CSCI206 Activity 24: Real Binary Numbers Name:________________________________ 1. Convert the numbers 0.75, 0.9453125, and 0.2 to binary using 8 bits to the right of the decimal point (truncate if necessary). 2. Convert the binary numbers 0.11110000, 0.10101010, and 0.01111111 to decimal. The Institute of Electrical and Electronics Engineers (IEEE) defines the standard way to represent floating point numbers in computing in standard 754 (IEEE 754) using a floating point format. The general (normalized) representation is written mathematically as: The data encoded in the N- bit binary value are: ● sign - a 1 bit value (always the first bit) 0 = positive, 1 = negative ● exp - an unsigned number representing the exponent, the value bias is a known constant for an N bit floating point number. It is subtracted from the unsigned value to yield a signed exponent. ● bi - the fractional part of the number (note the implicit plus 1) Format Half Precision (16 bit) Single Precision (32 bit) Double Precision (64 bit) Fractional Digits 10+1 23+1 52+1 Exponent Digits 5 8 11 Bias Value 15 127 1023 For example to represent 0.15625 we first have to write this value in binary. This has to be normalized to account for the implicit +1. The sign is positive (0), the fraction is 0.0100...2, and the exponent is -3. The exponent must be biased by adding 127, so we actually encode 124 (011111002). 1 On the next page, show the representation of 0.75, 0.9453125, and 0.2 using both half precision and single precision IEEE754 format (16 and 32 bits). Image http://en.wikipedia.org/wiki/File:Float_example.svg licensed under the Creative Commons Attribution-Share Alike 3.0 (http://creativecommons.org/licenses/by-sa/3.0/deed.en) 1 3. Complete the table with the correct IEEE754 floating point values written as a hexadecimal number using half-precision and single-precision (next page). Decimal Half (16-bits) (Hex) Single (32 bits) (Hex) 0.75 0.9453125 0.2 0.75 S EXP FRACTION 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 0.9453125 S EXP 1 5 1 4 FRACTION 1 3 1 2 1 1 1 0 9 8 7 0.2 S EXP FRACTION 15 14 13 12 11 10 9 8 7 0.75 S EXP 3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 1 9 1 8 1 7 1 6 1 5 1 4 1 3 2 9 2 8 2 7 2 6 2 5 2 4 2 3 1 9 1 8 1 7 1 6 1 5 1 4 1 3 FRACTION 2 2 2 1 2 0 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 0.9453125 S EXP 3 1 3 0 FRACTION 2 2 2 1 2 0 0.2 S EXP 31 30 29 28 27 26 25 24 23 FRACTION 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 4. Show how to convert the following half precision IEEE754 numbers to their decimal equivalent. 0xcd08 0x563f 5. Show how to convert the following single precision IEEE754 numbers to their decimal equivalent. 0xc1a10000 0x42c7eb85
© Copyright 2026 Paperzz