SEMMELWEIS PETER PAZMANY UNIVERSITY CATHOLIC UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund *** **Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben ***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 1 semmelweis-egyetem.hu ORGANIC AND BIOCHEMISTRY (Szerves és Biokémia ) Nucleophilic and electrophilic; ionic, radical; pericyclic reactions (Nukleofil és elektrofil; ionos és gyökös; periciklusos reakciók) Compiled by dr. Péter Mátyus with contribution by dr. Gábor Krajsovszky Formatted by dr. Balázs Balogh 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 2 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Table of Contents 1. Concerted reaction 4 – 2. Pericyclic reactions 5 – 12 3. Diels-Alder reaction 13 – 13 4. Reactions in Organic Chemistry 14 – 15 5. Radical Reactions 16 – 37 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 4 3 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Concerted reaction Definition This reaction takes place in one step (without formation of any intermediates), by changing two or more bonds. Changings happen either by synchronous or asynchronous ways. Types: - through a cyclic transition state: pericyclic reactions - not through a cyclic transition state e.g., SN2 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 4 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Pericyclic reactions A pericyclic reaction is a chemical reaction in which concerted reorganization of bonding takes place throughout a cyclic array of continuously bonded atoms. It may be viewed as a reaction proceeding through a fully conjugated cyclic transition state. The number of atoms in the cyclic array is usually six (other numbers are also possible). - Cycloaddition - Electrocyclic reactions - Sigmatropic rearrangements - Cheletropic reactions 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 5 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Fukui - Woodward - Hoffmann Principle of conservation of orbital symmetry Woodward - Hoffmann's rules - Are valid for concerted reactions only - There are allowed and forbidden reactions • the allowed reaction might take place otherwise: a theory is not the proof for itself • however, a forbidden reaction can not take place according to this mechanism 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 6 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Application to cycloadditions: There are three possible ways - FMO - Hückel-Möbius - Correlation diagram The fragment molecular orbital method (FMO) is a computational method that can compute very large molecular systems with thousands of atoms using ab initio quantum-chemical wave functions. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 7 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu HOMO Butadiene LUMO Ethylene LUMO Butadiene HOMO Ethylene LUMO Ethylene antibonding interaction HOMO 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 Ethylene 8 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Suprafacial reaction: the new bond is formed on the same side of the π bond (or conjugated system) present in the substrate. Antarafacial: the new bond is formed across the opposite sides of the π bond (or conjugated system) present in the substrate. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 9 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu π2s + π2a is allowed LUMO Ethylene HOMO Ethylene HOMO Ethylene LUMO Ethylene 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 10 Organic and Biochemistry: Pericyclic and radical reactions π4s + π4s semmelweis-egyetem.hu HOMO antibonding π6s + π4s LUMO HOMO π8s + π2s LUMO HOMO LUMO 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 11 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Selection rule: a. (4q+2)s and (4r)a if the total number of the components is odd e.g., [π14a + π2s] 2011.11.27.. (4q + 2)s 1 (4r)a 0 (q = 0) TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 allowed 12 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu [4+2] Diels-Alder reaction O + H O O O H O H3C CH3 + H O + H endo CH2 COOR COOR H 2011.11.27.. exo H TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 + H CH3 H COOR 13 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Reactions in Organic Chemistry Classification of reagents - Nucleophilic reagents HO Electrophilic reagents (CH3)C Radical reagents 11/27/2011. H2O + CH3 + RO NO 2 - - ROH + H Br RS + RSH AlCl 3 NH3 BF3 - NO 2 - CN - Br CH2 Cl TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 14 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Substitution: A B + C (or a reagent which can provide C) Addition: A + Elimination: A B Rearrangement: A (isomerisation) B 11/27/2011. B C A C B (or a derivative of B) A B C A + C A C TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 + C B C B 15 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Radical Reactions 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 16 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Li2 Be2 B2 C2 N2 O2 F2 2σu Energy → 1πg 2σg 1πu 1σu 1σg The variation of the orbital energies of Period 2 homonuclear diatomic molecules. Only the valence shell orbitals are shown. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 17 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Stabilization of radicals by alkyl substituents DE kcal/mol VB formulation of the radical R• H H3C H 104 H H H H3C H2C H 98 H H H H H H H H H H 9 no-bond resonance forms H H H H 2011.11.27.. H 6 no-bond resonance forms H 92 H H H H H i.e., 1 no-bond resonance form per Hb H H (H3C)3C H H H 95 H H H H H H H (H3C)2HC H H H H TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 18 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Stabilization of radicals by unsaturated substituents DE kcal/mol H 98 H 89 H 11/27/2011. VB formulation of the radical R• 89 TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 19 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu *C=C E 2pz *C=C (1st interaction) C=C n 2pz 2pz 1/2 the delocalization energy C=C (2nd interaction) localized MOs delocalized MOs Stabilization by overlap of a singly occupied 2pz AO with adjacent parallel 11/27/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 localized MO - C=C or *C=C- MOs. 20 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu +H 3 radical 2 radical 1 radical CH3 CH2 CH2 + CH3 CH3 C CH3 ΔH = +423 kJ mol-1 ΔH = +413 kJ mol-1 Potential energy 10 kJ mol-1 CH3 CH3 CHCH2 H CH3 CHCH3 +H Potential energy 1 radical +H 22 kJ mol-1 ΔH = +400 kJ mol-1 ΔH = +422 kJ mol-1 CH3 CH3 CH2 CH3 (a) 11/27/2011. CH3 CHCH3 (a) Comparison of the potential energies of the propyl radical (+H•) and the isopropyl radical (+H•) relative to propane. The isopropyl radical (a 2 radical) is more stable than the 1 radical by 10kJ mol-1. (b) Comparison of the potential energies of the tert-butyl radical (+H•) and the isobutyl radical (+H•) relative to isobutane. The 3 radical is more stable than the 1 radical by 22 kJ mol-1. (b) TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 21 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Vibration Translation Translational, rotational and vibrational degrees of freedom for a simple diatomic molecule. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 22 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Transition state Br H CH 3 Potential energy Transition state Cl H CH 3 Eact = +16 kJ H Cl + CH4 Reactants Cl mol-1 + CH3 ΔH = +8 kJ mol-1 Products Potential energy H Eact = +78 kJ mol-1 Br + CH3 ΔH = +74 kJ mol-1 + CH4 Reactants Reaction coordinate (a) Br Products Reaction coordinate (b) Potential energy diagrams for (a) the reaction of a chlorine atom with methane and (b) the reaction of a bromine atom with methane. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 23 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Potential energy 2 Cl ΔH = Eact = +243 kJ mol-1 Cl Cl Reaction coordinate Potential energy diagram for the dissociation of a chlorine molecule into chlorine atoms. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 24 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Potential energy 2 CH3 ΔH = -378 kJ mol-1 Eact = 0 CH3 CH3 Reaction coordinate Potential energy diagram for the combination of two methyl radicals to form a molecule of ethane. 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 25 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu The stereochemistry of chlorination at C2 of pentane (S)-2-Chloropentane (50 %) 2011.11.27.. Trigonal planar radical (achiral) TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 (R)-2-Chloropentane (50 %) 26 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu The stereochemistry of chlorination at C3 of (S)-2-chloropentane (S)-2-Chloropentane (2S,3S)-2,3-Dichloropentane (chiral) 2011.11.27.. Trigonal planar radical (achiral) TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 (2S,3R)-2,3-Dichloropentane (chiral) 27 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Radical reactionsThermochemistry I. reaction ΔH = -BDE (products) - [ -BDE (reactants)] Halogenation of methane H3C—F + X• → H3C• + HX X—X + •CH3 → X• + CH3—X F—F Cl —Cl Br —Br I —I H —F H —Cl H —Br H —I 2011.11.27.. → → → → → → → → (1) (2) chain propagation BDE (kcal/mol) 2 F• 38 2 Cl• 58 2 Br• 46 2 I• 36 H • + F• 136 H• + Cl• 103 H• + Br• 87 H • + I• 71 TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 28 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Radical reactions Thermochemistry II. R—H 2011.11.27.. BDE (kcal/mol) H3C—H 104 1° C —H 98 2° C —H 94 3° C —H 91 H3C —F 108 H3C —Cl 83 H3C —Br 70 H3C —I 56 TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 29 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Radical reactions Thermochemistry III. CH3 BDE (kcal/mol) H + Cl 104 CH3 Cl 58 + H 83 HCl 103 186 162 ΔHr = - 186 - (-162) = - 24 kcal/mol The first step of chain propagation for halogenation: C bond H3C—H 3° C—H 2011.11.27.. H + C X X = Cl -103-(-104) = +1 -103-(-91) = -12 ΔHr TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 + H X X = Br -87-(-104) = +17 -87-(-91) = +4 30 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Conclusion: The first step of chain propagation is endothermic process, but steps (1) and (2) together make exothermic reaction. Br is a much more selective radical, than Cl, considering especially the tertiary substrates (not for primary substrates). H3C—F + X• → H3C• + HX X—X + •CH3 → X• + CH3—X C 2011.11.27.. H + X (1) (2) C + chain propagation H TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 X 31 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Radical reactions Thermochemistry IV. X X + CH3 CH4 + X H3C X + X CH3 + HX (2) (1) Energy profile of the chain propagation steps of halogenation: +33 I +17 +1 0 13 Br -7 Cl F2 → extremely reactive → explosion I2 → endothermic → does not react Cl2 → of high reactive → is not selective Br2 → sluggish → selective (with reactive substrate only) -25 F -100 2011.11.27.. -102 TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 32 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Radical reactions Thermochemistry V. Cl 2 CH3 CH2 CH3 CH CH2 Cl CH3 45% 55% Cl CH3 CH2 CH3 Br2 CH3 CH2 CH3 CH CH2 Br CH3 < 1% > 99% Br 2011.11.27.. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 33 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu CH4 Cl2 -HCl CH3Cl Chain starterreakció reaction: Láncindító Cl2 -HCl CH2Cl2 Cl2 Láncvivő reakció Chain carrier reaction: CH4 + Cl CH3 + Cl2 Chain breakerreakció reaction: CH3 + Cl Láncletörő Cl + Cl CH3 + CH3 11/27/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 Cl2 -HCl CHCl3 CCl4 243 kJ mol-1 2Cl CH3 Cl2 -HCl + CH3Cl + HCl Cl 3 kJ mol-1 -108 kJ mol-1 CH3Cl 350 kJ mol-1 Cl2 -243 kJ mol-1 CH3 CH3 -369 kJ mol-1 34 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu E CH3 CH3 CH CH3 + Cl CH3 H# CH3 CH CH2 + HCl CH3 CH3 C CH3 + HCl reakciókoordináta reaction coordinate E CH3 CH3 CH CH2 + HBr CH3 CH3 CH3 CH H# CH3 C CH3 + HBr CH3 + Br reaction coordinate reakciókoordináta 11/27/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 35 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu bromine brómgyökradical képződproduction: és : R O O R 2 RO RO ROH + + HBr Br Br CH3 CH CH HB r Br CH3 CH CH2 1-bromo-propane 1-brómpropán ~80~80% % Br propane propén Br CH3 CH2 CH2 H Br Br + Br 11/27/2011. CH3 CH CH3 allyl-type radical allil-típusú gyök TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 + Br 2-bromo-propane 2-brómpropán ~2~20% 0% Br2 h -HBr cyclohexane ciklohexén CH3 CH2 CH2 + Br + Br Br 3-bromo-cyclohexane 3-brómciklohexén 36 Organic and Biochemistry: Pericyclic and radical reactions semmelweis-egyetem.hu Further radical reactions by N-bromo-succinimide O O CH2 CH CH3 + N Br h CH2 CH CH2 Br + O O propén propane N-brómszukcinimid N-bromo-succinimide allil-bromid allyl-bromide szukcinimid succinimide O O H3C CH3 + H3C N 11/27/2011. Br + Br O acetone NH N H O O TÁMOP – 4.1.2-08/2/A/KMR-2009-0006 O 37
© Copyright 2025 Paperzz