18
\textthreequarters (¾) 64, 102
\textthreequartersemdash ()
. . . . . . . . . 19
\textthreesuperior (³) 64, 102
ȧ) . . . . . . . 15
\texttildedot (˜
\texttildelow (~) . . . 19, 101
\texttimes (×) . . . . . . . . . . 64
\texttoneletterstem (£) . . . 10
\texttoptiebar (>
a) . . . . . . . 15
\texttrademark (™) . 8, 18, 103
\texttslig (ţ) . . . . . . . . . . 10
\textturna (5) . . . . . . . . . . 10
\textturncelig (ŕ) . . . . . . 10
\textturnglotstop (E) . . . . 11
\textturnh (4) . . . . . . . . . . 10
\textturnk (ľ) . . . . . . . . . . 10
\textturnlonglegr (Õ) . . . . 10
\textturnm (W) . . . . . . . . . 10
\textturnmrleg (î) . . . . . . 10
\textturnr (ô) . . . . . . . . . . 10
\textturnrrtail (õ) . . . . . . 10
\textturnsck (u) . . . . . . . . 11
\textturnscripta (6) . . . . . 10
\textturnscu ({) . . . . . . . . 11
\textturnt (Ø) . . . . . . . . . . 10
\textturnthree (C) . . . . . . . 11
\textturntwo (A) . . . . . . . . 11
\textturnv (2) . . . . . . . . . . 10
\textturnw (û) . . . . . . . . . . 10
\textturny (L) . . . . . . . . . . 10
\texttwelveudash () . . . . . 19
\texttwooldstyle . . . . . . . . 18
\texttwooldstyle () . . . . . 18
\texttwosuperior (²) . 64, 102
\textuncrfemale (8) . . . . . . 11
\textunderscore ( ) . .
\textuparrow (↑) . . . .
\textupfullarrow (˘) .
\textupsilon (U) . . . .
\textupstep (Ţ) . . . . .
\textvbaraccent (IJ
a) . .
\textvbaraccent (a
¿) . .
\textvertline (Š) . . . .
\textvibyi (ğ) . . . . . .
\textvibyy (ů) . . . . . .
\textvisiblespace ( )
\textwon (₩) . . . . . . .
\textwynn (ß) . . . . . . .
\textyen (¥) . . . . . . .
\textyogh (Z) . . . . . . .
\textyogh (¶) . . . . . . .
\textzerooldstyle ()
\TH (Þ) . . . . . . . . . . . .
\th (þ) . . . . . . . . . . . .
Thành, Hàn Th´ê . . . . .
\therefore (6) . . . . . .
\therefore (∴) . . . . . .
\therefore (∴) . . . . . .
\Thermo . . . . . . . . . . .
\Theta (Θ) . . . . . . . . .
\theta (θ) . . . . . . . . .
\thetaup (θ) . . . . . . . .
\thickapprox (≈) . . . .
\thicksim (∼) . . . . . .
\thickvert (~) . . . . . .
thin space . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.... 8
. . . 41
. . . 11
. . . 10
. . . 10
. . . 15
. . . 16
. . . 10
. . . 11
. . . 11
.... 8
. . . 17
. . . 11
17, 102
. . . 11
. . . 13
. . . 18
9, 102
9, 102
. . . 94
. . . 31
30, 61
. . . 61
. . . 80
. . . 49
. . . 49
. . . 50
. . . 30
. . . 30
. . . 54
. . 100
\ThinFog ( ) . . . . . . . . . . . 80
\thinstar (⋆) . . . . . . . . . . . 24
\third (3) . . . . . . . . . . . . . 63
thirty-second note . see musical
symbols
\Thorn (Þ) . . . . . . . . . . . . . 12
\thorn (B) . . . . . . . . . . . . . 12
\thorn (p) . . . . . . . . . . . . . 12
\thorn (þ) . . . . . . . . . . . . . 12
thousandths . . . . . . . . . . . see
\textperthousand
∼
\threesim (∼
∼) . . . . . . . . . . 91
tilde 8, 10, 11, 13, 16, 19, 56, 57,
59, 94, 101
extensible . . . . . . . 57, 59
vertically centered . . . 101
\tilde (˜) . . . . . . . . . . 56, 94
\tildel (-) . . . . . . . . . . . . 12
time of day . . . . . . . . . . . . . 81
\timelimit (T) . . . . . . . . . 82
\times (×) . . . . . . . . . . . . . 20
\times (×) . . . . . . . . . . . . . 23
Times Roman (font) . . . 17, 89
timing (package) . . . . . . . . . 67
tipa (package) 10, 11, 13, 15, 16,
90, 104, 105
tipx (package) . . . . 11, 104, 105
\tndtstile (
) . . . . . . . . 35
\tnststile ( ) . . . . . . . . . 35
\tntstile ( ) . . . . . . . . . 35
\tnttstile (
) . . . . . . . . 35
\to . . . . . . . . see \rightarrow
\ToBottom (½) . . . . . . . . . . . 79
\tone . . . . . . . . . . . . . . . . . 11
\top (>) . . . . . . . . . . . . 51, 92
\top (⊺) . . . . . . . . . . . . . . . 51
\topbot (⊥
>) . . . . . . . . . 92, 94
\topdoteq () . . . . . . . . . . 31
torus (T) . see alphabets, math
\ToTop (¼) . . . . . . . . . . . . . 79
trademark . see \texttrademark
\TransformHoriz ( ) . . . . 35
transforms . . . . 35, 60, see also
alphabets, math
\TransformVert ( ) . . . . . . 35
transliteration
semitic . . . . . . . . . . 13, 16
transliteration symbols . . . . 13
transversality . see \pitchfork
trfsigns (package) 35, 51, 60, 104
\triangle (4) . . . . . . . . . . 62
\triangle (△) . . . . . . . . . . 40
triangle relations . . . . . . 39, 40
\TriangleDown ( ) . . . . . . . 75
\TriangleDown ( vs. ) . . 88
\TriangleDown ( ) . . . . . . . 75
\triangledown (O) . . . . . . . 63
\triangledown (▽) . . . . . . . 40
\triangleeq (≜) . . . . . . . . . 40
\TriangleLeft ( ) . . . . . . . 75
\triangleleft (˜) . . . . . . . 40
\triangleleft (/) . . . . . . . 20
\triangleleft (◁) . . . . . . . 40
\trianglelefteq (œ) . . . . . 40
\trianglelefteq (E) . . . . . 39
\trianglelefteq (⊴) . . . 39, 40
\trianglelefteqslant (P) . 40
\triangleq (,) . . . . . . 20, 39
\triangleq (≜) . . . . . . . . . . 40
\TriangleRight ( ) . . . . . . 75
\triangleright (™) . . . . . . 40
\triangleright (.) . . . . . . . 20
\triangleright (▷) . . . . . . 40
\trianglerighteq () . . . . 40
\trianglerighteq (D) . . . . 39
\trianglerighteq (⊵) . . 39, 40
\trianglerighteqslant (Q) 40
triangles . . . . . . . . . . 63, 75, 76
\TriangleUp ( ) . . . . . . . . 75
\TriangleUp ( vs. ) . . . . 88
\TriangleUp ( ) . . . . . . . . 75
\triple . . . . . . . . . . . . . . . 55
\triplefrown () . . . . . . . . 48
\triplesim (≋) . . . . . . . . . . 32
\triplesmile () . . . . . . . . 48
trsym (package) . . . 35, 104, 105
\tsbm ( ) . . . . . . . . . . . . . 82
\tsststile ( ) . . . . . . . . . 35
\Tsteel (œ) . . . . . . . . . . . . 70
\tsdtstile (
) . . . . . . . . 35
\tsmb ( ) . . . . . . . . . . . . . 82
\tsmm ( ) . . . . . . . . . . . . . 82
\Umd (g
a) . . . . . . . . . . . . . . 79
umlaut . . . . . . . . . see accents
unary operators . . . . . . . . . . 20
3
o 3
o
2
4
1
n 1
n
138
\tststile (
)
. . . . . . . . . 35
\tsttstile (
) . . . . . . . . 35
\ttdtstile (
) . . . . . . . . 35
\TTsteel (š) . . . . . . . . . . . 70
\ttststile (
) . . . . . . . . . 35
)
\tttstile (
\ttttstile (
. . . . . . . . . 35
) . . . . . . . . 35
TUGboat . . . . . . . . . . . . . . 57
\Tumbler () . . . . . . . . . . . 80
turnstile (package) . 34, 35, 104,
105
\TwelweStar ( ) . . . . . . . . 74
\twoheaddownarrow (↡) . . . . 43
\twoheadleftarrow () . . . 41
\twoheadleftarrow (↞) . . . 43
\twoheadnearrow () . . . . . 44
\twoheadnwarrow () . . . . . 44
\twoheadrightarrow () . . 41
\twoheadrightarrow (↠) . . 44
\twoheadsearrow () . . . . . 44
\twoheadswarrow () . . . . . 44
\twoheaduparrow (↟) . . . . . . 44
\twonotes () . . . . . . . . . . . 78
txfonts (package) 20, 21, 27, 30,
31, 36, 38, 41, 42, 48, 50, 51,
62, 63, 65, 87, 89, 101, 104,
105
type1cm (package) . . . . . . . . 87
Type 1 (font) . . . . . . . . . . . 99
J
U
\U (a) . . . . . .
\U (a
¼˘) . . . . . .
\u (ă) . . . . . .
\UArrow ( ↑ )
\UB (<) . . . . .
\ubar (u) . . .
ubulb.fd (file)
\udesc (u) . .
\udot () . . . .
\udotdot () .
\udots (⋰) . .
\udtimes (])
\UHORN (Ư) . .
\uhorn (ư) . .
\ulcorner (x)
\ulcorner (p)
....
....
....
...
....
....
...
....
....
....
....
....
....
....
....
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 16
. . 13
. . 13
. . 69
. . 79
. . 12
98, 99
. . 12
. . 22
23, 61
. . 61
. . 23
... 9
... 9
. . 52
. . 52
\ulcorner (⌜) . . . . . . . . . . . 54
\ullcorner (6) . . . . . . . . . . 54
\ulrcorner (;) . . . . . . . . . . 54
ulsy (package) . . 24, 48, 90, 104
\unclear (k) . . . . .
\underaccent . . . . .
) .....
\underarc (a
^
\underarch (a
) . . . .
\underbrace (loomoon)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
82
94
16
15
58
\underbrace ( ) . . . . . . . . . 58
®
\underbrace (|{z}) . . . . . . . 58
\underbrace (|{z}) . . . . . . . 57
\underbracket ( )
. . . . . . . 58
\underbracket ( )
. . . . 95, 96
\underdots (r) . . . . . . . . . . 16
\undergroup (looo n) . . . . . . . 58
\undergroup ( ) . . . . . . . .
´¶
\underleftarrow (←
−) . . . . .
\underleftrightarrow (←
→)
\underline ( ) . . . . . . . . . .
\underlinesegment ( ) . . . .
z
x
\underparenthesis (|})
95,
58
58
58
57
58
96
\underrightarrow (−
→) . . . . 58
\underring (y) . . . . . . . . . . 16
underscore . . . . . . . . . . see \_
underscore (package) . . . . . . . 8
\underset . . . . . . . . . . . . . . 91
undertilde (package) 59, 104, 105
\undertilde (|) . . . . . . . . . 16
\underwedge (}) . . . . . . . . . 16
union . . . . . . . . . . . . see \cup
unit disk (D) . . . see alphabets,
math
\unitedpawns (u) . . . . . . . . 82
units (package) . . . . . . . . . . 64
unity (1) . . see alphabets, math
universa (package) . 76, 80, 104,
105
universal (package) 71, 73, 76, 80,
104, 105
\unlhd (E) . . . . . . . . . . 20, 21
\unlhd (⊴) . . . . . . . . . . 39, 40
\unrhd (D) . . . . . . . . . . 20, 21
\unrhd (⊵) . . . . . . . . . . 39, 40
\upalpha (α) . . . . . . . . . . . . 50
\UParrow (K) . . . . . . . . . . . . 78
\Uparrow (⇑) . . . . . . . . . 41, 53
\Uparrow (⇑) . . . . . . . . . . . . 44
\uparrow (↑) . . . . . . . 41, 53, 87
\uparrow (↑) . . . . . . . . . . . . 44
\uparrowtail (!) . . . . . . . . 44
\upbar . . . . . . . . . . . . . . . . 15
\upbeta (β) . . . . . . . . . . . . . 50
\upbracketfill . . . . . . . . . 95
\upchi (χ) . . . . . . . . . . . . . 50
\Updelta (∆) . . . . . . . . . . . . 50
\updelta (δ) . . . . . . . . . . . . 50
\Updownarrow (m) . . . . . 41, 53
\Updownarrow (⇕) . . . . . . . . 44
\updownarrow (l) . . . . . 41, 53
\updownarrow (↕) . . . . . . . . 44
\updownarrows (Ö) . . . . . . . 42
\updownarrows (™) . . . . . . . 44
\updownharpoonleftright (Q) 46
\updownharpoonrightleft (U) 46
\updownharpoons (ê) . . . . . . 43
\updownharpoons (⥮) . . . . . . 46
\Updownline (∥) . . . . . . . . . 32
\updownline (∣) . . . . . . . . . 32
\upepsilon (ε) . . . . . . . . . . 50
\upeta (η) . . . . . . . . . . . . . 50
\upfilledspoon (q) . . . . . . . 47
\upfootline (y) . . . . . . . . . 32
\upfree () . . . . . . . . . . . . 32
\Upgamma (Γ) . . . . . . . . . . . . 50
\upgamma (γ) . . . . . . . . . . . . 50
upgreek (package) . 50, 104, 105
\upharpoonccw (↿) . . . . . . . . 46
\upharpooncw (↾) . . . . . . . . 46
\upharpoonleft (ä) . . . . . . . 43
\upharpoonleft () . . . . . . . 41
\upharpoonright (æ) . . . . . . 43
\upharpoonright () . . . . . . 41
\upiota (ι) . . . . . . . . . . . . . 50
\upkappa (κ) . . . . . . . . . . . . 50
\Uplambda (Λ) . . . . . . . . . . . 50
\uplambda (λ) . . . . . . . . . . . 50
\uplett . . . . . . . . . . . . . . . 15
\uplsquigarrow (¡) . . . . . . . 44
\uplus (Z) . . . . . . . . . . . . . 22
\uplus (]) . . . . . . . . . . . . . 20
\uplus (⊎) . . . . . . . . . . . . . 23
\upmapsto (↥) . . . . . . . . . . . 44
\upModels (ñ) . . . . . . . . . . . 32
\upmodels (á) . . . . . . . . . . . 32
\upmu (µ) . . . . . . . . . . . . . . 50
\upnu (ν) . . . . . . . . . . . . . . 50
\Upomega (Ω) . . . . . . . . . . . 50
\upomega (ω) . . . . . . . . . . . 50
\upp (t) . . . . . . . . . . . . . . . 16
\upparenthfill . . . . . . . . . 95
\Upphi (Φ) . . . . . . . . . . . . . 50
\upphi (φ) . . . . . . . . . . . . . 50
\Uppi (Π) . . . . . . . . . . . . . . 50
\uppi (π) . . . . . . . . . . . . . . 50
\uppitchfork (⋔) . . . . . . . . 47
\uppropto () . . . . . . . . . . . 32
\Uppsi (Ψ) . . . . . . . . . . . . . 50
\uppsi (ψ) . . . . . . . . . . . . . 50
upquote (package) . . . . . . . 101
\uprho (ρ) . . . . . . . . . . . . . 50
upright Greek letters . . . . . . 50
\uprsquigarrow (©) . . . . . . . 44
upside-down symbols . . 100–101
upside-down symbols 10–12, 16,
90
\Upsigma (Σ) . . . . . . . . . . . . 50
\upsigma (σ) . . . . . . . . . . . . 50
\Upsilon (Υ) . . . . . . . . . . . 49
\upsilon (υ) . . . . . . . . . . . . 49
\upsilonup (υ) . . . . . . . . . . 50
\upslice (À) . . . . . . . . . . . 24
\upspoon (⫯) . . . . . . . . . . . . 47
\upt (l) . . . . . . . . . . . . . . . 16
\uptau (τ) . . . . . . . . . . . . . . 50
139
\uptherefore (∴) .
\Uptheta (Θ) . . . .
\uptheta (θ) . . . . .
\uptodownarrow (þ)
\upuparrows (Ò) . .
\upuparrows () .
\upuparrows (⇈) . .
\upupharpoons (Ú)
\Upupsilon (Υ) . . .
\upupsilon (υ) . . .
\upvarepsilon (ε) .
\upvarphi (ϕ) . . . .
\upvarpi (ϖ) . . . .
\upvarrho (ρ) . . . .
\upvarsigma (σ) . .
\upvartheta (ϑ) . .
\upVdash (⍊) . . . .
\upvdash (⊥) . . . . .
\Upxi (Ξ) . . . . . . .
\upxi (ξ) . . . . . . .
\upY ()) . . . . . . . .
\upzeta (ζ) . . . . . .
\Uranus (G) . . . . .
\Uranus (Ç) . . . . . .
\uranus (Z) . . . . . .
\urcorner (y) . . . .
\urcorner (q) . . . .
....
....
....
...
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
23,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
61
50
50
42
42
41
44
43
50
50
50
50
50
50
50
50
32
32
50
50
23
50
68
68
68
52
52
\urcorner (⌝) . . . . . . . . . . . 54
url (package)
\US (␟) . . . .
\usepackage
\ut (a) . . . .
˜ ( ) .
\utilde
e
\utimes (^)
\utimes ($)
Utopia (font)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 101
. . 69
... 7
. . 15
. . 59
. . 23
. . 23
17, 29
V
\v (ǎ) . . . . . . . . . . . . . . . . . 13
\vara (a) . . . . . . . . . . . . . . 12
\varangle () . . . . . . . . . . 63
\varbigcirc (,) . . . . . . . . 21
\VarClock ( ) . . . . . . . . . . 81
\varclub (♧) . . . . . . . . . . . 64
\varclubsuit (p) . . . . . . . . 63
\varcurlyvee () . . . . . . . . 21
\varcurlywedge () . . . . . . 21
\vardiamond (♦) . . . . . . . . . 64
\vardiamondsuit (q) . . . . . . 63
\varEarth (J) . . . . . . . . . . . 68
\varepsilon (ε) . . . . . . . . . 49
\varepsilonup (ε) . . . . . . . . 50
\VarFlag ( ) . . . . . . . . . . . 81
varg (txfonts/pxfonts package option) . . . . . . . . . . . . . 50
\varg (1) . . . . . . . . . . . . . . 50
\varg (G) . . . . . . . . . . . . . . 12
\vargeq (©) . . . . . . . . . . . . 38
\varhash (#) . . . . . . . . . . . 63
\varheart (♥) . . . . . . . . . . 64
\varheartsuit (r) . . . . . . . 63
›
\varhexagon (9) . . . . . . . . . 74
\varhexstar (B) . . . . . . . . . 73
\vari (i) . . . . . . . . . . . . . . . 12
variable-sized symbols 25–29, 87,
89
\VarIceMountain ( ) . . . . . 81
\varinjlim (lim) . . . . . . . . . 49
r −→
\varint ( ) . . . . . . . . . . . . 25
\various (R) . . . . . . . . . . . 82
\varkappa (κ) . . . . . . . . . . 49
\varleq (¨) . . . . . . . . . . . . 38
\varliminf (lim) . . . . . . . . . 49
\varlimsup (lim) . . . . . . . . . 49
\varmathbb . . . . . . . . . . . . . 65
\VarMountain ( ) . . . . . . . . 81
\varnothing (∅) . . . . 20, 62, 63
\varnothing (∅) . . . . . . . . . 63
\varnotin (T) . . . . . . . . . . . 51
\varnotowner (U) . . . . . . . . 51
\varoast () . . . . . . . . . . . 21
\varobar () . . . . . . . . . . . 21
\varobslash () . . . . . . . . . 21
\varocircle () . . . . . . . . . 21
\varodot () . . . . . . . . . . . 21
\varogreaterthan (5) F. . . . 21
\varoiiintclockwise ( ) . 27
N
\varoiiintctrclockwise ( )
. . . . .!. . . . 27
\varoiint ( ) . . . . B
. . . . . . 28
\varoiintclockwise ( ) . . 27
J
\varoiintctrclockwise ( ) 27
u
\varoint ( ) . . . . .- . . . . . . 25
\varointclockwise ( ) . . . . 27
ff
\varointclockwise ( ) +. . . . 28
\varointctrclockwise ( ) . 27
fl
\varointctrclockwise ( ) . . 28
\varolessthan (4) . . . . . . . 21
\varomega () . . . . . . . . . . . 12
\varominus () . . . . . . . . . . 21
\varopeno (C) . . . . . . . . . . . 12
\varoplus () . . . . . . . . . . 21
\varoslash () . . . . . . . . . . 21
\varotimes () . . . . . . . . . . 21
\varovee (6) . . . . . . . . . . . 21
\varowedge (7) . . . . . . . . . . 21
\varparallel (∥) . . . . . . . . 31
\varparallelinv (
) . . . . . . 31
\varphi (ϕ) . . . . . . . . . . . . 49
\varphiup (ϕ) . . . . . . . . . . . 50
\varpi ($) . . . . . . . . . . . . . 49
\varpiup ($) . . . . . . . . . . . 50
\varprod ( ) . . . . . . . . . . . 27
\varprojlim (lim) . . . . . . . . 49
←−
\varpropto (∝) . . . . . . . . . 30
\varpropto (∝) . . . . . . . . . . 33
\varQ ( ) . . . . . . . . . . . . . . 80
\varrho (%) . . . . . . . . . . . . . 49
\varrhoup (%) . . . . . . . . . . . 50
\varsigma (ς) . . . . . . . . . . . 49
\varsigmaup (ς) . . . . . . . . . 50
\varspade (♤) . . . . . . . . . . 64
ƒ
\varspadesuit (s) . .
\varsqsubsetneq (Š)
\varsqsubsetneqq (’)
\varsqsupsetneq (‹)
\varsqsupsetneqq (“)
\varstar () . . . . . . .
\varsubsetneq (Š) . .
\varsubsetneq ( ) . .
\varsubsetneq (⊊) . .
\varsubsetneqq (’) .
\varsubsetneqq (&) .
\varsubsetneqq (⫋) . .
\VarSummit ( ) . . . .
\varsupsetneq (‹) . .
\varsupsetneq (!) . .
\varsupsetneq (⊋) . .
\varsupsetneqq (“) .
\varsupsetneqq (') .
\varsupsetneqq (⫌) . .
”
...
...
..
...
..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
\VarTaschenuhr ( ) . .
\vartheta (ϑ) . . . . . . .
\varthetaup (ϑ) . . . . .
\vartimes (") . . . . . . .
\vartriangle (M) . . . .
\vartriangle (△) . . . .
\vartriangleleft (˜)
\vartriangleleft (C)
\vartriangleleft (⊲) .
\vartriangleright (™)
\vartriangleright (B)
\vartriangleright (⊳)
\varv (3) . . . . . . . . . .
\varw (4) . . . . . . . . . .
\vary (2) . . . . . . . . . .
\VBar ( ) . . . . . . . . . .
\vbipropto (Š) . . . . . .
\vcentcolon (:) . . . . . .
\vcenter . . . . . . . . . .
\vcrossing (’) . . . . . .
\VDash (() . . . . . . . . .
\VDash (⊫) . . . . . . . . .
\Vdash (,) . . . . . . . . .
\Vdash () . . . . . . . . .
\Vdash (⊩) . . . . . . . . .
\vDash (() . . . . . . . . .
\vDash () . . . . . . . . .
\vDash (⊧) . . . . . . . . .
\vdash (`) . . . . . . . . .
\vdash (⊢) . . . . . . . . .
\vdotdot (∶) . . . . . . . .
.
\vdots (..) . . . . . . . . . .
\vdots (⋮) . . . . . . . . . .
\vec (⃗) . . . . . . . . . . .
\vec (~) . . . . . . . . . . .
\Vectorarrow (p) . . . . .
\Vectorarrowhigh (P) . .
\vee (_) . . . . . . . . . . .
\vee (∨) . . . . . . . . . . .
\vee (∨) . . . . . . . . . . .
\veebar (Y) . . . . . . . .
\veebar (Y) . . . . . . . .
140
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
63
37
37
37
37
22
37
36
37
37
36
37
81
37
36
37
37
36
37
..
..
..
..
..
..
..
..
39,
..
..
39,
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
23,
81
49
50
21
63
40
40
39
40
40
39
40
50
50
50
75
23
34
91
32
31
33
31
30
33
31
30
33
30
33
61
.
.
.
.
.
.
.
.
.
.
.
61
61
56
56
64
64
22
20
23
22
21
.
.
.
.
.
.
.
.
.
.
.
\veedot (/) . . . . .
\veedoublebar ([)
\Venus (B) . . . . . .
\Venus (Ã) . . . . . .
\venus (♀) . . . . . .
\vernal () . . . . .
\Vert (k) . . . . . . .
\vert (|) . . . . . . . .
\vertbowtie (⧖) . .
\vertdiv () . . . . .
\VHF (@) . . . . . . . .
\Vier (ˇ “ ) . . . . . . .
vietnam (package) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . 23
. . 22
. . 68
. . 68
. . 68
. . 68
53, 54
53, 54
. . 23
. . 23
. . 67
. . 79
. 104
\Village (
) . . . . . . . . 81
\vin ( ) . . . . . . . . . . . . . . . 52
vinculum . . . . . . see \overline
\ViPa (> ) . . . .
\Virgo (å) . . .
\virgo (`) . .
\VM (>) . . . . . .
vntex (package)
\vod (v) . . . . .
˚
\voicedh (h) . .
\vppm ( ) . . . .
˙
\vpppm (¯˙ ) . . .
˙
\VT (␋) .¯. . . . .
#»
\vv ( ) . . . . .
\VvDash () . .
\Vvdash (,) . .
\Vvdash () . .
\Vvdash (⊪) . .
\vvvert (~) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
9,
..
..
..
..
..
..
..
..
..
..
..
79
68
68
79
13
12
12
82
82
69
59
31
31
30
32
54
W
\WashCotton (‰) . . . . . . . . 80
\WashSynthetics (Š) . . . . 80
\WashWool (‹) . . . . . . . . . . 80
\wasylozenge (◊) . . . . . . . . 78
\wasypropto () . . . . . . . . . 30
wasysym (package) . . . . . . . 12,
17, 19–21, 25, 30, 36, 38, 41,
61–63, 67, 68, 70, 73, 74, 78,
88, 104, 105
\wasytherefore (∴) . . . . . . 61
wavy-line delimiters . . . . 54, 55
\wbetter (f) . . . . . . . . . . . 82
\wdecisive (h) . . . . . . . . . 82
\weakpt (J) . . . . . . . . . . . . 82
\WeakRain ( ) . . . . . . . . . . 80
\WeakRainCloud ( ) . . . . . . 80
weather symbols . . . . . . . . . 80
š
\Wecker ( ) . . . . . . . . . . . 81
\wedge (^) . . . . . . . . . . . . . 22
\wedge (∧) . . . . . . . . . . . . . 20
\wedge (∧) . . . . . . . . . . . . . 23
\wedgedot (.) . . . . . . . . . . . 23
Weierstrass ℘ function . see \wp
\Wheelchair (w) . . . . . . . . . 76
\whistle (aŢ ) . . . . . . . . . . . . 15
\whitestone . . . . . . . . . . . . 76
whole note
see musical symbols
Wick contractions
\widearrow (t) . .
\widebar (s) . . . .
\widecheck (q) . .
\widehat (̂) . . . .
\widehat (b) . . . .
\wideparen (u) . .
\wideparen (Ì) . .
\wideparen (Û) . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
96
58
58
58
58
57
58
58
57
Xdvi . . . . . . . . . . . . . . . . . . 90
\xrightharpoonup (−
*) . . . . 59
−-) . . . . . 59
\xhookleftarrow (←
−
*
\xrightleftharpoons ()
−) . 59
\xhookrightarrow (,−
→)
\Xi (Ξ) . . . . . . . . . . . .
\xi (ξ) . . . . . . . . . . . .
\xiup (ξ) . . . . . . . . . .
*
\xrightleftharpoons (−
)
−) . 59
\widering (Û̊) . . . . . . . . . . . 58
\xleftarrow (←
−) . . . . . . . . 59
\widering (Û̊) . . . . . . . . . . . 57
\widetilde (̃) . . . . . . . . . . 58
\widetilde (e) . . . . . . . 57, 59
\widetriangle (Ê) . . . . . . . 57
\wind . . . . . . . . . . . . . . . . . 80
window . . . . . . . . . . . . . . . . 80
Windows® . . . . . . . . . . . . 103
\with (&) . . . . . . . . . . . . . . 23
\with (w) . . . . . . . . . . . . . . 82
\withattack (A) . . . . . . . . . 82
\withidea (E) . . . . . . . . . . 82
\withinit (C) . . . . . . . . . . . 82
\without (v) . . . . . . . . . . . 82
\wn (?) . . . . . . . . . . . . . . . . 20
\Womanface (þ) . . . . . . . . . 80
won . . . . . . . . . . see \textwon
\wp (℘) . . . . . . . . . . . . . . . . 51
\wp (℘) . . . . . . . . . . . . . . . . 51
\wr (o) . . . . . . . . . . . . . . . . 20
\wr (≀) . . . . . . . . . . . . . . . . 23
\wreath (≀) . . . . . . . . . . . . . 23
wreath product . . . . . . see \wr
\Writinghand (b) . . . . . . . . 76
wsuipa (package)
11, 15, 16, 88,
90, 94, 104, 105
\wupperhand (c) . . . . . . . . . 82
X
\x ( ˙˙) . . . . . . . . . . . . . . . . 82
˙˙ (4) . . . . . . . . . . . . . . 73
\XBox
=)
\xLeftarrow (⇐
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
59
49
49
50
. . . . . . . . 59
\xleftharpoondown ()
−) . . . 59
\xleftharpoonup ((
−) . . . . . 59
\xLeftrightarrow (⇐
⇒)
. . . 60
\xLeftrightarrow (⇐
⇒)
. . . 59
→)
\xleftrightarrow (←
. . . 60
\xleftrightarrow (←
→)
. . . 59
(
−) . 59
\xleftrightharpoons (−
+
\xlongequal (===) . . . . . . . . 60
\xlongequal (===) . . . . . . . . 60
\xLongleftarrow (⇐=
=) . . . . 60
−) . . . . 60
\xlongleftarrow (←−
\xLongleftrightarrow (⇐=
=⇒)
. . . . . . . . . 60
\xlongleftrightarrow (←−
−→)
. . . . . . . . . 60
=⇒) . . . 60
\xLongrightarrow (=
\xlongrightarrow (−
−→) . . . 60
\xmapsto (7−→)
. . . . . . . . . . 59
\xmapsto (7−→) . . . . . . . . . . 60
XML . . . . . . . . . . . . . . . . 103
Xs . . . . . . . . . . .
\XSolid ( ) . . . .
\XSolidBold ( )
\XSolidBrush ( )
#
$
%
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
73, 76
. . . 73
. . . 73
. . . 73
\xtwoheadleftarrow (−−−)
60
\xtwoheadrightarrow (−−−) 60
XY-pic . . . . . . . . . . . . . . . . . 93
Y
\Ydown () . . . .
yen . . . . . . . . . .
yfonts (package) .
yhmath (package)
104
\Yinyang (Y) . .
\Yleft () . . . .
\yogh (`) . . . . .
\yogh (x) . . . . .
\Yright () . . .
\Yup () . . . . . .
. . . . . . . . . 21
. see \textyen
. . 65, 104, 105
57, 59, 62, 94,
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Z
Zapf Chancery (font)
Zapf Dingbats (font)
\Zborder ( ) . . . . .
\zeta (ζ) . . . . . . . .
\zetaup (ζ) . . . . . . .
\Zodiac . . . . . . . . .
zodiacal symbols . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
71,
...
...
...
...
...
Z
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
80
21
12
12
21
21
65
73
77
49
50
68
68
.
\Ztransf ( s ... c) . . . . . . . . . 35
\xRightarrow (=
⇒) . . . . . . . . 59
\ztransf ( c ... s) . . . . . . . . . 35
\zugzwang (D) . . . . . . . . . . 82
\xrightarrow (−
→) . . . . . . . 59
\Zwdr (ˇ “* ) . . . . . . . . . . . . . . 79
\xrightharpoondown (−
+) . . 59
\ZwPa ( A ) . . . . . . . . . . . . . . 79
141
.