A Getting-It-On Review and Self-Test Acids, Bases and Compounds in Solution According to Arrhenius, an acid contains (1) and a base contains (2) . However, Brönsted defines an acid as a (3) and a base as a (4) . Lewis defines an acid as an (5) and a base as an (6) . In the Brönsted system, a species may gain a proton to become a (7) or lose a proton to become a (8) . Solutions of acid taste (9) and solutions of base taste (10) . Compounds which are sensitive to acid or base and change color are called (11) . Reactions of acids and bases in solution are (12) and an indicator is used to tell the (13) . At the end-point, the (14) of acid equals the (15) of base. The concentration of solutes may be given in (16) , (17) , (18) , and (19) . The definition of molarity (M) is (20) of solution and normality (N) is (21) of solution. Molarity is always (22) to normality. 23. Complete and balance the following equations: H2SO4 + BaO → Zn(OH)2 + NaOH → HCl + Al → NaOH + NaHCO3 → MnCl2 + KOH → 24. Complete the table: Normality Molarity 1.0 N Mg(OH)2 0.125 M HNO3 0.75 M H2SO3 Equivalent weight 2 25. Calculate the volume or weight percents of the following solutions: Solvent Solute 45 g H2O 15 g NaOH 1 liter H2O 300 ml C2H5OH 500 ml C2H5OH 300 ml C6H6 300 ml H2O 60 g KCl 26. Percent Fill-in the Conjugate table: Conjugate acid NH4 species Conjugate base H2O CO32 H2S 27. Calculate the weight of C2H5OH required to make 200 ml of a 6.5 M solution. 28. The density of 30.0% by weight sulfuric acid is 1.32 g/ml. Find the molarity and normality. 29. Find the volume of 0.105 N H2SO4 required to neutralize 0.192 g KOH. 30. It requires 25.86 ml of 0.1005 N NaOH to neutralize 30.09 ml of nitric acid. Find the normality of the acid. 31. Calculate the weight of calcium chloride formed in the neutralization of 0.560 g CaO with HCl. 3 32. To what volume must you dilute 100 ml of 10 M H2SO4 to make a 2 N solution? 33. Determine the pH and the pOH of 0.005 M Ba(OH)2. 34. Calculate the normality and molarity of an H2SO4 solution where the pH is 3.76 35. Calculate the pH of these: a. b. c. 0.015 N H3PO4 0.00075 M H3AsO4 0.0000607 M HCl ANSWERS 1. proton (H+) 2. hydroxide (OH–) 3. proton donor 4. proton acceptor 5. electron pair acceptor 6. electron pair donor 7. conjugate acid 8. conjugate base 9. sour 10. bitter 11. indicators 12. neutralizations 13. end-point 14. equivalents 15. equivalents 16. volume % 17. weight % 18. molarity 19. normality 20. moles/liter 21. equivalents/liter 22. 4 23. H2SO4 + BaO → BaSO4 + H2O Zn(OH)2 + 2 NaOH → Na2ZnO2 + 2 H2O 6 HCl + 2 Al → 2 AlCl3 + 3 H2 NaOH + NaHCO3 → Na2CO3 + H2O MnCl2 + 2 KOH → Mn(OH)2 + 2 KCl 24. Normality Molarity Equivalent weight 1.0 N Mg(OH)2 0.5 M 29.15 g 0.125 N 0.125 M HNO3 63 g 1.5 N 0.75 M H2SO3 41.04 g 25. Solvent Solute Percent 45 g H2O 15 g NaOH 25% (weight) 1 liter H2O 300 ml C2H5OH 23.1% (volume) 500 ml C2H5OH 300 ml C6H6 37.5% (volume) 300 ml H2O 60 g KCl 16.7% (weight) 5 26. 27. 28. Conjugate acid NH4 species NH3 Conjugate base NH2 H3O H2O OH H2CO3 HCO3 CO32 H3S H2S HS 0.2 liters 1 liter 6.5 mole 46 g 59.8 g C2H5OH 1 liter 1 mole 1000 ml 1.32 g 1,320 g solution 1 liter ml 1,320 g solution 396 g H2SO4 30 g H2SO4 396 g H2SO4 100 g solution 1 mole H2SO4 4.04 mole or 4.04 M 98 g H2SO4 liter 4.04 mole 2 equiv 8.08 equiv or 8.08 N liter 1 mole liter 29. 0.192 g KOH 30. 1 liter H2SO4 1 mole 1 equiv 0.0326 liters or 32.6 ml 56.1 g KOH 1 mole 0.105 equiv H2SO4 0.1005 N 25.86 ml 0.0864 N 30.09 ml 31. 0.560 g CaO 1 mole CaO 1 mole CaCl2 111 g CaCl2 1.11 g CaCl2 56 g CaO 1 mole CaO 1 mole CaCl2 6 32. 10 M H2SO4 = 20 N H2SO4 100 ml 20 N 2N total volume 33. OH Total volume 100 ml 0.005 mole Ba(OH)2 2 mole OH 0.01 mole OH liter 1 mole Ba(OH)2 liter pOH log (0.01) log102 (2) 2 34. pH log H 3.76 M 35. 20 N 1000 ml 2N pH = 14 – 2 = 12 H 103.76 1.74 104 N 1.74 104 mole H 1 mole H2SO4 8.69 105 M liter 2 mole H Hint: N H a. pH log (0.015) 1.82 b. N 3 M 3 (7.5 104 ) 2.25 103 pH log (2.25 103 ) 2.65 c. H 6.07 105 pH log (6.07 105 ) 4.22
© Copyright 2026 Paperzz