Math 112 Practice Problems for Test #4 Remember to look over your homework as well as the problems on this sheet. 13) x - y + z = 4 x + y + z = -4 x + y - z = 2 Determine the order of the matrix. 1) 9 5 -3 -4 6 1 2) 18 -5 2 1 3) 6 -6 7 14) 4x + 2y + z = 13 4x - 3y - z = 28 5x + y + 4z = 4 -7 0 9 -1 15) -3x - 3y + 5z = -16 -12x - 11y + 21z = 2 -6x - 5y + 11z = -9 2 0 4 4) -2 5 -5 0 8 -7 16) 3x + 3y + 3z = 3 9x + 10y + 11z = 12 6x + 7y + 8z = 9 Decompose into partial fractions. 3x - 21 17) (x + 5)(x - 4) Write the augmented matrix for the system. 5) 8x + 8y = 48 5x - 2y = 16 6) 6x + 2y + 8z = 34 2x + 3y + 4z = 29 4x + 8y + 4z = 68 18) 7) 7x - 2y = 57 9y = 27 19) Solve the system of equations using Gaussian elimination or Gauss-Jordan elimination. 8) 4x + 8y = 48 -2x + 6y = 36 5x - 19 2 x - 7x + 10 - 31x - 46 2x2 + 10x + 8 20) -2x2 + 3x + 8 (x + 1)2 (3x + 4) 21) 26x2 - 119x + 139 (x - 3)(2x - 4)2 10) 5x + 9y = -31 10x = -33 - 18y 22) 3x - 16 (x - 4)2 11) 4x + 8y = 8 6x + 12y = 12 23) -3x2 - 2x - 33 (x - 3)(x2 + 2) 12) x + y + z = 1 x - y + 4z = 17 5x + y + z = -3 24) 4x2 - 37x + 18 (x2 + 3x - 6)(x - 4) 25) 28x2 + 45x - 11 (5x2 + 1)(6 - x) 9) 7x + 49 = -7y 2x - 5y = 14 1 33) x ≥ -1 Solve the system of equations. List all solutions as ordered pairs. 26) x2 + y2 = 85 y 10 x + y = -13 5 27) y = x2 - 14x + 49 x + y = 27 -10 -5 28) xy - x2 = -20 x - 2y = 3 5 10 x 5 10 x -5 -10 29) x2 + y2 = 90 x2 - y2 = -72 34) y ≤ 2 y 30) x2 + y2 = 20 y2 = 2x + 12 10 5 Graph the linear inequality. 31) -2x - 3y ≤ -6 -10 y -5 10 -5 5 -10 -10 -5 5 10 x Graph the system of inequalities, and find the coordinates of the vertices. 35) 2x + y ≤ 4 x - 1 ≥ 0 -5 -10 4 y 32) x + y < -6 y 10 4x -4 5 -10 -5 5 10 x -4 -5 -10 2 36) 2x + y ≤ 4 y - 1 ≤ 0 4 39) 3y + x ≥ 0, y + 2x ≤ 10, y ≥ 0 y y 10 8 6 4 2 4x -4 -10 -8 -6 -4 -2 -2 2 4 6 8 x 2 4 6 8 x -4 -6 -4 -8 -10 37) 3x - 2y ≥ -6 x - 1 < 0 5 40) 3y + x ≥ -6, y + 2x ≤ 8, y ≤ 0, x ≥ 0 y y 10 8 6 5x -5 4 2 -10 -8 -6 -4 -2 -2 -5 -4 -6 -8 38) 3y - x ≤ 9, y + 2x ≤ 10, y ≥ 0 -10 10 Graph the inequality. 41) (x - 5)2 + (y - 4)2 > 4 y 8 6 y 4 10 2 -10 -8 -6 -4 -2 -2 2 4 6 8 x 5 -4 -6 -10 -8 -10 -5 5 -5 -10 3 10 x 42) y > x2 + 6 45) x2 + y2 ≤ 49 7x + 5y ≤ 35 y 10 y 10 5 5 -10 -5 10 x 5 -10 -5 -5 5 10 x -5 -10 -10 Graph the solution set of the system of inequalities or indicate that the system has no solution. 43) x2 + y2 ≤ 64 Find the maximum or minimum value of the given objective function of a linear programming problem. The figure illustrates the graph of the feasible points. 46) Objective Function: z = 5x + 8y Find maximum and minimum. x2 + y2 ≥ 49 y 6 4 2 -8 -6 -4 y -2 2 4 6 8x -2 -4 (0, 9) (9, 9) -6 44) y > x2 3x + 6y ≤ 18 (9, 3) (0, 3) y (3, 0) 10 5 -10 -5 5 10 x Find the maximum or minimum value of the given objective function of a linear programming problem. The figure illustrates the graph of feasible points. x -5 -10 47) Objective Function: z = -x - 8y Find maximum. 4 An objective function and a system of linear inequalities representing constraints are given. Graph the system of inequalities representing the constraints. Find the value of the objective function at each corner of the graphed region. Use these values to determine the maximum value of the objective function and the values of x and y for which the maximum occurs. 48) Objective Function z = 12x + 5y Constraints 0 ≤ x ≤ 10 0 ≤ y ≤ 5 3x + 2y ≥ 6 49) Objective Function Constraints 50) Objective Function Constraints z = 3x + 5y x ≥ 0 y ≥ 0 2x + y ≤ 15 x - 3y ≥ -3 z = 6x - 5y x ≥ 0 0 ≤ y ≤ 2 x - y ≤ 3 x + 2y ≤ 6 Solve the problem. 51) Your computer supply store sells two types of laser printers. The first type, A, has a cost of $86 and you make a $45 profit on each one. The second type, B, has a cost of $130 and you make a $35 profit on each one. You expect to sell at least 100 laser printers this month and you need to make at least $3850 profit on them. How many of what type of printer should you order if you want to minimize your cost? 5 Answer Key Testname: 112REVTEST4FALL09 1) 2) 3) 4) 2 × 3 2 × 2 4 × 2 3 × 3 5) 8 8 48 5 -2 16 6 2 8 34 6) 2 3 4 29 4 8 4 68 7) 7 -2 57 0 9 27 8) (0, 6) 9) (-3, -4) 10) No solution 11) (2 - 2y, y) 12) (-1, -2, 4) 13) (3, -4, -3) 14) (5, -1, -5) 15) No solution 16) (z - 2, -2z + 3, z) 1 4 - 17) x + 5 x - 4 18) 3 2 + x - 2 x - 5 19) - 20) 4 3 2 + - 3x + 4 (x + 1)2 x + 1 21) - 22) 23) 24) 25) 5 13 - 2x + 2 x + 4 5 (2x - 4)2 + 5 4 + 2x - 4 x - 3 3 4 - x - 4 (x - 4)2 3x + 7 x2 + 2 - 6 x - 3 7x x2 + 3x - 6 - 3 x - 4 7x - 3 7 - 2 x - 6 5x + 1 26) (-6, -7), (-7, -6) 27) (2, 25), (11, 16) 11 28) (5, 1) and -8, - 2 29) (3, 9), (-3, 9), (3, -9), (-3, -9) 30) (2, 4), (-4, 2), (2, -4), (-4, -2) 6 Answer Key Testname: 112REVTEST4FALL09 31) y 10 5 -10 -5 5 10 x 5 10 x 5 10 x -5 -10 32) y 10 5 -10 -5 -5 -10 33) y 10 5 -10 -5 -5 -10 7 Answer Key Testname: 112REVTEST4FALL09 34) y 10 5 -10 -5 5 10 x -5 -10 35) 4 y (1, 2) 4x -4 -4 36) 4 y (3/2, 1) 4x -4 -4 37) 5 y (1, 9/2) 5x -5 -5 8 Answer Key Testname: 112REVTEST4FALL09 38) y 10 8 6 4 (3, 4) 2 (-9, 0) (5, 0) -10 -8 -6 -4 -2 -2 2 4 2 4 6 8 x -4 -6 -8 -10 39) y 10 8 6 4 2 (0, 0) (5, 0) -10 -8 -6 -4 -2 -2 6 8 x -4 -6 -8 -10 40) y 10 8 6 4 2 (0, 0) (4, 0) -10 -8 -6 -4 -2 -2 (0, -2) -4 2 4 6 x 8 (6, -4) -6 -8 -10 y 10 5 -10 -5 5 10 x -5 -10 41) 9 Answer Key Testname: 112REVTEST4FALL09 42) y 10 5 -10 -5 10 x 5 -5 -10 43) y 6 4 2 -8 -6 -4 -2 2 4 6 8x -2 -4 -6 44) y 10 5 -10 -5 5 10 x 5 10 x -5 -10 45) y 10 5 -10 -5 -5 -10 10 Answer Key Testname: 112REVTEST4FALL09 46) maximum value: 117; minimum value: 15 47) maximum: -20 48) Maximum: 145; at (10, 5) 49) Maximum 33; at (6, 3) 50) Maximum: 19; at (4, 1) 51) order 100 type A printers 11
© Copyright 2026 Paperzz