Addition and Subtraction Formulas

Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
Lesson 3: Addition and Subtraction Formulas
Student Outcomes
ο‚§
Students prove the subtraction formula for cosine and use their understanding of the properties of the
trigonometric functions to derive the remaining addition and subtraction formulas for the sine, cosine, and
tangent functions.
ο‚§
Students use the addition and subtraction formulas to evaluate trigonometric functions to solve problems.
Lesson Notes
In previous lessons, students have used the unit circle to examine the periodicity and symmetry of the sine, cosine, and
tangent functions. They have also explored relationships between trigonometric functions and have derived formulas to
evaluate the functions for various values of πœƒ. In Algebra II Module 2 Lesson 17, the teacher led the students through a
geometric proof that established the sum formula for sine, and the remaining sum and difference formulas followed. In
this lesson, students use analytic methods to prove the subtraction formula for the cosine function and then extend the
result to the remaining sum and difference formulas using their understanding of the periodicity and symmetry of the
functions. Students apply the formulas to evaluate the trigonometric functions for specific values.
Classwork
Opening (3 minutes)
Remind students that they have used the periodicity and symmetry of trigonometric functions to evaluate the sine,
cosine, and tangent functions for specific values of πœƒ. Students should then respond to the following prompts. After
sharing their thoughts with a partner, several students could discuss their suggestions.
ο‚§
In the previous two lessons, we have been discussing the unit circle using a carousel model with a rider
rotating counterclockwise on the outer edge of the carousel. Suppose the carousel rotates
πœ‹
4
radians from its
starting position and then stops. How can we determine the position of the rider when the carousel stops?
οƒΊ
ο‚§
πœ‹
4
πœ‹
πœ‹
4
The position is determined by cos ( ) and sin ( ).
Instead, suppose that the carousel rotates
3
radians from its starting position and then stops. How can we
determine the position of the rider?
οƒΊ
πœ‹
3
πœ‹
3
The position is determined by cos ( ) and sin ( ).
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
48
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
M4
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
PRECALCULUS AND ADVANCED TOPICS
ο‚§
Now, suppose that the carousel rotates
7πœ‹
12
radians from its starting position and then stops. How could we
use what we have already discovered about the sine, cosine, and tangent functions to determine the position
of the rider when the carousel stops? What additional information would we need to determine the position
of the rider? Share your responses with a partner.
MP.3
&
MP.7
οƒΊ
Answers will vary but should address rewriting
know the exact sine and cosine values (e.g.,
7πœ‹
7πœ‹
12
=
12
as a sum or difference of values of πœƒ for which we
πœ‹
4
πœ‹
+ ). Additional information required might
3
include determining a means to find the sine and cosine of a sum.
Discussion (5 minutes)
This discussion addresses the fact that evaluating trigonometric functions for a sum of two values 𝛼 + 𝛽 is not
equivalent to evaluating the trigonometric functions for each value 𝛼 and 𝛽 and then finding the sum. This discussion
also address the utility of having a formula to compute the trigonometric functions of any sum or difference.
ο‚§
calculate the exact positions, for example,
πœƒ=
ο‚§
7πœ‹
12
=
(
4
+
3
).
Perhaps we could find the position of our rider at
7πœ‹
πœ‹
πœ‹
by adding the front/back positions and adding the right/left positions of the rider for πœƒ = and πœƒ = .
12
4
3
Determine whether this strategy is valid, and either justify why it is valid or provide a counterexample to
demonstrate that it is not valid. Share your thoughts with a partner.
οƒΊ
Answers will vary, but students should determine that summing the position coordinates for πœƒ =
πœƒ=
MP.3
7πœ‹
7πœ‹
is to rewrite
as a sum of values for which we can
12
12
πœ‹ πœ‹
One way to evaluate the position of the rider at πœƒ =
πœ‹
7πœ‹
does not produce the position coordinates for πœƒ = . Counterexamples might include:
3
12
We know that cos (
√2
7πœ‹
πœ‹
πœ‹
πœ‹
πœ‹
1
7πœ‹
) β‰  cos ( ) + cos ( ) because cos ( ) + cos ( ) =
+ , but cos ( ) < 0
12
4
3
4
3
2
2
12
7πœ‹
because rotation by
sin (
πœ‹
and
4
12
produces a terminal ray in Quadrant II where cosine is negative. We know that
√2
√3
7πœ‹
πœ‹
πœ‹
πœ‹
πœ‹
) β‰  sin ( ) + sin ( ) because sin ( ) + sin ( ) =
+ , which exceeds the maximum
12
4
3
4
3
2
2
possible value of 1 for the sine function.
ο‚§
Now you may remember that in Algebra II we used geometry to establish the formulas for the sums and
differences of sine and cosine. Here we are going to use a different approach to prove them.
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
49
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
Example 1 (7 minutes)
Scaffolding:
This example provides an analytic way to derive the formula for the cosine of a
difference. The students then apply their understanding of the properties of the
trigonometric functions to the cosine of a difference formula to derive the remaining
addition and subtraction formulas and to solve problems. The example should be
completed in a whole-class setting. Alternatively, students could complete it in pairs
or small groups, and the results could be discussed in a whole-class setting.
ο‚§
What do the points 𝐴 and 𝐡 represent?
οƒΊ
ο‚§
How can we find the distance between points 𝐴 and 𝐡?
οƒΊ
ο‚§
2
𝐴𝐡 = √(cos(𝛼) βˆ’ cos(𝛽)) + (sin(𝛼) βˆ’ sin(𝛽))
ο‚§ Show students the expressions
for the lengths of Μ…Μ…Μ…Μ…
𝐴𝐡 and Μ…Μ…Μ…Μ…Μ…Μ…
𝐴′𝐡′
and ask students what the
different parts of the
expression represent and
where they come from in the
diagram.
ο‚§ Have advanced students derive
the formula for cos(𝛽 βˆ’ 𝛼)
using the same analytic
method and explain why the
formula is equivalent to that
for cos(𝛼 βˆ’ 𝛽).
2
What is the expanded form of this expression?
οƒΊ
ο‚§
We can apply the distance formula.
Which gives us?
οƒΊ
ο‚§
Point 𝐴 represents the position on the unit circle after the initial ray
is rotated by the amount 𝛼, and point 𝐡 represents the position on
the unit circle after the initial ray is rotated by the amount 𝛽.
ο‚§ Provide a visual display of the
distance formula.
𝐴𝐡 = √cos 2 (𝛼) βˆ’ 2cos(𝛼)cos(𝛽) + cos 2 (𝛽) + sin2 (𝛼) βˆ’ 2sin(𝛼)sin(𝛽) + sin2 (𝛽)
How can we simplify the expression under the radical?
οƒΊ
We can use the Pythagorean identity: sin2 (𝛼) + cos 2 (𝛼) = 1 and sin2 (𝛽) + cos 2 (𝛽) = 1. We can
also factor βˆ’2 from the terms βˆ’2cos(𝛼)cos(𝛽) βˆ’ 2sin(𝛼)sin(𝛽), which results in the simplified
expression 𝐴𝐡 = √2 βˆ’ 2(cos(𝛼)cos(𝛽) + sin(𝛼)sin(𝛽)).
ο‚§
How does the procedure applied to part (b) compare to that in part (a)?
οƒΊ
ο‚§
The same procedure is applied but this time to the image points.
Why can we set 𝐴𝐡 equal to 𝐴′𝐡′?
οƒΊ Μ…Μ…Μ…Μ…Μ…Μ…
𝐴′𝐡′ is the image of Μ…Μ…Μ…Μ…
𝐴𝐡 rotated by βˆ’π›½ about the origin, and distance is preserved under rotation, so
the length of the segment is the same before and after rotation.
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
50
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
Example 1
Consider the figures below. The figure on the right is obtained from the figure on the left by rotating by βˆ’πœ· about the
origin.
a.
Μ…Μ…Μ…Μ… in the figure on the left.
Calculate the length of 𝑨𝑩
𝟐
𝟐
𝑨𝑩 = √(𝐜𝐨𝐬(𝜢) βˆ’ 𝐜𝐨𝐬(𝜷)) + (𝐬𝐒𝐧(𝜢) βˆ’ 𝐬𝐒𝐧(𝜷))
= √𝐜𝐨𝐬 𝟐 (𝜢) βˆ’ 𝟐𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐜𝐨𝐬 𝟐 (𝜷) + 𝐬𝐒𝐧𝟐 (𝜢) βˆ’ 𝟐𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷) + 𝐬𝐒𝐧𝟐 (𝜷)
= √𝐜𝐨𝐬 𝟐 (𝜢) + 𝐬𝐒𝐧𝟐 (𝜢) + 𝐜𝐨𝐬 𝟐 (𝜷) + 𝐬𝐒𝐧𝟐 (𝜷) βˆ’ 𝟐𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝟐𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
= √𝟐 βˆ’ 𝟐(𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷))
b.
Calculate the length of Μ…Μ…Μ…Μ…Μ…Μ…
𝑨′𝑩′ in the figure on the right.
𝑨′𝑩′ = √(𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) βˆ’ 𝟏)𝟐 + (𝐬𝐒𝐧(𝜢 βˆ’ 𝜷) βˆ’ 𝟎)𝟐
= √𝐜𝐨𝐬 𝟐 (𝜢 βˆ’ 𝜷) βˆ’ 𝟐𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) + 𝟏𝟐 + 𝐬𝐒𝐧𝟐 (𝜢 βˆ’ 𝜷)
= √𝐜𝐨𝐬 𝟐 (𝜢 βˆ’ 𝜷) + 𝐬𝐒𝐧𝟐 (𝜢 βˆ’ 𝜷) + 𝟏 βˆ’ 𝟐𝐜𝐨𝐬(𝜢 βˆ’ 𝜷)
= √𝟐 βˆ’ 𝟐𝐜𝐨𝐬(𝜢 βˆ’ 𝜷)
c.
Set 𝑨𝑩 and 𝑨′𝑩′ equal to each other, and solve the equation for 𝐜𝐨𝐬(𝜢 βˆ’ 𝜷).
√𝟐 βˆ’ 𝟐𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) = √𝟐 βˆ’ 𝟐(𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷))
𝟐
𝟐
(√𝟐 βˆ’ 𝟐𝐜𝐨𝐬(𝜢 βˆ’ 𝜷)) = (√𝟐 βˆ’ 𝟐(𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)))
𝟐 βˆ’ 𝟐𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) = 𝟐 βˆ’ 𝟐(𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷))
βˆ’πŸπœπ¨π¬(𝜢 βˆ’ 𝜷) = βˆ’πŸ(𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷))
𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) = 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
51
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
ο‚§
Turn to your neighbor and explain how you know that 𝐴𝐡 and 𝐴′𝐡′ are equal and what the formula you have
just derived represents.
Μ…Μ…Μ…Μ…
οƒΊ
𝐴𝐡 and Μ…Μ…Μ…Μ…Μ…Μ…
𝐴′𝐡′ have the same length because they are images of each other under rotation, which
preserves length. The formula just derived provides a way to calculate the cosine of a number for which
the cosine is not readily known by expressing that number as a difference of two numbers for which the
sine and cosine values are readily known.
Exercises 1–2 (7 minutes)
Students should complete the exercises in pairs. After an appropriate time, volunteers could display their solutions, and
additional students could provide alternative solutions or offer counterarguments to refute a solution. Students
establish the sum formula for sine in the Exit Ticket, but it is summarized here for reference.
Exercises 1–2
1.
Use the fact that 𝐜𝐨𝐬(βˆ’πœ½) = 𝐜𝐨𝐬(𝜽) to determine a formula for 𝐜𝐨𝐬(𝜢 + 𝜷).
𝐜𝐨𝐬(𝜢 + 𝜷) = 𝐜𝐨𝐬(𝜢 βˆ’ 𝜷)
= 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(βˆ’πœ·) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(βˆ’πœ·)
= 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)(βˆ’π¬π’π§(𝜷))
= 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
2.
𝝅
𝟐
Use the fact that 𝐬𝐒𝐧(𝜽) = 𝐜𝐨𝐬 ( βˆ’ 𝜽) to determine a formula for 𝐬𝐒𝐧(𝜢 βˆ’ 𝜷).
Scaffolding:
ο‚§ Prompt struggling
students for Exercise 1 by
rewriting cos(𝛼 + 𝛽) as
cos(𝛼 βˆ’ (βˆ’π›½)).
ο‚§ Have advanced students
determine the formulas
without cueing.
𝝅
𝐬𝐒𝐧(𝜢 βˆ’ 𝜷) = 𝐜𝐨𝐬 ( βˆ’ (𝜢 βˆ’ 𝜷))
𝟐
𝝅
= 𝐜𝐨𝐬 (( βˆ’ 𝜢) + 𝜷)
𝟐
𝝅
𝝅
= 𝐜𝐨𝐬 ( βˆ’ 𝜢) 𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧 ( βˆ’ 𝜢) 𝐬𝐒𝐧(𝜷)
𝟐
𝟐
= 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
Sum and Difference Formulas for the Sine and Cosine Functions
For all real numbers 𝛼 and 𝛽,
cos(𝛼 βˆ’ 𝛽) = cos(𝛼)cos(𝛽) + sin(𝛼)sin(𝛽)
cos(𝛼 + 𝛽) = cos(𝛼)cos(𝛽) βˆ’ sin(𝛼)sin(𝛽)
sin(𝛼 βˆ’ 𝛽) = sin(𝛼)cos(𝛽) βˆ’ cos(𝛼)sin(𝛽)
sin(𝛼 + 𝛽) = sin(𝛼)cos(𝛽) + cos(𝛼)sin(𝛽)
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
52
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 3
M4
PRECALCULUS AND ADVANCED TOPICS
Example 2 (5 minutes)
This example demonstrates how to apply the identity of tangent πœƒ as the ratio of sine πœƒ to cosine πœƒ to derive the
addition formula for tangent, which students use to evaluate the tangent function for exact values of πœƒ. The example
should be completed in pairs or small groups and then discussed in a whole-class setting.
ο‚§
οƒΊ
ο‚§
sin(πœƒ)
to help us find an addition formula for tangent?
cos(πœƒ)
How can we use the identity tan(πœƒ) =
Answers will vary but might indicate that we could rewrite tan(𝛼 + 𝛽) as the quotient of sin(𝛼 + 𝛽)
and cos(𝛼 + 𝛽), and we could apply the addition formulas for sine and cosine to determine a formula.
sin(𝛼+𝛽)
and apply the addition formulas for sine and cosine, we find the formula
cos(𝛼+𝛽)
sin(𝛼) cos(𝛽)+sin(𝛽) cos(𝛼)
tan(𝛼 + 𝛽) =
. How can we determine what to do next to try to find a more usercos(𝛼) cos(𝛽)βˆ’sin(𝛼) sin(𝛽)
If we rewrite tan(𝛼 + 𝛽) =
friendly expression for a tangent addition formula?
οƒΊ
ο‚§
What if we divide by cos(𝛼)cos(𝛽)?
οƒΊ
ο‚§
Answers will vary but might include dividing by a common term so the expressions are written in terms
of tan(𝛼) and tan(𝛽). If students do not suggest this tactic, then suggest it to them.
Answers will vary but should address that the cosines in the numerators of each term in the expression
will reduce with the cosines in cos(𝛼)cos(𝛽) so that each term can be written in terms of the tangent
function or as 1.
Are there any restrictions on the values of 𝛼 and 𝛽 for tan(𝛼 + 𝛽)?
οƒΊ
Yes, 𝛼 and 𝛽 cannot sum to
πœ‹
2
πœ‹
+ πœ‹π‘›, where 𝑛 is an integer because this would result in tan ( + πœ‹π‘›),
2
which we have previously determined to be undefined.
ο‚§
How can we verify this?
οƒΊ
πœ‹
2
πœ‹
βˆ’π›Ό
2
πœ‹
πœ‹
2
sin(𝛼) cos(2 βˆ’ 𝛼) +sin(2 βˆ’ 𝛼) cos(𝛼) sin(𝛼) sin(𝛼) +cos(𝛼) cos(𝛼) sin (𝛼) +cos2(𝛼)
and tan(𝛼 + 𝛽) =
=
=
,
0
cos(𝛼) cos(πœ‹2 βˆ’ 𝛼) βˆ’sin(𝛼) sin(πœ‹2 βˆ’ 𝛼) cos(𝛼) sin(𝛼) βˆ’sin(𝛼) cos(𝛼)
Answers will vary. An example of an acceptable response is included. If 𝛼 + 𝛽 = , then 𝛽 =
which is undefined.
Example 2
Use the identity 𝐭𝐚𝐧(𝜽) =
𝐭𝐚𝐧(𝜢 + 𝜷) =
=
𝐬𝐒𝐧(𝜽)
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(𝜷)
to show that 𝐭𝐚𝐧(𝜢 + 𝜷) =
.
𝐜𝐨𝐬(𝜽)
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
𝐬𝐒𝐧(𝜢 + 𝜷)
𝐜𝐨𝐬(𝜢 + 𝜷)
𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜷)𝐜𝐨𝐬(𝜢)
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜷)𝐜𝐨𝐬(𝜢) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
=(
)(
)
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
=
𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) 𝐬𝐒𝐧(𝜷)𝐜𝐨𝐬(𝜢)
+
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
βˆ’
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
=
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(𝜷)
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
53
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
Exercises 3–5 (10 minutes)
Students should complete the exercises in pairs. After an appropriate time, volunteers could display their solutions. As
time permits, students should be encouraged to show different approaches to finding the solutions.
Exercises 3–5
3.
Verify the identity 𝐭𝐚𝐧(𝜢 βˆ’ 𝜷) =
𝐭𝐚𝐧(𝜢) βˆ’ 𝐭𝐚𝐧(𝜷)
𝝅
for all (𝜢 βˆ’ 𝜷) β‰  + 𝝅𝒏.
𝟏 + 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
𝟐
𝐭𝐚𝐧(𝜢 βˆ’ 𝜷) = 𝐭𝐚𝐧(𝜢 + (βˆ’πœ·))
=
=
=
4.
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(βˆ’πœ·)
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(βˆ’πœ·)
𝐭𝐚𝐧(𝜢) + (βˆ’π­πšπ§(𝜷))
Scaffolding:
Have advanced students verify
using the relationship between the
sine and cosine functions that
cos (βˆ’
5πœ‹
23πœ‹
) = βˆ’ sin (
).
12
12
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)(βˆ’π­πšπ§(𝜷))
𝐭𝐚𝐧(𝜢) βˆ’ 𝐭𝐚𝐧(𝜷)
𝟏 + 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
Use the addition and subtraction formulas to evaluate the expressions shown.
a.
𝐜𝐨𝐬 (βˆ’
𝐜𝐨𝐬 (βˆ’
MP.7
b.
𝐬𝐒𝐧 (
πŸ“π…
)
𝟏𝟐
πŸ“π…
𝝅 πŸπ…
) = 𝐜𝐨𝐬 ( βˆ’
)
𝟏𝟐
πŸ’
πŸ‘
𝝅
πŸπ…
𝝅
πŸπ…
= 𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 ( ) + 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( )
πŸ’
πŸ‘
πŸ’
πŸ‘
=
√𝟐 βˆ’πŸ
√𝟐 βˆšπŸ‘
( )+
( )
𝟐 𝟐
𝟐 𝟐
=
βˆšπŸ” βˆ’ √𝟐
πŸ’
πŸπŸ‘π…
)
𝟏𝟐
πŸπŸ‘π…
πŸ—π… 𝝅
𝐬𝐒𝐧 (
) = 𝐬𝐒𝐧 ( βˆ’ )
𝟏𝟐
πŸ’
πŸ‘
πŸ—π…
𝝅
𝝅
πŸ—π…
= 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( )
πŸ’
πŸ‘
πŸ‘
πŸ’
=
√𝟐 𝟏
βˆšπŸ‘ √𝟐
( )βˆ’
( )
𝟐 𝟐
𝟐 𝟐
=
√𝟐 βˆ’ βˆšπŸ”
πŸ’
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
54
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
c.
𝐭𝐚𝐧 (
πŸ“π…
)
𝟏𝟐
πŸ“π…
𝝅 𝝅
𝐭𝐚𝐧 ( ) = 𝐭𝐚𝐧 ( + )
𝟏𝟐
πŸ” πŸ’
𝝅
𝝅
𝐭𝐚𝐧 ( ) + 𝐭𝐚𝐧 ( )
πŸ”
πŸ’
=
𝝅
𝝅
𝟏 βˆ’ 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( )
πŸ”
πŸ’
βˆšπŸ‘
+𝟏
πŸ‘
=
βˆšπŸ‘ (𝟏)
πŸβˆ’( )
πŸ‘
=
βˆšπŸ‘ + πŸ‘
πŸ‘ βˆ’ βˆšπŸ‘
𝟏𝟐 + πŸ”βˆšπŸ‘
=
πŸ”
= 𝟐 + βˆšπŸ‘
MP.3
Use the addition and subtraction formulas to verify these identities for all real-number values of 𝜽.
5.
a.
𝐬𝐒𝐧(𝝅 βˆ’ 𝜽) = 𝐬𝐒𝐧(𝜽)
𝐬𝐒𝐧(𝝅 βˆ’ 𝜽) = 𝐬𝐒𝐧(𝝅)𝐜𝐨𝐬(𝜽) βˆ’ 𝐬𝐒𝐧(𝜽)𝐜𝐨𝐬(𝝅) = 𝟎(𝐜𝐨𝐬(𝜽)) βˆ’ 𝐬𝐒𝐧(𝜽)(βˆ’πŸ) = 𝐬𝐒𝐧(𝜽)
b.
𝐜𝐨𝐬(𝝅 + 𝜽) = βˆ’πœπ¨π¬(𝜽)
𝐜𝐨𝐬(𝝅 + 𝜽) = 𝐜𝐨𝐬(𝝅)𝐜𝐨𝐬(𝜽) βˆ’ 𝐬𝐒𝐧(𝝅)𝐬𝐒𝐧(𝜽) = βˆ’πŸ(𝐜𝐨𝐬(𝜽)) βˆ’ 𝟎(𝐬𝐒𝐧(𝜽)) = βˆ’πœπ¨π¬(𝜽)
Sum and Difference Formulas for the Tangent Function
For all real numbers 𝛼 and 𝛽 for which the expressions are defined,
tan(𝛼 βˆ’ 𝛽) =
tan(𝛼) βˆ’ tan(𝛽)
tan(𝛼) + tan(𝛽)
and tan(𝛼 + 𝛽) =
.
1 + tan(𝛼)tan(𝛽)
1 βˆ’ tan(𝛼)tan(𝛽)
Closing (3 minutes)
Have students write a response to the prompts below and share their responses with a partner.
ο‚§
What are the sum and difference formulas for sine and cosine?
οƒΊ
cos(𝛼 βˆ’ 𝛽) = cos(𝛼)cos(𝛽) + sin(𝛼)sin(𝛽)
οƒΊ
cos(𝛼 + 𝛽) = cos(𝛼)cos(𝛽) βˆ’ sin(𝛼)sin(𝛽)
οƒΊ
sin(𝛼 βˆ’ 𝛽) = sin(𝛼)cos(𝛽) βˆ’ cos(𝛼)sin(𝛽)
οƒΊ
sin(𝛼 + 𝛽) = sin(𝛼)cos(𝛽) + cos(𝛼)sin(𝛽)
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
55
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
ο‚§
How can the addition and subtraction formulas be used to find the position of the rider from the beginning of
the lesson?
οƒΊ
To find the front/back position of the rider, we need to find sin (
difference of two numbers, for example, sin (
7πœ‹
), which we could rewrite as the
12
3πœ‹
βˆ’ πœ‹6), and then apply the formula
4
sin(𝛼 βˆ’ 𝛽) = sin(𝛼) cos(𝛽) βˆ’ cos(𝛼) sin(𝛽) to find the position.
οƒΊ
To find the right/left position of the rider, we need to find cos (
difference of two numbers, for example, cos (
7πœ‹
), which we could rewrite as the
12
3πœ‹
βˆ’ πœ‹6), and then apply the formula
4
cos(𝛼 βˆ’ 𝛽) = cos(Ξ±) cos(𝛽) + sin(𝛼) sin(𝛽) to find the position.
Lesson Summary
The sum and difference formulas for sine, cosine, and tangent are summarized below.
For all real numbers 𝜢 and 𝜷 for which the expressions are defined,
𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) = 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
𝐜𝐨𝐬(𝜢 + 𝜷) = 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
𝐬𝐒𝐧(𝜢 βˆ’ 𝜷) = 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
𝐬𝐒𝐧(𝜢 + 𝜷) = 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) + 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
𝐭𝐚𝐧(𝜢 βˆ’ 𝜷) =
𝐭𝐚𝐧(𝜢) βˆ’ 𝐭𝐚𝐧(𝜷)
𝟏 + 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
𝐭𝐚𝐧(𝜢 + 𝜷) =
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(𝜷)
.
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
Exit Ticket (5 minutes)
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
56
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
Name
Date
Lesson 3: Addition and Subtraction Formulas
Exit Ticket
1.
Prove that sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + sin(𝛽) cos(𝛼).
2.
Use the addition and subtraction formulas to evaluate the given trigonometric expressions.
πœ‹
)
12
a.
sin (
b.
tan (
13πœ‹
)
12
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
57
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
Exit Ticket Sample Solutions
1.
Prove that 𝐬𝐒𝐧(𝜢 + 𝜷) = 𝐬𝐒𝐧(𝜢) 𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜷) 𝐜𝐨𝐬(𝜢).
𝐬𝐒𝐧(𝜢 + 𝜷) = 𝐬𝐒𝐧(𝜢 βˆ’ (βˆ’πœ·))
= 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(βˆ’πœ·) βˆ’ 𝐬𝐒𝐧(βˆ’πœ·)𝐜𝐨𝐬(𝜢)
= 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ (βˆ’π¬π’π§(𝜷))(𝐜𝐨𝐬(𝜢))
= 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜷)𝐜𝐨𝐬(𝜢)
2.
Use the addition and subtraction formulas to evaluate the given trigonometric expressions.
a.
𝐬𝐒𝐧 (
𝐬𝐒𝐧 (
𝝅
)
𝟏𝟐
𝝅
𝝅 𝝅
) = 𝐬𝐒𝐧 ( βˆ’ )
𝟏𝟐
πŸ‘ πŸ’
𝝅
𝝅
𝝅
𝝅
= 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( )
πŸ‘
πŸ’
πŸ’
πŸ‘
√𝟐 𝟏
βˆšπŸ‘ √𝟐
= ( )( ) βˆ’ ( )( )
𝟐
𝟐
𝟐
𝟐
=
b.
𝐭𝐚𝐧 (
βˆšπŸ” βˆ’ √𝟐
πŸ’
πŸπŸ‘π…
)
𝟏𝟐
πŸπŸ‘π…
πŸ‘π… 𝝅
𝐭𝐚𝐧 (
) = 𝐭𝐚𝐧 ( + )
𝟏𝟐
πŸ’
πŸ‘
πŸ‘π…
𝝅
𝐭𝐚𝐧 ( ) + 𝐭𝐚𝐧 ( )
πŸ’
πŸ‘
=
πŸ‘π…
𝝅
𝟏 βˆ’ 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( )
πŸ’
πŸ‘
=
=
=
βˆ’πŸ + βˆšπŸ‘
𝟏 βˆ’ (βˆ’πŸ)(βˆšπŸ‘)
βˆ’πŸ + βˆšπŸ‘
𝟏 + (βˆšπŸ‘)
βˆ’πŸ’ + πŸβˆšπŸ‘
βˆ’πŸ
= 𝟐 βˆ’ βˆšπŸ‘
Problem Set Sample Solutions
1.
Use the addition and subtraction formulas to evaluate the given trigonometric expressions.
a.
𝐜𝐨𝐬 (
𝐜𝐨𝐬 (
𝝅
)
𝟏𝟐
𝝅
𝝅 𝝅
) = 𝐜𝐨𝐬 ( βˆ’ )
𝟏𝟐
πŸ‘ πŸ’
𝝅
𝝅
𝝅
𝝅
= 𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 ( ) + 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( )
πŸ‘
πŸ’
πŸ‘
πŸ’
𝟏 √𝟐 βˆšπŸ‘ √𝟐
= βˆ™
+
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 + βˆšπŸ”
=
πŸ’
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
58
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 3
M4
PRECALCULUS AND ADVANCED TOPICS
b.
𝐬𝐒𝐧 (
𝐬𝐒𝐧 (
𝝅
)
𝟏𝟐
𝝅
𝝅 𝝅
) = 𝐬𝐒𝐧 ( βˆ’ )
𝟏𝟐
πŸ‘ πŸ’
𝝅
𝝅
𝝅
𝝅
= 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
πŸ‘
πŸ’
πŸ‘
πŸ’
βˆšπŸ‘ √𝟐 𝟏 √𝟐
βˆ™
βˆ’ βˆ™
𝟐 𝟐
𝟐 𝟐
βˆšπŸ” βˆ’ √𝟐
=
πŸ’
=
c.
𝐬𝐒𝐧 (
πŸ“π…
)
𝟏𝟐
πŸ“π…
𝝅 𝝅
𝐬𝐒𝐧 ( ) = 𝐬𝐒𝐧 ( + )
𝟏𝟐
πŸ” πŸ’
𝝅
𝝅
𝝅
𝝅
= 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
πŸ”
πŸ’
πŸ”
πŸ’
𝟏 √𝟐 βˆšπŸ‘ √𝟐
βˆ™
+
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 + βˆšπŸ”
=
πŸ’
=
d.
𝐜𝐨𝐬 (βˆ’
𝐜𝐨𝐬 (βˆ’
𝝅
)
𝟏𝟐
𝝅
𝝅 𝝅
) = 𝐜𝐨𝐬 ( βˆ’ )
𝟏𝟐
πŸ’ πŸ‘
𝝅
𝝅
𝝅
𝝅
= 𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 ( ) + 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( )
πŸ’
πŸ‘
πŸ’
πŸ‘
√𝟐 𝟏 √𝟐 βˆšπŸ‘
βˆ™ +
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 + βˆšπŸ”
=
πŸ’
=
e.
𝐬𝐒𝐧 (
πŸ•π…
)
𝟏𝟐
πŸ•π…
𝝅 𝝅
𝐬𝐒𝐧 ( ) = 𝐬𝐒𝐧 ( + )
𝟏𝟐
πŸ’ πŸ‘
𝝅
𝝅
𝝅
𝝅
= 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
πŸ’
πŸ‘
πŸ’
πŸ‘
√𝟐 𝟏 √𝟐 βˆšπŸ‘
βˆ™ +
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 + βˆšπŸ”
=
πŸ’
=
f.
𝐜𝐨𝐬 (βˆ’
𝐜𝐨𝐬 (βˆ’
πŸ•π…
)
𝟏𝟐
πŸ•π…
𝝅 𝝅
) = 𝐜𝐨𝐬 (βˆ’ βˆ’ )
𝟏𝟐
πŸ’ πŸ‘
𝝅
𝝅
𝝅
𝝅
= 𝐜𝐨𝐬 (βˆ’ ) 𝐜𝐨𝐬 ( ) + 𝐬𝐒𝐧 (βˆ’ ) 𝐬𝐒𝐧 ( )
πŸ’
πŸ‘
πŸ’
πŸ‘
√𝟐 𝟏 √𝟐 βˆšπŸ‘
βˆ™ βˆ’
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 βˆ’ βˆšπŸ”
=
πŸ’
=
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
59
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
g.
𝐬𝐒𝐧 (
πŸπŸ‘π…
)
𝟏𝟐
πŸπŸ‘π…
πŸ‘π… 𝝅
𝐬𝐒𝐧 (
) = 𝐬𝐒𝐧 ( + )
𝟏𝟐
πŸ’
πŸ‘
πŸ‘π…
𝝅
πŸ‘π…
𝝅
= 𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
πŸ’
πŸ‘
πŸ’
πŸ‘
√𝟐 𝟏 √𝟐 βˆšπŸ‘
βˆ™ βˆ’
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 βˆ’ βˆšπŸ”
=
πŸ’
=
h.
𝐜𝐨𝐬 (βˆ’
𝐜𝐨𝐬 (βˆ’
πŸπŸ‘π…
)
𝟏𝟐
πŸπŸ‘π…
𝝅 𝝅
) = 𝐜𝐨𝐬 (βˆ’ βˆ’ )
𝟏𝟐
πŸ’ πŸ‘
𝝅
𝝅
𝝅
𝝅
= 𝐜𝐨𝐬 (βˆ’ ) 𝐜𝐨𝐬 ( ) + 𝐬𝐒𝐧 (βˆ’ ) 𝐬𝐒𝐧 ( )
πŸ’
πŸ‘
πŸ’
πŸ‘
√𝟐 𝟏 √𝟐 βˆšπŸ‘
βˆ™ βˆ’
βˆ™
𝟐 𝟐
𝟐 𝟐
√𝟐 βˆ’ βˆšπŸ”
=
πŸ’
=
i.
𝐬𝐒𝐧 (
𝐬𝐒𝐧 (
j.
𝐬𝐒𝐧 (
𝝅
𝝅
𝝅
𝝅
) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
𝟏𝟐
𝟏𝟐
𝟏𝟐
𝟏𝟐
𝝅
𝝅
𝝅
𝝅
𝝅
) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( ) = 𝐬𝐒𝐧 ( )
𝟏𝟐
𝟏𝟐
𝟏𝟐
𝟏𝟐
πŸ”
𝟏
=
𝟐
πŸ“π…
𝝅
πŸ“π…
𝝅
) 𝐜𝐨𝐬 ( ) βˆ’ 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
𝟏𝟐
πŸ”
𝟏𝟐
πŸ”
πŸ“π…
𝝅
πŸ“π…
𝝅
𝝅
𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( ) = 𝐬𝐒𝐧 ( )
𝟏𝟐
πŸ”
𝟏𝟐
πŸ”
πŸ’
=
k.
𝝅
πŸ–
𝝅
πŸ–
𝝅
πŸ–
√𝟐
𝟐
𝝅
πŸ–
𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
𝝅
𝝅
𝝅
𝝅
𝝅
𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) + 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( ) = 𝐬𝐒𝐧 ( )
πŸ–
πŸ–
πŸ–
πŸ–
πŸ’
=
l.
𝝅
πŸ–
𝝅
πŸ–
𝝅
πŸ–
√𝟐
𝟐
𝝅
πŸ–
𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( )
𝝅
𝝅
𝝅
𝝅
𝝅
𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( ) = 𝐜𝐨𝐬 ( )
πŸ–
πŸ–
πŸ–
πŸ–
πŸ’
=
Lesson 3:
√𝟐
𝟐
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
60
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
M4
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
PRECALCULUS AND ADVANCED TOPICS
m.
𝝅
πŸ’
𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 (
𝝅
𝝅
𝝅
) + 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( )
𝟏𝟐
πŸ’
𝟏𝟐
𝝅
𝝅
𝝅
𝝅
𝝅
𝐜𝐨𝐬 ( ) 𝐜𝐨𝐬 ( ) + 𝐬𝐒𝐧 ( ) 𝐬𝐒𝐧 ( ) = 𝐜𝐨𝐬 ( )
πŸ’
𝟏𝟐
πŸ’
𝟏𝟐
πŸ”
=
n.
𝝅
πŸ‘
𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 (
βˆšπŸ‘
𝟐
𝝅
𝝅
𝝅
) βˆ’ 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( )
𝟏𝟐
πŸ‘
𝟏𝟐
𝝅
𝝅
𝝅
𝝅
𝝅
𝐬𝐒𝐧 ( ) 𝐜𝐨𝐬 ( ) βˆ’ 𝐜𝐨𝐬 ( ) 𝐬𝐒𝐧 ( ) = 𝐬𝐒𝐧 ( )
πŸ‘
𝟏𝟐
πŸ‘
𝟏𝟐
πŸ’
√𝟐
=
𝟐
2.
Figure 2 is obtained from Figure 1 by rotating the angle by 𝜢 about the origin.
Use the method shown in Example 1 to show that 𝐜𝐨𝐬(𝛂 + 𝛃) = 𝐜𝐨𝐬(𝛂)𝐜𝐨𝐬(𝛃) βˆ’ 𝐬𝐒𝐧(𝛂)𝐬𝐒𝐧(𝛃).
Figure 1
Figure 2
𝟐
𝟐
𝑨𝑩 = √(𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)) + (𝐬𝐒𝐧(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢))
𝟐
𝑨′𝑩′ = √(𝐜𝐨𝐬(𝜢 + 𝜷) βˆ’ (βˆ’πŸ)) + (𝐬𝐒𝐧(𝜢 + 𝜷) βˆ’ 𝟎)𝟐
𝑨𝑩 = 𝑨′𝑩′
𝟐
𝟐
𝟐
𝟐
𝟐
(√(𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)) + (𝐬𝐒𝐧(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)) ) = (√(𝐜𝐨𝐬(𝜢 + 𝜷) βˆ’ (βˆ’πŸ)) + (𝐬𝐒𝐧(𝜢 + 𝜷) βˆ’ 𝟎)𝟐 )
𝟐
𝟐
𝟐
(𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)) + (𝐬𝐒𝐧(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)) = (𝐜𝐨𝐬(𝜢 + 𝜷) βˆ’ (βˆ’πŸ)) + (𝐬𝐒𝐧(𝜢 + 𝜷) βˆ’ 𝟎)𝟐
𝐜𝐨𝐬 𝟐(𝜷) βˆ’ πŸβ€Šπœπ¨π¬(𝜷)𝐜𝐨𝐬(𝜢) + 𝐜𝐨𝐬 𝟐 (𝜢) + 𝐬𝐒𝐧𝟐 (𝜷) βˆ’ πŸβ€Šπ¬π’π§(𝜷)𝐬𝐒𝐧(𝜢) + 𝐬𝐒𝐧𝟐 (𝜢) = 𝐜𝐨𝐬 𝟐 (𝜢 + 𝜷) + πŸβ€Šπœπ¨π¬(𝜢 + 𝒃) + 𝟏 + 𝐬𝐒𝐧𝟐 (𝜢 + 𝜷)
𝟐 βˆ’ 𝟐𝐜𝐨𝐬(𝜷)𝐜𝐨𝐬(𝜢) βˆ’ 𝟐𝐬𝐒𝐧(𝜷)𝐬𝐒𝐧(𝜢) = 𝟐 + πŸβ€Šπœπ¨π¬(𝜢 + 𝜷)
βˆ’πœπ¨π¬(𝜷)𝐜𝐨𝐬(𝜢) βˆ’ 𝐬𝐒𝐧(𝜷)𝐬𝐒𝐧(𝜢) = 𝐜𝐨𝐬(𝜢 + 𝜷)
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷) = 𝐜𝐨𝐬(𝜢 + 𝜷)
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
61
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
3.
Use the sum formula for sine to show that 𝐬𝐒𝐧(𝜢 βˆ’ 𝜷) = 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷).
𝐬𝐒𝐧(𝜢 βˆ’ 𝜷) = 𝐬𝐒𝐧(𝜢 + (βˆ’πœ·)) = 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(βˆ’πœ·) + 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(βˆ’πœ·) = 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
4.
𝐬𝐒𝐧(𝜢 + 𝜷)
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(𝜷)
to show 𝐭𝐚𝐧(𝜢 + 𝜷) =
. Use the resulting formula to show
𝐜𝐨𝐬(𝜢 + 𝜷)
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
πŸβ€Šπ­πšπ§(𝜢)
that 𝐭𝐚𝐧(𝟐𝜢) =
.
𝟏 βˆ’ 𝐭𝐚𝐧𝟐 (𝜢)
Evaluate 𝐭𝐚𝐧(𝜢 + 𝜷) =
𝐭𝐚𝐧(𝜢 + 𝜷) =
𝐬𝐒𝐧(𝜢 + 𝜷) 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) + 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
=
𝐜𝐨𝐬(𝜢 + 𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
Dividing the numerator and denominator by 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) gives
𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
+
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(𝜷)
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
𝐭𝐚𝐧(𝜢 + 𝜷) =
=
.
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷) 𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
βˆ’
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
It then follows that
𝐭𝐚𝐧(𝟐𝜢) = 𝐭𝐚𝐧(𝜢 + 𝜢) =
5.
Show 𝐭𝐚𝐧(𝜢 βˆ’ 𝜷) =
𝐭𝐚𝐧(𝜢) + 𝐭𝐚𝐧(𝜢)
πŸβ€Šπ­πšπ§(𝜢)
=
.
𝟏 βˆ’ 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜢) 𝟏 βˆ’ 𝐭𝐚𝐧𝟐 (𝜢)
𝐭𝐚𝐧(𝜢) βˆ’ 𝐭𝐚𝐧(𝜷)
.
𝟏 + 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
𝐭𝐚𝐧(𝜢 βˆ’ 𝜷) =
𝐬𝐒𝐧(𝜢 βˆ’ 𝜷) 𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) βˆ’ 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
=
𝐜𝐨𝐬(𝜢 βˆ’ 𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) + 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷)
Dividing the numerator and denominator by 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) gives
𝐭𝐚𝐧(𝜢 βˆ’ 𝜷) =
6.
𝐬𝐒𝐧(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐬𝐒𝐧(𝜷)
βˆ’
𝐭𝐚𝐧(𝜢) βˆ’ 𝐭𝐚𝐧(𝜷)
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
=
.
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐬𝐒𝐧(𝜢)𝐬𝐒𝐧(𝜷) 𝟏 + 𝐭𝐚𝐧(𝜢)𝐭𝐚𝐧(𝜷)
+
𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷) 𝐜𝐨𝐬(𝜢)𝐜𝐨𝐬(𝜷)
Find the exact value of the following by using addition and subtraction formulas.
a.
b.
c.
𝐭𝐚𝐧 (
𝝅
)
𝟏𝟐
𝐭𝐚𝐧 (
𝝅
𝝅
𝐭𝐚𝐧 ( ) βˆ’ 𝐭𝐚𝐧 ( )
𝝅
𝝅 𝝅
πŸ‘
πŸ’ = βˆšπŸ‘ βˆ’ 𝟏 = 𝟐 βˆ’
) = 𝐭𝐚𝐧 ( βˆ’ ) =
βˆšπŸ‘
𝝅
𝝅
𝟏𝟐
πŸ‘ πŸ’
𝟏 + 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( ) 𝟏 + βˆšπŸ‘
πŸ‘
πŸ’
𝐭𝐚𝐧 (βˆ’
𝝅
)
𝟏𝟐
𝐭𝐚𝐧 (βˆ’
𝝅
𝝅
𝐭𝐚𝐧 ( ) βˆ’ 𝐭𝐚𝐧 ( )
𝝅
𝝅 𝝅
πŸ’
πŸ‘ = 𝟏 βˆ’ βˆšπŸ‘ = βˆ’πŸ +
) = 𝐭𝐚𝐧 ( βˆ’ ) =
βˆšπŸ‘
𝝅
𝝅
𝟏𝟐
πŸ’ πŸ‘
𝟏 + 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( ) 𝟏 + βˆšπŸ‘
πŸ’
πŸ‘
𝐭𝐚𝐧 (
πŸ•π…
)
𝟏𝟐
𝝅
𝝅
𝐭𝐚𝐧 ( ) + 𝐭𝐚𝐧 ( )
πŸ•π…
𝝅 𝝅
πŸ’
πŸ‘ = 𝟏 + βˆšπŸ‘ = βˆ’πŸ βˆ’
𝐭𝐚𝐧 ( ) = 𝐭𝐚𝐧 ( + ) =
βˆšπŸ‘
𝝅
𝝅
𝟏𝟐
πŸ’ πŸ‘
𝟏 βˆ’ 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( ) 𝟏 βˆ’ βˆšπŸ‘
πŸ’
πŸ‘
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
62
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 3
NYS COMMON CORE MATHEMATICS CURRICULUM
M4
PRECALCULUS AND ADVANCED TOPICS
d.
e.
𝐭𝐚𝐧 (βˆ’
πŸπŸ‘π…
)
𝟏𝟐
𝐭𝐚𝐧 (βˆ’
𝝅
πŸ’π…
𝐭𝐚𝐧 ( ) βˆ’ 𝐭𝐚𝐧 ( )
πŸπŸ‘π…
𝝅 πŸ’π…
πŸ’
πŸ‘ = 𝟏 βˆ’ βˆšπŸ‘ = βˆ’πŸ +
) = 𝐭𝐚𝐧 ( βˆ’
)=
βˆšπŸ‘
𝝅
πŸ’π…
𝟏𝟐
πŸ’
πŸ‘
𝟏 + 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( ) 𝟏 + βˆšπŸ‘
πŸ’
πŸ‘
𝝅
𝝅
𝐭𝐚𝐧( ) + 𝐭𝐚𝐧( )
πŸ’
𝟏𝟐
𝝅
𝝅
𝟏 βˆ’ 𝐭𝐚𝐧( )𝐭𝐚𝐧( )
πŸ’
𝟏𝟐
𝝅
𝝅
𝐭𝐚𝐧 ( ) + 𝐭𝐚𝐧 ( )
πŸ’
𝟏𝟐 = 𝐭𝐚𝐧 (𝝅 + 𝝅 ) = 𝐭𝐚𝐧 (πŸ’π…) = 𝐭𝐚𝐧 (𝝅) =
βˆšπŸ‘
𝝅
𝝅
πŸ’ 𝟏𝟐
𝟏𝟐
πŸ‘
𝟏 βˆ’ 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( )
πŸ’
𝟏𝟐
f.
𝝅
𝝅
𝐭𝐚𝐧( ) βˆ’ 𝐭𝐚𝐧( )
πŸ‘
𝟏𝟐
𝝅
𝝅
𝟏 + 𝐭𝐚𝐧( )𝐭𝐚𝐧( )
πŸ‘
𝟏𝟐
𝝅
𝝅
𝐭𝐚𝐧 ( ) βˆ’ 𝐭𝐚𝐧 ( )
πŸ‘
𝟏𝟐 = 𝐭𝐚𝐧 (𝝅 βˆ’ 𝝅 ) = 𝐭𝐚𝐧 (πŸ‘π…) = 𝐭𝐚𝐧 (𝝅) = 𝟏
𝝅
𝝅
πŸ‘ 𝟏𝟐
𝟏𝟐
πŸ’
𝟏 + 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( )
πŸ‘
𝟏𝟐
𝝅
𝝅
) + 𝐭𝐚𝐧( )
𝟏𝟐
𝟏𝟐
𝝅
𝝅
𝟏 βˆ’ 𝐭𝐚𝐧( )𝐭𝐚𝐧( )
𝟏𝟐
𝟏𝟐
𝐭𝐚𝐧(
g.
𝝅
𝝅
) + 𝐭𝐚𝐧 ( )
𝟏𝟐
𝟏𝟐 = 𝐭𝐚𝐧 ( 𝝅 + 𝝅 ) = 𝐭𝐚𝐧 (𝝅) = 𝟏 = βˆšπŸ‘
𝝅
𝝅
𝟏𝟐 𝟏𝟐
πŸ”
πŸ‘
βˆšπŸ‘
𝟏 βˆ’ 𝐭𝐚𝐧 ( ) 𝐭𝐚𝐧 ( )
𝟏𝟐
𝟏𝟐
𝐭𝐚𝐧 (
Lesson 3:
Addition and Subtraction Formulas
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from PreCal-M4-TE-1.3.0-10.2015
63
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.