Math 220 January 22 I. Are the following functions even, odd or neither? 1. f (x) = (ex + e−x )3 2. f (x) = (e−x + ex )2 3. f (x) = sin(x2 ) 4. f (x) = cos(x3 ) 5. f (x) = tan(x) 6. f (x) = csc(x) + sin(x) 7. f (x) = sec(x) + cot(x) II. Solve for a and b. 1. 6 sin2 (x) + 3 cos2 (x) = a cos2 (x) + b 2. 5 tan2 (x) + 4 sec2 (x) = a tan2 (x) + b 3. 7 csc2 (x) + 3 cot2 (x) = a cot2 (x) + b 4. 3 sin2 (x) + 2 = a cos2 (x) + b sin2 (x) III. Simiply the following expressions: 1. sin(π + θ) + sin(θ) 2. sin(π/2 + θ) + cos(θ) 3. sin(π/2 − θ) + cos(θ) 1 4. cos(π/2 + θ) + sin(θ) 5. cos(π/2 − θ) + sin(θ) 6. cot2 (θ + 5π/6) − csc2 (θ + 5π/6) 7. cos2 (π + θ) + sin2 (θ − π) IV. Graph the following functions: 1. y = 2 tan(−x) 2. y = sec(−x) 3. y = − csc(x + π) 4. y = sec(x + π/2) 5. y = sec(π/2 − x) 6. y = 3 tan(x/2 + π) + 1 1 Solutions I. Are the following functions even, odd or neither? 1. f (x) = (ex + e−x )3 Answer: f (−x) = (e−x + e−(−x) )3 = (ex + e−x )3 = f (x) f (x) is even. 2 2. f (x) = (e−x + e−(−x) )2 Answer: f (−x) = (e−x + e−(−x) )2 = (ex + e−x )2 = f (x) f (x) is even. 3. f (x) = sin(x2 ) Answer: f (−x) = sin((−x)2 ) = sin(x2 ) f (x) is even. 4. f (x) = cos(x3 ) Answer: f (−x) = cos((−x)3 ) = cos(−x3 ) = cos(x3 ) f (x) is even. 5. f (x) = tan(x) 3 Answer: f (−x) = tan(−x) sin(−x) cos(−x) − sin(x) = cos(x) sin(x) =− cos(x) = − tan(x) = f (x) is odd. 6. f (x) = csc(x) + sin(x) Answer: f (−x) = csc(−x) + sin(−x) 1 = + sin(−x) sin(−x) 1 − sin(x) =− sin(x) = − csc(x) − sin(x) = −f (x) f (x) is odd. 7. f (x) = sec(x) + cot(x) Answer: 4 f (−x) = sec(−x) + cot(−x) 1 cos(−x) + cos(−x) sin(−x) 1 cos(x) + = cos(x) − sin(x) = sec(x) − cot(x) = 6= −f (x) or f (x) f (x) is neither. II. Solve for a and b. 1. 6 sin2 (x) + 3 cos2 (x) = a cos2 (x) + b Answer: Use sin2 (x) + cos2 (x) = 1 6 sin2 (x) + 3 cos2 (x) = 6(1 − cos2 (x)) + 3 cos2 (x) = 6 − 6 cos2 (x) + 3 cos2 (x) = 6 − 3 cos2 (x) a = −3, b = 6 2. 5 tan2 (x) + 4 sec2 (x) = a tan2 (x) + b Answer: Use tan2 (x) + 1 = sec2 (x) 5 tan2 (x) + 4 sec2 (x) = 5 tan2 (x) + 4(tan2 (x) + 1) = 5 tan2 (x) + 4 tan2 (x) + 4 = 9 tan2 (x) + 4 a = 9, b = 4 3. 7 csc2 (x) + 3 cot2 (x) = a cot2 (x) + b Answer: 5 Use 1 + cot2 (x) = csc2 (x) 7 csc2 (x) + 3 cot2 (x) = 7(1 + cot2 (x)) + 3 cot2 (x) = 7 + 7 cot2 (x) + 3 cot2 (x) = 7 + 10 cot2 (x) a = 10, b = 7 4. 3 sin2 (x) + 2 = a cos2 (x) + b sin2 (x) Answer: Use 1 = sin2 (x) + cos2 (x) 3 sin2 (x) + 2 = 3 sin2 (x) + 2(sin2 (x) + cos2 (x)) = 5 sin2 (x) + 2 cos2 (x) a = 2, b = 5 III. Simiply the following expressions: 1. sin(π + θ) + sin(θ) Answer: Use sin(π + θ) = − sin(θ) sin(π + θ) + sin(θ) = − sin(θ) + sin(θ) =0 2. sin(π/2 + θ) + cos(θ) Answer: Use sin(π/2 + θ) = cos(θ) sin(π/2 + θ) + cos(θ) = cos(θ) + cos(θ) = 2 cos(θ) 3. sin(π/2 − θ) + cos(θ) Answer: 6 Use sin(π/2 − θ) = − cos(θ) sin(π/2 − θ) + cos(θ) = − cos(θ) + cos(θ) =0 4. cos(π/2 + θ) + sin(θ) Answer: Use cos(π/2 + θ) = − sin(θ) cos(π/2 + θ) + sin(θ) = − sin(θ) + sin(θ) =0 5. cos(π/2 − θ) + sin(θ) Answer: Use cos(π/2 − θ) = − sin(θ) cos(π/2 − θ) + sin(θ) = − sin(θ) + sin(θ) =0 6. cot2 (θ + 5π/6) − csc2 (θ + 5π/6) Answer: Use 1 + cot2 (x) = csc2 (x) =⇒ cot2 (x) − csc2 (x) = −1 cot2 (θ + 5π/6) − csc2 (θ + 5π/6) = = −1 7. cos2 (π + θ) + sin2 (θ − π) Answer: Use cos(π + θ) = − cos(θ) and sin(θ − π) = − sin(θ) cos2 (π + θ) + sin2 (θ − π) = (− cos(θ))2 + (− sin(θ))2 = cos2 (θ) + sin2 (θ) =1 IV. Graph the following functions: 7 1. y = 2 tan(−x) Answer: 10 5 -6 -4 -2 2 4 6 2 4 6 2 4 6 -5 -10 2. y = sec(−x) Answer: 6 4 2 -6 -4 -2 -2 -4 -6 3. y = − csc(x + π) Answer: 5 -6 -4 -2 -5 4. y = sec(x + π/2) 8 Answer: 6 4 2 -6 -4 -2 2 4 6 2 4 6 2 4 6 -2 -4 -6 5. y = sec(π/2 − x) Answer: 5 -6 -4 -2 -5 6. y = 3 tan(x/2 + π) + 1 Answer: 20 10 -6 -4 -2 -10 9
© Copyright 2026 Paperzz