AMERICAN SOCIETY OF CIVIL ENGINEERS Founded November 5. 1 8 5 2 TRANSACTIONS Paper No. 2222 __ CHARACTERISTICS OF HEAVY RAINFALL IN NEW MEXICO AND ARIZONA BY LUNA B. LEOPOLD,~ JUN.AM. SOC. C. E. WITH DISCUSSION n y MESSI~S. LAWRENCE PRATT, L. L. HARROLD AND A. J. DICKSON, JAMESG I I ~ A N DCLARENCE , 9. JARVIS,PAULV. HODGES, EDGAR E. FOSTER, R. W D A V E N P ~ H A.TI<. , SIIOWALTER, WALTER B. LANGBEIN EMILP. SCHULEEN, AND LUNAB. LEOPOLD. SYNOPSIS Seasonal differences in storm types are typical of New Mexico and Arizona. Summer storms ordinarily are of small areal extent and are characterized by high-intensity. rainfall in a well-defined pattern with relation to time. Winter storms covcr large areas and usually are of low intensity. I n this paper, results of frequency analyses of one-day rainfalls are presented for all stations in New Mexico and Arizona, the records of which exceed 15 years in length. The relation of rainfall frequency to geographic position and topographic relief are discussed, and recommendations are made for the use of these data for design purposes. INTRODUCTION I n 1935 when the late David L. Yarnell, M. Am. Soc. C. E., published2 an analysis of rainfall intensity-frequency data, there were only five rainfaI1intensity gages in and near the states of New Mexico and Arizona, the records of which were sufficiently long to be used in the analysis. That number represented one intensity gage per 47,000 sq miles. Since then the U. S. Weather Bureau has launched an extensive program for the collection of intensity records in these, as well as in other, states, which eventually will furnish data needed for engineering designs. The data from these newly installed gages have been published consecutively since January, 1940, and have supplied basic information for studies of intensity patterns, but the records are too short for frequency studies. To help fill the urgent need for detailed recurrence-interval data on rainfall in New Mexico and Arizona, the present study was made of the records of rainfall collected by standard nonrecording gages of the Weather Bureau. NOTE.-Published in February, 1943. Proceedinos. Positions and titles given are those in effect when the paper or discussion was received for publication. 1 Aviation Cadet, U. S. Army Air Forces, Los Angeles, Calif. “Rainfall Intensity-Frequenoy Data.” by David L. YarneU, Miscellaneous Publication No. 80.4. U. 8.D. A. August, 1935. * 837 838 I N E W MEXICO AND ARIZONA I n addition to data on frequency of heavy rainfalls, it usually is necessary, in the design of certain engineering structures, to assume values of area covered by the design storm and to determine a pattern of rainfall intensity before a hydrograph of runoff can be constructed. With these requisites in view, some data on areal patterns of summer storms and rainfall-intensity records were included to add to already published data pertinent to the adoption of a design storm, with particular reference to a small watershed. Due to the limited areal extent of summer-type rainfall in New Mexico and Arizona, large watersheds usually are capable of producing the largest floods as a result of prolonged rainfall covering large areas, or in these states, a typically wintertype storm. STORM TYPES The normal rainy seasons in the Southwestern States are July to September, inclusive, and December to March. Valley areas usually receive the highest monthly precipitation in July, August, and September, whereas in the high mountain areas the greatest monthly precipitation occurs from December through March, mostly in the form of snow. These seasonal variations in rainfall amounts are related to storm characteristics and sources of moisture. Winter precipitation generally is the result of frontal activity associated with influx of cold air masses, modified Polar-Pacific or Polar-Continental. Polar-Pacific air picks up moisture from the ocean and moves into the Southwestern States usually as a relatively moist and cool mass that tends to underrun the warmer dry air. If the moist air mass is forced upward over the mountain ranges, continuous showers or nearly steady precipitation in the form of rain or snow is recorded over a period of 48 hr or more. Modified Polar-Pacific air may move into Arizona and New Mexico from the south, west, or northwest. Invasion from the south or southwest often results in a relatively stationary east-west front which causes widespread, low-intensity rainfall in these states. If the moist air comes from the northwest, heavy snowfall may be recorded on the north rim of the Grand Canyon and on San Francisco peaks, followed by squalls in southeastern Arizona and southwestern New Mexico. Polar-Continental air usually comes from the northwest and it tends to lose its moisture in northern Utah or Colorado. Such air masses are relatively dry and cold when they reach New Mexico and Arizona, and they do not constitute an important source of moisture in these states. The Mogollon Rim, a southwest-facing escarpment extending diagonally across central Arizona, receives most of its winter precipitation from the modified Polar-Pacific air masses. This conclusion is borne out by the flood history of the Gila River which drains the Mogollon escarpment and the mountainous country of west-central Arizona and southwestern New Mexico. Generally, high winter rainfalls in the headwaters of the Gila River are preceded by rain along the southern coast of California. The source of winter precipitation at least partly explains the fact that winter storms generally affect large areas which receive rainfall at low intensities for periods of two or three days or even a week. Although, in a NEW MEXICO AND ARIZONA 839 general way, the total winter precipitation increases with elevation, i t is influenced to a'great extent by the topographic relief. These characteristics of winter rainfall contrast with those of summer rainfall, which ordinarily is not the direct result of frontal activity. Summer storms usually are of the thunderstorm type with high intensities covering relatively small areas. Ordinarily the moisture is derived originally from the Gulf of Mexico and is carried to Mexico by subtropical easterlies where convection causes the warmth and moisture to rise to high levels over the Mexican Plateau. This air mass is deflected northward and enters the Southwestern States as a moist tongue a t high levels, crossing the Mexican border usually west of El Paso, Tex., and east of Yuma, Ariz. Analyses by H. Wexler and J. Namias3 show that the path of this moist tongue varies from one season to another, and its position is reflected in the summer rainfall in New Mexico and Arizona. The mechanism by which this vapor is precipitated usually is a combination of convection caused by local heating of the lower layers of air, and orographic influences of topographic relief. Surface heating of the ground and adjacent layers of air during a summer day tends t o increase the steepness of the lapse rate (vertical temperature gradient), and convective instability may result in local precipitation. This process usually results in instability above a mountain slope more quickly than above a valley plain, because the temperature of the ground a t the two locations increases at about the same rate. Owing to the higher elevation of the point on the mountain, the vertical temperature gradient above that point is greater than that above the valley floor, and i t is more probable that rain will fall on the mountain slope than over the valley. Infrequently, sections of New Mexico and Arizona experience a general summer storm characterized by moderate rainfall over large areas and scattered local areas of heavy precipitation. Whereas the local summer storms are mostly of the convective orographic type, the general storm usually is associated with frontal activity. The effect of topographic relief is relatively small, although, together with convective lifting, i t may tend to promote local high intensities in the area of general rain. D a t a on intensities and short-period isohyetal maps of storms of this type are meager. The most adequate discussion of such a storm is the report of the U. s. Engineer Office on the storm of August 13-14, 1940.' Storms of the general type caused the floods of the Pecos and Gila rivers in September, 1941, the Bill Williams River flood of September, 1939, and the San Pedro River flood of September, 1926. I n general, the available records indicate that the average intensities for durations of 1 hr or less are considerably less in the general storm than in the locz~lsummer storms. I n the former type, however, the area covered by intense rainfall tends to be somewhat greater, and the rainfall extends over a longer time period. One of the main points of difference apparently lies in the importance of frontal activity as a causal factor. a "Mean Monthly Isentropic Charts and Their Rclation to Departures of Summer Rainfall." by H. Wexler and J. Namias, Transactions, Am. Geophysical Union, Pt. I, 1938,pp. 164-170. 4 "Hydrologic D a t a S t o r m of August 13-14, 1940, Arizona and New Mexico," mimeographed September, 1941, Lo8 Angeles Dist., U. S. Engr. Office, Los Angeles, Calif. 840 NEW MEXICO A N D ARIZONA Because of the relative infrequence of important storms of the general type, most of the high rainfalls experienced in 24-hr periods in summer and comprising the point-rainfall data analyzed in the present study may be assumed to be of the local storm type. Because of the lack of data, adequhte analyses of the area covered by the different storm types are not included in this paper, and thus the recurrence-interval data presented subsequently in Tables 2 and 3 are primarily applicable for design purposes to small watersheds. AREALPATTERN OB SUMMER STORMS The relatively great instability in mountainous country at least partly explains the areal distribution of summer rains in the basin and range topography typical of many parts of New Mexico and Arizona. Rainfall records show that summer rainfall in the valley areas and at the base of the mountains is erratic and spotty, whereas at the crest of the higher mountains the total summer rainfall tends t o be similar at all points of a given elevation and tends to increase with elevation. Field observations indicate t h a t in any one summer storm the center of greatest precipitation usually is near the base of the mountain slope. The areal extent of ordinary summer thunderstorms in New Mexico and Arizona is extremely variable, but the center of high intensity is usually about 5,000 acres. It is important to note, however, t h a t many storms of relatively small area occur nearly simultaneously a t widely separated points within a n area as large as the State of New Mexico. Storms a t any particular location evidently are associated with relatively widespread instability, or the influx of moisture into the entire region. Inspection of any monthly summary of precipitation published in Climatological Data6 shows the regional coincidence of rainfall, but studies of the storms at any given station demonstrate that the storms were separate entities of small areal extent. There is some evidence that the area covered by rainfall in a given summer storm increases with the total precipitation in the storm center, but only a few good isohyetal maps of individual storms are available. It appears certain that the storms occurring in east-central and southeastern New Mexico in the Pecos River basin cover larger areas than storms in any other section of the two states, and also any given amount of storm rainfall occurs there more frequently than in other sections of these states. This presumably may be attributed to the proximity of the Pecos River basin to the source of summer moisture, the Gulf of Mexico, and to the fact that the Pecos area sometinies is subject to the marginal effects of tropical hurricane disturbances that move into Texas from the Gulf. Samples bf the depth-area data available for local summer storms are presented in Table 1. Storm movement and lack of intensity data for various points within the storm area render this type of depth-area data inadequate for making assumptions of the depth-area-time pattern for a design storm, b u t in most sections of the Southwestern States no better data than the samples 1 C l i m ~ t d ~ g i cData, al published monthly by the U. S. Weather Bureau. 841 NEW MEXICO A N D ARIZONA - TABLE AREA, IN SQUARE MILES, COVERED BY VARIOUS QUANTITIESOF RAINFALL (SUMMER STORMS) - Locution -1 71 3 12 72 I Date RAIN, IN INCEIES 71 Pima, Ariz.. .......... Laa Cruces N. Mex.. ... Sierra Ancda. Arir ...... Rodeo, N. M e x . . ...... 92 a3 Z4 8 ............ 38 7.2 2.6 b:F; b:i . . . . . . . . . 1 ............ 55 __-__--____September August August August 16, 29. 5, 13, 132 1939 1935 1939 1940 39 . . . . 5.2 .. . iii i:4 11 , 4 . 87 26 Z8 1.5 , . in Table 1 are available. A complete report of depth-area-time relations of storms of these states must await the collection of more records. RAINFALL INTENSITY ~ Winter-type storms in New Mexico and Arizona usually produce rainfall at relatively low intensities. Summer rainfalls of the thunderstorm type characteristically are intense and of short duration, with tlie period of highest intensity at, or soon after, the beginning of rainfall. Except in unusual cases, the periods of high intensity are separated by lulls in the downpour, the period of uninterrupted intense rain lasting less than one-half hour. I n practically all cases the intensity decreases more or less gradually to the end of the rain. Mass curves of the most intense rainfalls on record at recording gages in New Mexico and Arizona are plotted in Fig. 1( a ) . h h n y summer rains have some low intensity fall prior to the most intense portion, but in general the curves i n Fig. l ( a ) are representative of the heaviest rains recorded in the Southwest. It is important to note the general similarity of pattern of mass curves of storms from widely separated localities. From the records of beginning and ending of rainfall observed a t Weather Bureau stations where standard rain gages are used, i t is possible to collect additional records of heavy rainfalls of short duration. Fig. l(b) presents the results of a systematic search through the original records of 162 stations in New Mexico, comprising 4,656 station-years and certain additional Arizona records, in an effort to determine the minimum duration of heavy rainfalls. The key to numbered points is given in Table 2. No rain less than 2.00 in. or of durations greater than 14 hr is platted, and many 4-in. rains of duration greater than 6 h r are omitted. The envelope curve drawn in Fig. l(b) indicates the maximum rainfall of a given duration that might reasonably be expected in the Southwestern States. The mass curves of Fig. l(a) indicate the type of intensity pattern that probably comprised the rainfall totals shown in Fig. l(b), and from these two graphs an approximate rainfall histogram can readily be taken for purposes of hydraulic design of engineering structures. It is important to note that none of t h e rains platted in Fig. l ( b ) occurred in midwinter, and relatively few occurred outside the season of summer rains, July to Scptember. It may be surmised from this fact that most of these intense rains covered relatively small areas, typical of summer-type storms. 842 NHW MEXICO AND ARIZONA (a) MASS CURV 0 1 2 FIQ.~.-RECORDUO F HEAVY &INFALL IN NEW MEXICOAND ARIZONA (FEOUORIQINALNOTBBos- WBATHBRBUREAUOBUBRVBES) 843 NEW MEXICO AND ARIZONA Na - TABLE KEY I Location TO Date Cerro, N. Mex. .......... August E l Paso, Tex.. . . . . . . . . . . J u l y AuQuet L a s Cruces. N. Mex.. Hermosa. N. Mex.. ...... A u i u s t July Artesia. N. Mex.. Casn Grande R u i n , A r k August Solnno, N. Mex.. July Albuquerque. N. Mex.. ... October Ione, N. Mex ............ August W h i t e Sands Nnt’l Monument, N. Mex.. ....... September 11 Crown King, Aris.. ...... August 12 Sierra Ancha. Ariz.. ...... August 1 3 Carnegie Desert Lab., Aria. J u l y 14 Crown King. Ariz.. ...... August 15 T a t u m . N. Mex .......... Sentember 16 Hobbs,.N. Mex.. ........ J u i e 17 E l e p h a n t Butte, N. Mex.. August August 18 S a n t a Mnrgueritn. Aria. 19 Clovis. N. &lex.. ........ August 20 Diener, N. Mex. ......... J u l y 21 L a s Cruces, N. Mex.. .... September 22 Clovis, N. Mex.. ........ J u l y 23 Obar. N. Mex.. ......... J u l y 24 Ft. Sumner, N. Mex ...... August 25 Corona. N. Mex.. ....... August 26 Mosquero, N. Mex.. ..... M a y 27 Hope, N. Mex.. ......... August 28 S a n t a Rosa. N. Mex.. .... M a y 29 Roy, N. Mex.. .......... M a y 30 Elk, N. Mex.. September 31 Ancho. N. M e x . . ........ J u n e 32 Sierra Ancha. Aria.. ..... September 33 Mnrinette. Aris.. ........ August 34 L a k e Alice, N. illex.. . . . . August 35 S a n Marcial, N. Mex.. ... August July 36 Lindrith, N. Mex.. 1 2 3 4 5 6 7 8 9 10 .... I ....... . ........ .. .......... ...... - RAINFALLDATAIN FIG. l ( b ) No -1922 1881 1935 1925 1911 1906 1929 1865 1923 1941 1918 1939 1910 1927 1927 1918 1898 1935 1912 1924 1941 1930 1906 1908 1934 1938 1908 1930 1938 1906 1937 1933 1939 1935 1895 1931 Location I Date 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 GO 61 62 63 64 65 66 67 68 69 70 71 72 SEASONAL DISTRIBUTION OF HIGH RAINFALLS A separate analysis furnishes additional information on the seasonal distribution of high rainfalls. A tabulation was made of all rainfalls exceeding 2.00 in. in a 1-day period for 268 stations in the two states, comprising a total of 7,048 station-years of record. Stations were grouped into eight general regions by dividing each state approximately into four quadrants. For each region, rainfall depths were platted against the day of the year on which each occurred. An index was thus derived that weights both the frequency and magnitude of high rains, and is platted for the four regions in New Mexico and four regions in Arizona in Fig. 2. The index was derived by dividing the year into periods of ten consecutive days, and the rainfall magnitude into categories of half inches, beginning with 2.00 t o 2.50 in., 2.50 to 3.00 in., and so forth. For a given 10-day period including all stations, the number of rainfalls t h a t fell in each magnitude category was multiplied by the average value of the magnitude category, and the sum of the products times 100, divided by the station-years of record for the region, was used as the index of magnitude-frequency. For example, in the upper Gila River and southeastern Arizona area, 35 stations were used, comprising 976 station-years of recobd. Between January 1 and January 10, there were five rains between 2.00 in. and 2.50 in. in magnitude, and one rain between 5 4 I (0) NEW MEXICO;Number of. Upper Rio Grande watershed and northwestern New R l e x ~ c o Lower Rio Grnnde watershed and bouthuestern New Memco Canadtan River watershed and northeastern New Mexico Pecos River watershed and Southeastern New Mexico F I G . 2 . 4 B A 0 O N A L VARIATION O P Stations 37 25 39 47 Station-yeaw 925 aoz 1.068 1.227 RAINFALLFREQUENCY (MAQMTWD~ 11 10 9 8 aUl e 3 72 I 6 $ 0 e LL 5 % x U 4 - 3 2 1 0 10 9 8 7 U 0 e 6 G ? ) . 5 5 m t LL 4 % x w 3 - 2 1 December 10 20 (b) ARIZONA:Number of: Stations Bl a INDlX Verde River watershed and northwestern Arizona Lower Gila River watershed and southwestern Arizona Little Colorado River watershed and northeistern Arizona Upper Gila River watershed and southeastern’Arisona DBRIVFAD FROM RAIN8 EXCHl6lDINQ 2.00 IN. IN ONFA DAY) Station-years I I 43 0 958 671 846 NEW MEXICO AND ARIZONA 5.50 in. and 6.00 in. T h e index platted a t the midpoint of the period January (1 X 5.75) = 1 to 10 was 100 X (5 X 2.25) + 976 It was necessary to divide by the number of station-years of record to make the computed indexes of the various regions comparable for platting, and the multiplication b y the arbitrary value 100 was simply for the purpose of making the platted indexes whole numbers to facilitate platting and comparison. The platted indexes in Fig. 2 show that the eastern section of New Mexico experiences high rainfalls more frequently than the western section of the state; but all sections receive high rainfalls predominantly in the summer and fall seasons, whereas November through March is comparatively free of heavy rainfalls. The heaviest rainfalls in western New Mexico occur between the first of July and the middle of August, and again in mid-September. I n Arizona, however, all regions except the northeast quadrant have a high index in summer, whereas in winter only the southeast and northwest quadrants have high indexes. These differences can be explained by the relation of topography, geographic position, and source of moistute. It was stated previously that summer moisture originates in the Gulf of Mexico and moves into New Mexico and Arizona primarily from the south, and that the Pecos Area in southeastern New Mexico sometimes is affected by tropical disturbances that cause great rainfalls in southern and central Texas. It may be expected, therefore, t h a t the eastern section of the state would experience more high rains than the western because of the proximity t o the source of moisture. The southwestern section of New Mexico has a higher frequency-magnitude index than the northwest, since the latter is in the rain shadow of the mountainous southwestern section. The index for regions in Arizona in summer is highest in the mountainous southeast and northwest quadrants, which can be related t o the effect of topography. The index for southwestern Arizona is high in midsummerJuly and August-because of the convective storms that are common over the desert a t that season. Northeastern Arizona is on the plateau in the rain shadow of the Mogollon Rim and the mountainous central belt, and probably for this reason the index is low. I n winter, when moisture is derived from the Pacific Ocean and moves in primarily from the Southwest, the frequency-magnitude index should be high only for the mounttlinous sections of Arieona, the southeast and northwest quadrants, and relatively low in other areas and in New Mexico. The present study supports this hypothesis. FREQUENCY OF HIGH RAINFALLS Recurrence-interval curves were drawn for each standard rain-gage station in New Mexico and Arizona whose records exceed 15 years, and for certain stations of shorter record, in order t o derive values of 24-hr rainfall that may be expected to be equaled or exceeded in a given period of years. These data are useful in the design of engineering structures, especially where it is NEW MEXICO AND ARIZONA 847 necessary to design for a rain greater than has been experienced in the past. The data also indicate the recurrence-interval of rainfalls t h a t have occurred in the past. I n this analysis the highest one-day rainfall in each year of record at t h e station was tabulated, the data arranged in order of magnitude, and the curve platted by the “exceedance interval,” or “California,” method. From the platted curves, the 24-hr rainfall t h a t probably will be equaled or exceeded in 5, 10, 15, 20, 35, 50, 7 5 , and 100 years, was tabulated and the data are presented in Table 3 ( a ) for New Mexico stations and Table 3(b) for Arizona stations. The rainfall data used were recorded by standard nonrecording rain gages maintained by the Weather Bureau. The rainfall depths were taken from the original records on which, in about half the cases, lthe observer had noted the time of beginning and time of ending of the precipitation. By use of these notations of times i t was possible to ascertain the greatest rainfall in a 24-hr period, which was the value used in the frequency array wherever possible. Particularly in the case of summer rain, the precipitation often starts in midafternoon and ends during the night, which is a period of less than 24 hr. Many observers read the gage a t sunset; so, in the foregoing example, if no rain fell on the day following, the sum of the two sunset readings equaled the amount that fell in a 24-hr period. Rains continuing through two or more days could not be broken down accurately to determine the largest amount in a 24-hr period and, therefore, the largest amount recorded for one day was used in the recurrence-interval array. The method used approximates, closely, the actually greatest fall in a 24-hr period, since a large percentage of the high rains fell in summer and lasted less than 24 hr. The characteristics of summer and non-summer precipitation were considered sufficiently distinct and important t o warrant separation in the recurrence-interval determinations. Arrays were made separately for the highest rainfall recorded each year between June 1 and September 30 (the summer period), and the highest rain recorded in each complete year. Certain stations may be expected to experience the same 24-hr rainfall at a given recurrenceinterval in summer as they will experience in the entire year as can be seen in t h e tabulations of 50, 7 5 , and 100-yr frequencies. This simply indicates that t h a t station characteristically received the largest 24-hr rainfalls in the summer period and, therefore, the recurrence-interval curves for summer and all year would be practically identical. Winter values of rainfall amounts probably are somewhat less accurate than summer values owing to the effect of snow. One source of error was the failure of a gage to catch the full snowfall, but probably a more important error was introduced by the general policy of assuming that 1 in. of snow equaled 0.10 in. of precipitation in the form of water. Investigations by the Weather Bureau indicate that, in particular instances, much larger’ amounts of precipitation were assumed by the use of this policy than actually fell. The compilation of a recurrence-interval array necessarily involves some exercise of judgment. I n many cases, particular months were missing from a 848 N E W MEXICO A N D ARIZONA TABLE 3.. FREQUENCY (Data from Records Pub I No Eleva- . Station tlon (feet) Averae annual preclpltation through 1939 l l h:vh AVXXUQB01 RWORDUWD FOR PRBQU~NCY ARRAT ggz) (Lnohea) . 6.767 5,590 Fruitland ............ 3 Farmington .......... Bloomfield........... Aaynea . . . . . . . . . . . . . Tohatchi ........... Crownpoht .......... Gamerco ............ 10 Pt . Winnate ......... 11 McCaffey Ranger Station ............ 12 Bluewater. . . . . . . . . . 13 Ramah .............. 14 San Fidel ............ 15 Black Rock .......... 16 Chama .............. 17 C a m ............... 18 Red River Canyon .... 19 Tres Piedras . . . . . . . . . 20 Aspen Grove Ranch .. 21 Ea& Rock Ranger Station ............ 22 Bateman's Ranch ..... 23 Taoe Canyon ........ 24 Taos ................ 25 Truchas ............. 26 Espanola ............ 34 38 5, .65 6.68 35 5 ,220 5,500 6.600 6 ,800 6.800 6.785 8.997 8.35 8.79 11.80 11.07 11.15 11.94 14.45 25 41 16 24 26 22 48 8.000 6.732 7. 200 6. 100 6.455 7. 851 7. 668 8.956 8.076 9.000 17.77 in.28 13.68 10.37 12.29 22.10 13.98 21.65 16.05 23.38 27 34 15 20 31 44 29 34 40 31 1916-1939 1897-1902; 1909-l917; 19261939 1923; 1924; 1927-1939 8.000 8.900 8.959 8.983 7.936 5.590 15.70 23.48 19.52 12.61 15.55 9.9G 17 31 31 47 31 35 1914-1930 1910-1939 WIO 22.19 18.13 15 38 18.07 22.13 17.60 14.39 28 29 I6 30 16 13 90 29 30 69 Selsor Ranch . . . . . . . . Alamos Ranch ....... Frlioles Canvon ...... Lee's Ranch ......... Santa Pe Canyon ..... Santa Fe ............ 7.328 6. 200 6. 100 8.691 8. 100 6.994 34 35 Stanley ............. Alhuquerqiio ......... 6.317 5. 314 12.20 8.18 36 Laguna ............. 5.840 11.14 37 Estancia ............ 6.300 15.14 26 38 39 MoIntosli ........... Loa Lunns .......... 6.355 12 4.900 13.04 8.4G 61 20 40 41 Tajiqrie ............. Mountainair ......... 7. 100 6.475 19.68 16.03 33 42 43 Datu ............... 7. 85.0 8.556 13.22 12.68 28 37 44 Sooorro ............. 4. 600 10.19 53 46 Sun Marcia1 ......... 4. 447 9.11 83 46 Glorleta Rnnoh ....... 41 Clibrlda Ranger Station ............. 6.300 11.88 23 19 6. 500 14.84 Magdalenu .......... . I _. 18.13 9.06 27 28 29 30 31 32 33 #JemezS p r i n b........ year8 . . . 1 Dulce ............... 2 Aztec ............... 4 5 6 7 8 9 Data (lncludve) - MAXIMUM 1-DAYRam E~ca: 1900-1915; 1917-1939 1895-1901; 1911-1918; 191g1923; 19251939 1893; 1895; 1897; 1904-1915; 1917-1922; 1939 1914-1930; 1933-1939 1905-1939 1910-1917; 192C-1926 1915; 1918; 1923; 1926-1927; 1929-1939 1914-1919; 1921-1939 19221939 1897-1910 NBI . 33 34 1.16 .91 1.34 1.01 22 .79 .95 24 35 15 16 25 18 14 ..87 90 1.16 1.13 1.05 $1 1.23 .94 .97 1.20 1.19 1.11 1.12 1.44 1.10 1.06 1.36 1.20 1.01 1.07 1.20 1.02 1.11 1.10 1.41 1.20 1.68 1.22 1.10 30 31 41 31 31 1.07 1.24 1.04 .93 1.14 1.04 1.22 1.46 1.22 1.08 1.29 1.14 28 27 16 30 16 13 83 1.30 1.34 1.54 1.49 1.89 1.14 1.15 1.46 1.57 1.66 1.63 2.08 1.26 1.29 a7 63 1.32 .95 1.39 25 1.27 1.48 19 1.21 1.35 12 44 1.28 1.16 1.53 1.31 29 31 1.47 1.45 1.78 1.70 28 30 1.19 1.14 1.27 1.31 189jIi894;1896-1897; 1899-1901; 1904- 43 1.19 1.38 1939 1895-1899; 1901; 1904-1900; 1912-1919; 1921-1939 1910-1928 39 1.17 1.38 18 1.10 1.40 18 1.26 1897-1898: 1910-1939' 24 29 15 20 29 37 28 32 33 32 17 1m-im . ....... 1893-1895; 1902-1939 1905; 1909; 1910-1916: 1918-1939 1S95-1900; 1902; 1905; 1007-1909; 19111918; 1920-1929; 1938-1939 1S94; 1912-1926; 1928-1939 1911-1916; 1918-1920; 1922-1939 1924-1939 1910-1930 1939 1905-1907: 1900-1911; 1913-1917; 19231927; 1937-1939 1928-1939 1893-1897; 1899-1901; 1903-1909; 19111939 1910.1918 . 1920-1939 1902-1915; 1917; 1919-1921; 1923; 19281939 1906-1008; 1818-1924; 192fI-1939 1905-1915; 1918-1925; 1927-1931; 1934- . 1W70 1.40 1.93 1.19 1.28 1.40 1.13 1.49 . - L 1 Average of the maximum I 'Average of the maximum 1 by raln rsaorde y rain reoorda Dr th ldlo NEW MEXICO - - - - - - - - - - - - __ 1.40 1.92 1.25 2.00 1.00 !.02 5.00 2.19 !.lo 5.60 1.28 1.12 2.18 1.34 2.35 !SO 2.50 3 1.50 1.78 1.86 5.50 2.30 2.50 1.00 4 5 9 10 i.60 1.60 1.00 1.31 3.50 3.50 3.60 2.55 3.10 4.10 6.60 2.60 3.00 4.12 11 12 13 14 15 16 17 18 19 20 1.65 1.35 .75 .48 :20 ..59 .06 .GO !.GO 2.0 .G9 !.90 .70 .80 1.91 1.83 .G5 .98 1.24 .40 1.51 .58 .66 .70 .78 1.96 '.OO !.50 1.16 1.92 1.43 1.75 2.77 4.95 2.23 2.47 3.77 1.70 1.80 i.50 1.30 1.00 1.70 3.11 3.00 3.35 2.40 2.69 3.32 4.30 2.31 2.62 3.61 1.63 1.40 1.41 1.88 1.80 1.40 1.95 3.36 3.30 2.83 1.26 3.48 2.50 2.90 3.75 5.00 2.48 2.85 3.90 1.71 1.50 1.50 1.89 ?.lo 1.74 1.20 1.46 1.31 1.50 1.28 3.25 1.85 1.67 2.28 2.20 2.29 2.60 2.16 1.88 1.81 1.62 1.92 1.70 2.59 1.02 1.87 2.31 1.92 1.70 2.62 1.91 1.89 2.78 2.00 1.74 2.69 2.11 1.92 2.40 2.01 1.74 2.75 1.98 1.92 2.90 2.05 1.78 2.75 2.20 1.99 1.50 1.10 1.78 2.82 1.00 1.99 3.00 2.10 1.80 2.82 2.28 21 22 23 24 25 26 2.52 2.91 3.25 2.83 3.43 2.19 2.58 1.68 1.70 3.35 3.25 3.79 2.21 2.98 2.70 3.19 3.46 2.99 3.52 2.30 2.81 2.80 4.11 3.60 3.41 3.90 2.30 3.39 2.89 3.46 3.65 3.1C 3.GC 2.4( 3.1: 2.93 4.60 3.89 3.63 4.10 2.40 3.95 3.00 3.68 3.80 3.20 3.70 2.50 3.40 3.05 4.95 4.10 3.80 4.20 2.50 4.50 27 28 29 30 31 32 .33 2.59 3.02 2.85 3.35 2.85 3.95 3.09 3.89 3.09 4.69 3.3: 4.5( 3.33 5.45 3.50 5.00 3.50 6.00 34 35 1.99 2.69 2.06 3.00 2.10 3.28 2.11 3.53 2.17 3.75 36 2.45 2.45 2.71 2.71 2.90 2.9@ 3.1( 3.10 3.21 3.21 37 2.58 2.15 2.50 2.10 2.78 2.21 2.93 2.23 3.12 2.35 3.25 2.31 3.4@ 3.61 2.41 2.4( 3.70 2.50 3.89 2.48 3.90 2.57 38 39 2.60 2.46 2.79 2.65 2.80 2.61 2.97 2.78 3.18 2.90 3.30 2.99 3.45 3.11 3.51 3.15 3.7' 3.3 3.79 3.35 4.00 3.43 4.00 3.49 40 41 1.7: 2.0: 1.81 1.7E 1.82 2.19 1.90 1.82 1.90 2.29 2.02 1.90 2.02 2.44 2.11 1.95 2.11 2.57 2.2' 1.91 2.21 2.68 2.30 2.00 2.30 2.76 42 43 2.5! 2.41 3.10 2.71 3.51 3.37 4.50 3.87 5.15 4.51 6.2C 5.00 7.00 44 3.50 4.30 4.44 5.00 5.U 6.01 6.0C 6.70 6.70 45 46 1.20 1.68 2.65 1.17 .92 1.85 .78 1.60 1.41 1.05 1.15 !.21 !.92 !.77 1.22 !.30 .99 1.79 2.54 2.37 2.12 3 10 1.81 2A2 2.17 3.58 2.10 2.41 2.05 1.72 1.40 1.82 1.65 2.46 1.91 1.80 2.21 1.85 1.56 2.51 1.30 1.58 1.00 1.64 1.30 1.00 1.21 2.48 3.18 3.00 2.97 3.51 2.07 2.48 2.41 2.63 1.57 2.60 1.94 2.50 2.35 2.35 2.3' 2.04 2.30 2.01 2.38 2.28 2.51 2.41 1.51 1.71 1.71 1.7C 1.8 2.0: .69 .57 1.20 1.70 .82 .70 .93 1.71 1.58 1.20 1.70 1.85 1.16 1.53 .80 .60 .31 1.88 1.64 2.40 1.70 1.51 1.70 1.62 1.51 1.60 1.98 1.90 1.25 1.01 2.75 1.92 1.89 2.08 2.22 1.78 1.89 2.42 !.05 ..81 !.73 ,.72 ..98 !.89 !.42 1.75 1.00 1.82 1.46 1.25 1.91 2.06 1.08 1.33 1.65 1.90 1.06 1.70 1.49 1.85 1.55 1.39 1.91 1.5C 1.57 1.63 1.99 1.65 1.53 1.22 1.72 1.69 2.30 1.78 1.61 2.37 1.83 ..70 1.55 1.48 1.05 1.65 1.61 2.14 1.G9 1.55 2.24 1.71 1.71 1.59 1.32 1.79 1.9t 2.01 2.18 2.1g 2.8: 1.6: 1.U 1.00 1.18 2.62 2.38 3.04 1.80 1.83 2.21 2.51 2.6: 2.61 3.21 1.81 1.9: 1.18 1.40 2.80 2.51 3.20 1.91 2.05 2.36 2.90 2.80 2.80 3.40 1.98 2.22 1.9( 1.5( 2.17 1.89 2.2: 2.11 2.40 2.28 1.9( 1.88 2% 1.81 2.15 2.1: 1.9: 1.71 2.02 1.91 2.11 2.11 1.91 1.71 1.60 1.81 1.72 1.88 2.4( 1.6! .e5 .91 .78 .04 1.11 38 !.12 ..91 !.OS 1.00 2.00 2.20 2.90 !.50 1.00 4.30 2.48 2.50 2.Gl 2.9C 3.11 3.35 1.91 1.81 2.02 1.95 2.11 2.15 2.30 2.30 2.4( 2.4. 2.51 2.58 2.6C 2.2 1.N 2.48 1.9E 2.69 2.07 3.03 2.12 3.3( 2.21 3.G( 2.24 3.8C 1.81 1.81 - - 3pte 1 2 2.38 1.05 .70 1.50 1.78 !.08 !.35 1.14 1.58 1.50 1.05 1.31 1.72 1.01 1.28 !.OO .50 1.38 1.68 177 1.95 2.23 1.98 2.60 1.02 1.65 1.50 3.78 2.05 1.89 2.28 51 .49 1.05 1.31 .71 .60 ..78 1.55 1.68 1.78 1.74 - - - 2.20 1.71 2.65 4.30 2.16 2.50 3.42 ,.82 .61 !.31 1.05 1.92 1.22 1.72 1.29 1.30 1.73 1.70 1.50 1.70 1.86 L.68 849 AND ARIZONA ir 31 - each year 01 record. - - - - - - - - 6 7 8 47 - No . Station Elevatlon (feet) Average annual preripi- Le:fth tation ): : : : ; ; throunb 1939 (inches) RECORDUsao FOR FREQLENCY A Dates (inolusive) . . 48 Hermosa ............ 49 Elephant Butte ...... 7.200 4. 265 17.79 9.91 15 55 50 Kingaton ............ 51 Hillsboro ............ 6. 500 5.236 18.18 12.81 25 34 52 Garfield ............. 4. 100 1n.m 33 53 Lake Vnlley ......... 54 Jornada Experimental Range ............ 55 Deming ............. 56 Las Cruces (Acrioultural College 57 Cambray. ........... 58 Newman ............ 59 Lanark .............. 5.412 13.41 33 1914-192G 1SQB-1904;1908-1916;1918-1921;19231938 1916-1039 1896-1900;1904-1909;1911;1925-1933; 1935-1939 1894-1899;1905-1917;1920-1923;1925; 1927 1905-1923;1927-1939 4.150 4.331 9.28 9.66 26 64 1914-1939 1893-1039 26 47 1.05 1.15 8.66 8.92 83 39 24 9.58 13.79 31 31 1892-1939 1899-1933;1936-1939 1909-1932 1899-1918;1921 1909-1039 1900-1902:1906-1907;1989-1921;19331927;1930-1938 1003-1906;1008-1918;1920-1939 1910 1939 189~-iooi; 19n3-1905:1910-1925 1895-1000;1005-1910:1912-1914; 1916; I93 1 1939 1911-1932;1934-1039 1905-1919;1930-1939 1897-1919: 1921-1939 1901;1912-1939 1905-1939 1S93-1939 1909-1039 1900-1039 1900-1911; 1913-1939 ion4-i9zo;1024-1825 1895-1906;1909;1912-1939 l'Jl(i-1039 1909-1939 1905; 100s-1931 1904-1930 1896-1899;1909-1911 ; 1913-1939 1893-1894;1896-1897;1900-1001;1904- 48 39 24 21 31 32 1.11 1.16 1.29 1.14 1.25 1.03 35 24 27 25 1.09 1.01 1.12 1.44 28 25 42 1.48 1.35 1.38 1.46 1.32 1.10 1.34 1.29 GO 61 Horse Springs........ Columbus . . . . . . . . . . . 3.909 4.225 3.989 4.156 4.051 7.070 62 63 64 65 Luna Ranger Station .. Hood Ranger Station . Alma ............... Cliff (Gila) .......... 7.300 5 .838 4.800 4.470 16.18 14.19 14.89 14.22 40 23 26 32 66 Pinos Altos .......... Mimbrea ............ Ft . Bayard .......... Gilver City .......... Redmck............. Imdsbnrg ........... Hachita ............. Rodeo .............. Lake Alice ........... Vermejo Park ........ Raton .............. Des Moinea .......... 7.000 6.260 6.152 5.937 4.150 4.245 4.504 4.118 6.950 7.600 6.660 6.622 6.396 22.89 29 2G 71 67 68 69 70 71 72 73 74 75 76 77 78 79 80. 81 82 83 84 85 86 87 an 89 90 91 92 93 94 95 Dnwson ............. Maxwell. ........... Ciarron ............ Clayton. ............ Springer ............. Mlami .............. Taylor ......... Pasamonte ..... Black Lake .......... Abbott .............. Pnlo Verde .......... Pt . Union ........... Solano .............. 96 EIoosier Ranch ....... 97 Valmora ............ on hlosquero ........... 99 [one ................ in0 Bell Ranch .......... 101 Dbar . . . . . . . . . . . . . . . . 102 Trementinn .......... 103 Logan . . . . . . . . . . . . . . 1W Tuoumcari No . 1 . . . . . 9.05 8.20 25 13 40 24 26 1.75 1.38 1.59 1.48 25 1.54 32 1.52 ~ 16.33 15.70 17.38 12.30 9.57 10.76 11.04 19.85 17 13 15.61 37 35 59 30 31 31 19 44 17.23 24 15.54 31 27 36 35 51 5.894 1-1.53 15.56 15.62 14.18 6.000 5 .661 6 .650 8.348 8.849 15.73 15.57 15.11 16.21 20.45 15.28 14.98 20.38 17.24 15.97 15.18 32 31 30 29 31 18.01 02 6.427 5.049 5.857 29 35 47 31 31 30 19 40 21 31 25 38 34 42 14:m 4.825 5.771 8.510 6.252 5.880 5.884 6.885 5.G22 5.680 0.200 5.579 4. 850 5.400 4. 225 32 24 30 31 31 29 19fJ8Li917;1919-1028;1928-1939 1909-1932 1910-1939 1909-1939 1809-1939 1911-1030 1909-1930 30 24 30 31 31 29 31 31 28 1932-1939 28 31 23 31 29 21 25 24 41 30 -1918 5.000 16.71 15.40 16.51 16.02 16.57 15.24 16.36 15.68 91 29 22 25 30 41 3i 3.851 22 191.I-1923:192G-1939 1920-1028 1G.29 20 31 4. 100 1921-1037:1939 16.35 33 35 1926-1939 . 35 . 1.421 1.25 1.75 1.64 1.44 1.40 1.30 1.49 1.44 1.47 1.20 1.57 1.33 1.45 1.87 1.59 1.20 1.68 1.30 1.55 1.71 1.89 1.80 1.52 1.78 2.19 1.62 1.80 1.52 1.85 1.74 - y rrin reeorde i rain recordet 851 NEW MEXICO AND ARIZONA __ No. - - - - - - - - - - - - __ 2.25 1.75 1.10 .81 1.95 1.29 1.85 !.38 3.41 2.67 .28 !.70 3.80 2.95 .55 1.00 1.55 3.60 5.15 3.60 i.10 1.06 5.50 1.06 1.60 5.95 LBO 6.30 5.00 5.30 5.00 48 49 2.10 1.98 !.30 L.00 1.52 2.32 !.73 !.34 2.80 2.55 !.97 !.55 2.99 1.68 1.13 !.68 3.35 1.97 3.50 2.97 3.64 1.12 3.78 3.12 3.95 1.34 4.00 3.34 4.20 3.50 1.20 3.50 50 61 1.70 1.71 1.91 1.91 2.00 !.OO 2.05 !.05 2.15 2.15 1.20 2.20 1.26 2.26 2.30 1.30 52 1.90 1.98 2.49 1.61 2.90 t.95 3.22 1.29 1.00 4.03 130 4.60 5.40 5.40 6.00 5.00 53 1.40 1.65 1.53 1.70 1.76 1.84 L.81 1.91 1.96 1.92 1.00 1.99 2.12 1.98 !.17 L.01 2.45 2.02 2.46 2.08 1.68 2.05 2.71 2.10 1.95 1.06 2.97 2.13 3.20 2.08 3.20 2.12 54 55 1.45 1.59 1.63 1.65 1.75 1.33 1.55 1.74 1.66 1.65 1.80 1.55 1.99 1.89 1.88 2.02 2.20 1.50 1.09 1.01 1.90 1.02 1.21 1.76 2.36 2.04 2.00 2.30 2.48 1.60 1.46 1.11 1.03 1.30 1.50 1.88 2.68 2.13 2.12 2.44 2.68 1.66 L.76 1.21 1.15 !.44 1.69 1.98 3.35 2.35 2.33 2.80 3.10 1.80 3.40 2.39 2.35 2.80 3.10 2.10 3.88 2.49 2.47 3.05 3.40 1.89 3.98 2.51 2.50 3.05 3.40 2.20 1.50 1.60 1.60 3.35 3.75 1.97 4.58 2.62 2.63 3.35 3.75 2.30 5.00 2.70 2.70 3.58 4.00 2.01 6.00 2.70 2.70 3.58 4.00 2.38 56 57 58 59 60 61 1.41 1.35 1.40 1.81 1.68 1.52 1.68 2.10 1.68 1.53 1.59 2.19 1.92 1.70 1.92 2.38 1.82 1.62 1.69 2.31 1.06 1.80 1.08 1.50 1.94 1.68 1.78 2.41 1.19 L.89 1.18 t.59 2.18 1.78 1.90 2.64 2.35 2.03 2.37 2.75 2.32 2.50 1.90 1.99 2.79 2.50 2.11 2.50 2.85 2.62 1.92 2.lZ 2.90 2.64 2.20 2.65 2.95 3.00 2.76 2.29 2.78 3.01 62 63 64 65 2.30 2.25 2.49 2.22 2.05 1.98 2.60 2.30 2.50 2.20 3.65 3.25 2.68 2.62 2.70 2.73 2.50 1.40 1.41 1.62 1.25 1.60 2.18 2.75 2.45 3.30 2.3a 3.85 3.30 3.00 3.02 3.35 3.3c 2.7C 2.41 2.38 2.70 2.30 2.13 2.11 2.79 2.41 3.66 2.31 4.01 3.40 2.91 2.83 3.00 2.99 2.71 1.50 1.52 1.81 1.31 1.79 1.34 1.93 2.52 3.53 2.40 1.20 3.45 3.21 3.20 3.60 3.59 2.89 2.60 2.60 3.10 2.38 2.29 2.43 3.10 2.60 3.00 2.55 4.85 3.63 3.43 3.25 3.60 3.45 3.15 2.69 2.70 3.20 2.45 3.09 2.68 3.28 2.68 4.10 2.60 4.95 3.65 3.65 3.50 4.12 4.20 3.25 2.78 2.75 3.41 2.42 2.39 2.63 3.32 2.70 3.21 2.70 5.48 3.78 3.80 3.51 4.08 3 80 3.48 2.80 2.82 3.50 2.51 3.30 2.90 3.50 2.79 4.43 2.72 5.59 3.80 4.00 3.70 4.49 4.70 3.50 2.90 2.90 3.80 2.48 2.40 2.88 3.60 2.83 3.50 2.88 6.20 3.90 4.25 3.85 4.60 4.20 3.80 2.90 2.98 3.80 2.60 3.55 3.40 3.78 2.85 4.85 2.88 6.30 3.95 4.35 3.90 4.85 5.20 3.80 3.00 3.00 4.00 2.50 2.58 3.05 3.80 2.90 3.70 3.00 6.80 4.00 4.60 4.10 6.00 4.50 4.00 3.00 3.09 4.00 2.68 3.70 3.40 4.00 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 2.35 1.95 2.80 2.10 2.85 2.92 3.18 1.95 2.58 2.40 3.00 2.80 3.40 3.65 2.46 2.55 4.95 2.6C 3.52 3.45 3.36 3.0s 2.8E 2.0( 3.3E 2.1f 3.4( 3 3 3.45 2.3: 2.8: 3.3 3.9( 2.8: 3.7: 4.9! 2.71 3.01 5.1( 3.21 4.1( 2.47 2.00 2.93 2.15 3.16 3.10 3.40 2.09 2.70 2.57 3.27 2.90 3.71 3.90 2.61 2.65 5.40 2.78 3.89 3.09 2.05 3.M 2.21 3.61 3.x 3.71 2.4: 2.95 2.51 4.31 2.91 4.1( 5.3 2.81 2.68 2.09 3.18 2.22 3.80 3.40 3.90 2.33 2.98 2.88 3.80 3.05 4.40 4.40 2.90 2.80 6.30 3.10 4.65 4.40 3.70 3.40 3.50 2.11 4.18 2.25 4.15 3.56 4.30 2.70 3.15 4.05 5.2C 3.OE 4.76 2.81 2.12 3.31 2.27 4.27 3.59 4.28 2.50 3.16 3.09 4.19 3.12 4.99 4.78 3.11 2.91 7.00 3.32 5.22 3.80 2.17 4.59 2.29 4.50 3.70 4.69 2.89 3.29 4.40 5.84 3.12 5.30 6.80 3.30 3.77 7.10 4.28 5.62 4.90 3.85 4.23 2.93 2.18 3.48 2.29 4.80 3.79 4.60 2.70 3.35 3.30 4.70 3.22 5.60 5.15 3.30 3.05 7.70 3.60 5.95 5.40 3.95 s.75 4.13 2.18 5.00 2.29 4.90 3.00 2.20 3.60 2.30 5.20 3.90 5.00 2.84 3.50 3.50 5.00 3.30 6.20 6.40 3.50 3.10 4.30 2.20 5.38 2.30 5.20 4.00 5.40 3.20 3.50 5.00 7.20 3.30 6.20 1.90 1.78 1.80 1.90 1.70 1.43 1.94 1.80 1.80 1.73 2.40 2.45 1.88 1.90 1.76 1.95 1.82 1.90 1.65 2.21 1.80 1.90 2.21 2.20 1.51 2.05 1.87 2.10 2.34 2.4C 2.6E 1.95 2.2c 8.3E 2.03 2.4( 2.H 2.72 2.4: 2.05 2.00 1.98 1.92 2.00 1.61 2.07 2.03 2.41 1.W 2.6E 2.61 2.2€ 2.24 2.3: 2.31 2.0: 2.15 1.7! 2.3f 1.9: 2.41 2.51 2.5( 1.8: 2.3: 2.5: 2.61 2.4: 2.6! 3.4! 2.21 2.41 3.5( 2.41 2.9! 2.5: 2.81 2.71 2.15 2.08 2.21 2.11 1.92 1.77 2.39 2.13 2.28 2.01 3.19 3.00 2.38 2.37 2.31 2.45 2.28 2.30 2.20 1.88 2.61 2.03 2.49 2.69 2.82 1.80 2.39 2.20 2.65 2.08 3.00 3.30 2.27 2.42 4.3c 2.4C 3.11 2.9L 3.15 2.60 1.93 3.00 2.10 3.04 3.00 8.09 2.13 2.70 3.09 3.38 2.8E 2.29 2.39 2.13 2.40 1.98 2.50 2.32 2.97 2.17 3.40 3.10 2.71 2.78 2.95 2.90 2.43 2.70 3.30 4.41 2.53 2.87 4.50 2.99 3.69 3.10 3.25 3.15 - - - 3.61 3.80 3.4: 3.41 3.49 3.2C - - - - - perio year me eC0 - #eptember30 in each year of record. 3.2f 5.52 3.3 4.4! 3.8( 3.5: 3.61 6.2( 3.1( 3.5E 6.4( 3.9: 5.M 4.4( 3.7: 3.N - - - 1.84 4.00 3.80 3.68 - - i.80 2.08 3.88 5.10 3.08 3.40 4.75 6.70 3.22 5.85 7.50 3.45 3.97 7.90 4.65 6.3C 5.4c 3.9: 4.5: 8.30 3.80 6.50 5.78 4.00 3.82 - - - 2.00 5.10 3.00 6.80 4.00 4.60 4.10 5.09 5.60 4.00 8.00 3.60 4.10 8.40 5.00 6.80 5.78 4.0C 4.8C a? a4 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 - - , No. Station Elwatlou (feet) Average annual precipitatioo through 1939 Cinohea) AvmRnam OF &CORD U S l D FOB h Q U Q N C Y ARRAY ","f"" EACE: Dates (inoluaive) Number Sum- 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 - - .. . . Montoya . . . . . ... , 4,335 fJan Jon. . . ...... ...._ 3.982 8,800 9,400 Onava . . . . . . .. . . . . . . . 6,700 Gallinas Plant. Station, 7,500 7,050 6,400 6,900 Doretta . . . ... .. .. . 6,381 Cuervo.. . . . .. . . 4,849 Palma, , . . . . .. . . 7,000 4,624 Pastura. . . . . .. ... . . . , 5,285 Vaughn. . . . .. . . . . , 5,930 4,500 Ft. Sumner . . . . . . . . , 4,028 Durnn . . . . . . . .. . . . . . 6.272 4,400 4.250 4,262 6,433 Corona. . . .. . ... . 6,666 Portalea. . . . . .. . . . . .. , 4,004 WMS Ranger Station 6.636 Eli 4,345 An 6.112 Kichland. . . ... . . . . . 4,000 Bonz . . . ... . . . .. .. .. .. 4,154 5,438 6,700 6,348 6,231 . ... 14.06 15.69 24.49 33.43 15.78 25.64 21.06 17.77 15.99 15.79 13.26 11.78 14.28 12.69 13.01 14.34 15.55 14.23 16.28 16.57 18.30 12.89 14.77 17.55 14.26 15.04 12.47 14.51 13.16 13.42 19.54 17.11 15.96 24 33 45 15 32 25 20 56 22 21 31 26 40 4.436 7,000 Tntum. . . . .. . . . . . . . . . 3,950 Meacalcro . . . . , . . . 6,627 Prairieview. . . . . . 3,825 Tularosa. . . . . . . , . . . .. 4,436 Cloudcroft. . . .. . .. . . . . 8,R50 Elk. . . . . . . . . . . .. . . . . , 5,350 Lovington. . , . . . .. . . . . 3,900 14.38 9.56 22.88 15.75 19.46 15.11 9.32 24.56 17.42 14.37 31 31 22 38 25 32 28 29 19 31 33 31 27 30 27 31 32 17 31 66 19 62 24 56 21 28 28 32 38 33 32 Mountain Park. . . . . , , Mnybill Ranger Station Alnmogordo. . . . . . . . . . Artwia.. . . . . . . . . . , , , . Weed Itongcr Station . . Hope . . . . . . . .. . . . . . . Hobbrr. . . . . .. . . . . . . . 18.42 19.63 11.18 12.29 21.27 13.63 15.45 25 23 45 33 15 21 22 10.95 11.74 12.83 9.43 10.94 19.29 17 26 48 33 22 26 . . l-%xm .. .. . . ... .. 5,016 Roswell . . . . ..... . ... . 3,002 . 6.720 6,400 4,338 3,350 7.200 4,000 3,FOO Pearl.. . . . . . .. ... . . _ . 3 700 Lakcwood.. ......._.. 3:325 LBko hvalon . . . . . . , . . . 3.200 3nrlsbad. . . . . , . . . . . . . 3,120 Dro Grande.. . . , . . . . . . 4 171 Loving. . . . . . . . . ., . , . , 4015 Zamon Seep. . . . . , . . . , 6,500 9.95 13.02 24 1910-1932 1907-1939 1RR7-1939 1893-1939 1916; 1919-1920; 1923-1939 1915-1920; 1925-1938 1909-191" ,II ignfi: 19~. I6-lRW ~..1908-1916; 1919-1939 1909-1928; 1930-1939 1909-1939 1905-1913; 1917-1926 1908-1939 1908-1932 1908-1926; 1933-1939 1913-1939 1911-1939 1909-3925 1909- 1939 1905-1906; 19121939 1909-1939 1913- 1939 1909-1939 1913- 1939 1909-1939 1908-1935; 1937-1939 1902-1905; 1916-1921; 1930-1939 1909-1939 1893; 1897: 1900-1939 1909-1927 1894-1939 1910-1932 1915-1918; 1920-1939 1919-1925; 1927: 1929-1939 1911-1916; 1918-1939 1911-1916: 1918-1939 1908-1910; 1914-1939 1903-1939 1895-1901: 1904-1909; 1922-1939 1910-1915: 1917-1925: 1927-1928: 19321939 1912-1924; 1928-1929; 1931-1939 1917-1939 1901-1925; 1927-1939 1905-1906; 1910-1939 1905-1906: 1016-1929 1906-1908; 1916; 1919-1938 1913-1929; 1932-1933; 1938-1939 1915-1025; 1927-1928; 1930: 1932--1939 1912-1925; 1927 1915-1939 1894-1899; 1901-1939 1905; 1910.-1939 1918-1939 1914-1939 1 Average of the maximum I Averugc of the maximum I. 23 33 43 15 30 24 18 47 20 20 31 25 30 30 31 19 32 25 26 27 29 17 31 30 31 27 31 27 31 31 20 31 42 1.54 1.86 1.32 1.80 1.47 1.74 1.72 23 24 19 28 28 29 37 31 25 1.29 1.46 1.46 1.28 1.38 1.53 1.32 1.62 1.63 1.29 1.78 1.68 2.32 1.53 1.29 1.92 1.26 1.75 1.35 1.95 1.89 1.17 2.28 1.49 1.37 .95 1.60 1.01 1.65 2.07 1.58 1.66 1.40 1.61 1.96 1.81 1.77 2.18 1.49 2.05 1.69 1.84 1.84 1.75 1.37 1.57 1.75 1.42 1.68 1.61 1.58 1.72 1.95 1.35 1.99 1.97 2.47 1.70 1.36 a25 1.38 2.00 1.42 2.04 2.07 1.25 2.58 1.55 1.45 1.05 1.88 1.16 1.70 2.23 1.65 1.79 1.45 1.76 2.07 1.98 24 23 38 32 16 24 1.58 1.89 1.23 1.60 1.83 1.64 1.79 1.92 1.39 1.88 1.93 1.86 19 46 21 22 15 25 45 31 22 26 1.63 2.20 2.24 1.87 1.71 1.62 1.72 1.46 1.27 2.24 2.06 2.11 1.83 1.84 1.63 1.51 2.42 - r rain recorda ,rain record% - NEW - -- - - - - - -- 4.20 3.85 2.28 L.70 i.40 t.35 1.69 IO1 1.43 125 283 i 10 2.60 3.45 5.70 6.50 2.51 4.15 3.22 3.95 3.65 3.08 3.55 2.70 3.80 4.80 3.03 2.88 3.31 4.05 3.75 3.20 4.21 3.92 4.90 4.50 3.50 5.80 2.60 5.65 4.18 4.20 4.60 2.49 7.20 2.47 3.28 2.01 5.50 3.04 3.13 6.98 3.00 3.78 4.13 3.15 5.10 4.78 5.60 4.55 2.59 3.44 3.30 4.30 3.72 3.05 3.80 2.70 3.06 5.40 2.35 3.00 3.40 4.30 3.85 3.50 4.25 3.50 5.01 5.10 3.80 6.35 2.71 6.20 4.70 4.50 5.00 2.65 8.00 2.51 3.48 2.13 5.60 3.25 3.34 7.70 3.18 4.08 4.65 3.20 5.55 5.10 6.40 7.22 2.60 4.45 3.35 4.30 3.93 3.23 3.85 2.74 4.05 5.50 3.20 3.00 3.59 4.45 3.92 3.50 4.60 4.30 5.04 5.10 3.82 6.58 2.73 6.40 4.70 4.50 5.00 2.65 8.01 2.51 3.50 2.13 6.20 3.35 3.34 8.00 3.20 4.08 4.65 3.25 5.60 5.20 5.35 L.80 2.70 1.62 1.43 1.70 4.00 3.15 1.20 1.75 3.20 6.40 2.40 4.67 3.38 3.89 4.20 2.21 6.00 2.40 2.90 1.81 4.50 2.60 2.82 5.70 2.72 3.45 3.40 2.95 4.40 4.20 5.00 L.25 2.45 3.26 3.16 3.90 3.50 2.98 3.45 2.65 2.92 4.60 2.27 2.88 3.10 4.00 3.65 3.20 3.90 3.28 4.83 4.50 3.40 5.60 2.58 5.50 4.18 4.20 4.60 2.45 7.10 2.47 8.20 2.00 4.90 2.90 3.13 6.70 3.00 3.78 4.13 3.05 5 05 4.62 3.50 3.20 2.81 4.00 3.01 3.8 5.0 4.0 5.0 3.2 4.1 3.1 2.9 5.3 3.91 3.42 3.2': 4.3i 3.1 4.5 5.7 4.4 5.4 3.5 4.6 3.5 3.1 6.1 4.00 3.42 3.35 4.75 3.21 4.5( 5.7. 4.4! 5.81 3.5. 4.8 3.51 3.2 6.2 4.30 3.55 3.65 4.0E 4.30 3.55 3.74 5.30 3.3( 5.0( 6.21 4.81 6.41 3.7 5.31 3.8: 3.51 6.81 4.50 2.25 2.38 1.52 3.00 1.89 2.48 3.90 2.37 3.00 2.65 2.45 3.50 3.25 3.60 4.29 2.13 3.18 2.75 2.91 2.79 2.55 2.61 2.45 3.00 2.82 2.50 2.40 2.50 2.90 3.20 2.25 3.12 2.90 4.15 2.90 2.40 3.85 2.14 3.61 2.59 3.40 3.60 1.91 4.70 2.25 2.49 1.60 350 2.09 2.49 4.30 2.40 3.00 2.65 2.65 3.6C 3.5c 3.80 3.65 2.16 2.85 2.75 3.12 2.91 2.75 2.74 2.50 2.60 3.15 2.03 2.56 2.45 3.22 3.16 2.55 3.13 2.80 4.30 3.35 2.60 4.05 2.21 3.88 3.04 3.60 3.81 2.05 5.20 2.32 2.62 1.68 3.55 2.18 2.69 4.67 2.56 3.16 3.05 2.65 3.95 3.68 4.20 4.95 2.26 3.45 2.91 3.21 3.05 2.75 2.90 2.54 3.28 3.37 2.68 2.56 2.75 3.22 3.40 2.55 3.49 3.20 4.40 3.35 2.72 4.40 2.30 4.20 3.04 3.60 3.81 2.10 5.43 2.32 2.73 1.73 4.05 2.38 2.69 5.10 2.60 3.16 3.05 2.82 4.05 3.90 2.88 2.90 2.12 2.7' 2.71 3.0 4.21 3.41 3.51 2.8 3.1 2.6 2.31 4.3 2.91 2.9[ 2.2! 3.1' 2.7 3.0 4.3 3.4 4.1 2.8 3.4 2.6 2.4 4.4 3.20 3.08 2.45 3.16 2.81 3.4' 4.6, 3.71 4.0, 3.01 3.61 2.8' 2.51 4.8 3.28 3.10 2.58 3.64 2.98 3.4 4.7 3.7 4.6 3.1 3.8 2.8 2.6 4.9 2.70 3.25 1.90 2.66 2.36 2.45 2.33 2.25 2.10 2.18 2 50 2.06 2.18 2.12 2.10 2.30 2.80 1.81 2.58 2.40 3.50 2.20 1.90 3.00 1.83 2.75 1.92 2.79 2.80 1.65 3.65 2.00 2.06 1.37 2.63 1.62 2.15 3.23 2.OE 2.42 2.04 2.32 2.9C 2 8 3.30 3.31 2.00 2.67 2.50 2.82 2.66 2.55 2.41 2.39 2.42 2.62 1.91 2.40 2.19 2.90 2.91 2.25 2.81 2.60 4.00 2.90 2.29 3.49 2.04 3.30 2.51 3.40 3.60 2.41 2.5i 1.7L 2.5' 2.4 2.4 3.4 2.8 3.2 2.5 2.6 2.1 2.0 3.4 1.88 853 MEXICO AND ARIZONA 3.10 2.90 3 40 3 10 2.82 2.98 2.56 2.70 3.60 2.11 2.70 2.65 3.50 3.31 2.80 3.38 2.97 4.30 3.70 2.87 4.52 2.32 4.35 3.31 3.89 4.20 2.20 5.80 2.40 2.80 1.80 4.00 2.40 2.82 5.41 2.7E 3.42 3.4c 2.8C 4.3c 4.N 3.4t 3.21 2.7( 3.51 3.0 3.e 5.c 4.0 4.6 3.2 3.6 3.1 2.F 5.2 3.80 2.80 2.70 1.95 3.50 3.52 2.80 3.80 3.41 4.60 3.70 2.90 4.88 - I - - __ - 3.3 5.0 6.1 4.8 6.0 3.7 5.1 3.8 3.5 6.7 ~ 5.0C 3.8C 4.5c 6.4C 3.5 fi.0 7.0 5.4 7.5 4.1 6.2 4.4 4.1 8.0 149 150 151 152 153 154 155 156 157 158 159 160 161 162 3.11 3.75 2.70 4.08 3.90 4.68 3.73 5.25 5.85 4.30 7.25 2.89 7.20 5.42 4.78 5.35 2.85 9.10 2.58 3.78 2.28 6.50 3.68 3.55 9.00 3.38 4.35 5.30 3.40 6.20 5.60 4.70 3.69 4.15 5.78 3.4, 5.5 6.6 5.1 6.8 3.9 5.7 4.1 3.8 7.4 4.7( 3.6s 4 2 5.91 3.4 5.5 6.7 5.1 7.0 3.9 5.5 4.1 3 .8 7.4 5.00 3.80 4.50 6.40 3.51 6.01 7.01 5.41 7.51 4.11 6.2' 4.4 4.11 8.0 - I 105 106 107 108 109 110 111 112 113 114 1 I5 116 117 118 119 120 121 122 123 124 125 126 127 128 139 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 7.00 5.00 2.79 3.76 3.50 5.00 4.20 3.20 4.80 2.70 3.30 7.20 2.50 3.20 4.00 5.00 4.20 4.20 5.00 3.90 5.40 6.40 4.60 8.00 3.00 8.00 6.00 5.00 5.60 3.00 10.00 2.59 2.45 - 8.00 9JJ0 2.79 5.00 3.52 5.00 4.45 3.50 4.50 2.80 4.46 7.20 3.48 3.20 4.04 5.30 4.20 4.20 5.30 4.90 5.40 6.40 4.60 8.00 3.00 8.00 6.00 5.00 5.60 3.CO 10.00 2.60 4.00 4.00 2.40 2.40 7.90 7.10 4.00 4.00 3.70 3.70 10.00 10.00 3.50 3.50 4.60 4.80 5.80 5.80 3.50 3.50 6.60 6.60 6.00 6.00 7.30 3.20 2.70 4.80 3.40 4.70 4.25 3.40 4.20 2.70 4.30 6.40 3.35 3.11 3.86 4.05 4.10 3.90 5.00 4.65 5.30 5.85 4.30 7.40 2.89 7.30 5.42 4.78 5.35 2.85 0.10 2.58 3.80 2.28 7.10 3.72 3.55 9.10 3.3Q 4.35 5.3c 3.40 6.2C 5.63 854 N I W M E X I C O AND ARIZONA . . I NO . Elevation (feet) Statloo . Average annual preeipi- Length of tation through 1938 Cuchen) TABLE 3.I I AvmRnom or RBCORDUSBDFOR FRWW~PNC~ ARRAT i-FAYzrn EACH: [;prd Dates (inclusive) (b) Am. . . . . 163 San Carlos ReYervoir ... 2. 532 12.12 50' 26 1.20 1.47 Thatcher ............. Clifton ............... Benson ............... San Simon ............ 2.800 3. 465 3.523 3.609 9.55 13.43 11.07 7.68 39 50 58 48' 34 34 43 30 1.19 1.31 1.32 1.43 1.24 1.24 168 Bowie ................ 3.756 10.77 66 45 1.17 1.36 17 35 22 21 573 26 37 23 19 43 1.41 1.30 1.45 1.50 164 185 166 167 1.18 1.07 169 170 171 172 173 Fairbank ............. Douglas ............... Lewis Sprinm ......... Allairea Ranch ........ Wdlcox............... 3.862 4. 184 4. 200 3. 939 4. 029 12.00 12.78 11.17 11.65 11.99 1.30 1.48 1.43 1.49 1.61 1.46 174 175 176 177 178 Coohise............... Lealie Canyon ........ Naco ................. Tombstone ........... Ft. Grant ............. 4. 250 4.4G1 4. 579 4. 540 4.833 11.39 13.44 14.44 14.85 13.32 2 71 23 25 41 65 24 24 15 43 39 1.22 1.44 1.62 1.51 1.36 1.44 1.48 1.79 1.60 1.58 35 62 50 32 ' 28 39 25 303 15' 27 26 40 19 45 47 24 1.44 1.36 1.79 1.43 1.73 1.21 1.69 1.14 1.35 1.30 1.38 1.12 1.28 1.43 1.46 1.75 1.67 1.99 1.87 6.484 6.500 6.500 6 862 G:925 7.054 8.500 16.Q6 18.45 19.98 18.73 21.38 12.98 18.53 17.64 18.94 18.89 19.07 11.79 23.11 22.91 23.28 194 Greer ................ 8.500 22.18 223 18 1.23 1.42 980 195 Buckeye .............. 196 Phoenix W .B......... 1.108 107 Marinette ............. 1.150 7.80 7.78 7.82 50 62 253 48 44 1.03 1.10 97 1.37 1.27 1.40 . 179 F t Huaehuca ......... 180 Ft Apache ............ . 181 Bwty ................ 182 183 184 185 186 187 188 189 190 191 192 193 Paradwe .............. Rucker Canyon ........ Snowflake............. Portal ................ Show Low ............ Heber ................ Blue ................. Pinedale .............. Springerville.......... Henrys Camp ......... Lakeside .............. Alpine ................ I 18 33 20 17 13 15 29 30 23 21 25 23 203 29s 24 . 1.89 1.27 1.86 1.63 1.98 1.59 1.68 1.17 1.67 1.93. 1.76 Tempe Data Orchard .. Litohfield Park ........ Marieopa ............. Ooirlde Ranch ......... Goodyear ............. Chandler ............. MwaExperiimentalFarm Sacaton .............. Granite Reef Dam .... C w a Grande .......... 1.165 1.180 1.186 1 195 1:203 1.213 I. 245 1.280 1.325 38 21 84 24 14 22 44 31 46 503 36 22 43 26 15 21 43 33 46 36 1.04 1.17 1.26 97 1.01 1.10 1.02 1.400 8.74 8.22 8.12 7.41 7.78 8.16 8.69 9.60 9.52 8.30 .97 1.14 1.33 1.45 1.41 1.35 1.24 1.38 1.26 1.44 1.31 1.36 208 Cam Grande Ruin ..... 209 Florence .............. 1.422 1.500 9.73 9.88 233 38' 15 28 1.25 1.18 1.62 1.37 210 Morman Plats......... 211 Redrock .............. 212 Canon ................ 213 Dudleyville ........... 214 Intake . . . . . . . . . . . . . . 216 Roosevelt ............. 216 Gisela ................ 1.815 1.856 1.990 2.204 2. 230 2.275 13.54 9.61 17.92 14.60 13.41 17.86 143 35' 153 37 33 34 14 29 12 30 34 35 1.64 1.17 1.57 1.34 1.29 1.09 1.87 1.38 2.34 1.56 1.65 1.60 1.57 198 199 200 201 202 203 204 205 206 207 . 2.300 18.78 20 273 . 1.28 1.19 - * Average of the maximum l-day rain recorded for the * Av0rage of the maximum l-day rain reoorded in each 8 Some missing months interpolated from surrounding 855 N E W MEXICO AND ARIZONA - - .88 .21 .40 - 1.49 1.09 - - - - - - .19 1.37 3.41 3.70 3.72 1.91 3.91 163 1.55 1.08 1.42 1.40 2.57 2.08 2.47 3.55 1.70 1.09 1.58 1.61 2 70 2 09 2.60 1.00 !.79 !.09 !.70 1.75 2.80 1.10 1.70 1.35 t64 t65 166 167 1.45 1.88 .2R .01 .12 .63 1.30 l.22 .45 .05 .33 .I6 1.15 1.98 .58 .BO .81 - 1.25 8.00 2.09 1.00 1.00 .D3 .88 1.08 .98 1.70 - 2.15 1.98 2.03 2.38 .92 .82 .71 .75 81 2.G5 - - 1.08 !.05 ,713 .79 !.OO 1.90 2.07 1.92 1.18 1.05 1.24 2.00 2.30 2.16 2.36 8.17 2.40 168 !.lo 1.84 1.84 1.18 1.00 .48 .09 20 .42 .10 !.49 !.28 !.25 !.4U 1.44 2.62 2.35 2.46 2.60 2.40 2.62 2.54 2.51 2.63 2.69 1 70 2.5R 2.68 2.70 1.60 1.70 !.72 !.71 1.72 !.SO 1.82 3.00 3.08 1.90 3.04 1.82 1.15 ,.12 1.91 1.25 2.90 i.30 3.36 1.01 3.35 2.90 3.40 3.41 3.01 3.50 1.95 1.69 3.70 1.16 1.72 2.95 3.75 3.78 3.15 3.79 1.00 1.00 1.98 3.00 LOO 1.01 $.a2 1.00 LOO 169 170 171 172 173 1.93 1.00 1.49 1.15 1.13 1.18 1.40 1.91 1.31 1.40 1.29 1.40 1.02 1.50 1.45 2.35 2.62 3.25 2.50 2.60 2.45 2.62 3.34 2.68 2.63 2.50 2 80 3.49 2.61 2.75 !.58 !.80 1.12 :.01 !.98 1.00 2.00 3.39 1.30 3.00 3.20 2.95 3.39 4.30 3.10 3.20 3.08 3.59 1.68 3.18 3.40 3.10 3 59 4.08 3.21 3.40 LZO 3.20 1.68 !.79 !.79 2.73 3.12 3.97 2.85 3.00 1.16 2 15 a.55 2.40 2.27 1 GO 2.26 2.06 2.60 2 14 .92 2.00 2.49 3.16 2.48 2.25 2 06 1.92 2 48 2.65 2.5% !.60 1.94 1.67 1.51 1.75 1.31 l.G4 1.51 j.50 l.59 l.59 1.92 3.35 3.10 2.64 2.10 3.11 3.91 2.75 2.71 2.62 2.45 1.90 2.70 2.38 2.22 2.12 2.85 3.07 2.75 !.72 1.29 t.15 1.00 !.9t 1.65 l.70 1.70 1.69 1.70 l.73 l.12 $95 1.46 1.79 2.18 P.40 1.30 2.15 2.28 1.65 2.34 2.18 1.97 1.82 2.28 2.45 2.40 2.50 2.75 3.40 3.30 2.65 2.15 2.69 2.43 3.36 2.50 2.50 1.84 3.08 3.04 2.58 2.02 2.70 3 40 2.58 2.58 2.30 2.34 1.72 2.81 2.85 2.50 2.00 2.89 2.48 2.30 2.28 3.12 3.37 2.86 2.81 3.50 4.50 4.33 3.00 2.89 2.85 2.80 3.80 2.79 2 81 2.28 4.35 3.65 2.89 1.18 3.77 1.70 2.98 2.92 3.10 2.60 2.11 3.06 2.52 2.43 2.40 3.43 3.70 2.95 2.90 3.81 4.00 4.74 3.14 3.15 2.95 2.90 3.94 2.83 2.92 1.46 2.18 2.38 2.18 !.82 !.32 !.35 1.95 !.20 ..52 !.18 !.06 I.86 1.69 2.02 1.20 1.18 1.39 l.52 3.10 3.00 1.50 1.05 2.48 1.30 3.18 1.39 2.35 1.70 2.71 2.80 2.45 4.85 3.85 2.95 1.20 1.00 LOO 3.05 3.00 3.30 2.65 2.20 3.20 2.60 a.50 2.60 3.65 4.00 3.00 1.84 1.87 2.K 1.97 2.25 2.05 2.32 2.19 1.49 2.28 2.59 2.35 2.69 2.40 2.74 194 4.00 3.20 4.90 4.00 3.20 5.00 195 196 197 3.50 3.00 3.70 2.50 3.00 3.60 3.50 198 199 200 201 202 2 04 1.21 2.48 2.48 !.SO 2.87 2.40 1.22 1.79 5.00 3.30 1.65 3.79 6.00 3.30 3.55 174 175 176 177 178 2.98 4.00 5.20 5.00 3.20 a.30 a.oo 3.00 4.00 2.90 3.00 2.50 5.20 4.00 3.00 1.79 1.78 1.95 2.15 2.16 2.10 2.2c 2.H 2.5( 2.48 2.40 2.46 2.49 2.4c 2.84 2.70 2.50 2.7G 2.70 2.50 3.10 3.09 2.80 3.40 3.09 2.80 3.69 3.4c 3.0( 3.8: 3.40 3.00 4.10 3.75 3.08 4.45 3.75 3.08 4.60 1.66 2.22 2.06 1.90 1.77 2.01 2.61 2.6< 2.1: 2.2: 2.76 2.9E 2.21 2.2c 2.45 2.2: 2.3s 2.11 2.9( 2.35 2.66 3 10 2 30 2.31 2.55 2.30 2.44 2.01 3.11 2.99 2.iQ 2.3s 4.7c 3.29 2.98 3.62 2.48 2.85 3.31 3 25 2.90 2.09 5.40 3.29 2.98 3.65 2.48 2.85 3.33 3.28 2.9c 2.45 5.4c 3.50 2.31 4.1C 3 O( 2.9( 3.5( 2.11 2.7( 3.0: 2.9 2.71 2.01 4.51 3.00 2.95 3.52 2.45 2.70 2.M 2.2( 3.3[ 2.72 2.61 3.39 3.40 2.54 2.86 2.67 2.65 2.05 3.95 2.76 2.91 3.40 2.40 2.54 2.93 2.74 2.0' 2.5' 2.17 2.56 2.95 2.21 2.17 2.39 2.08 2.33 1.95 2.73 2.4c 2.82 2.01 1.87 1.87 1.91 2.39 2.62 2.02 1.99 2.15 1.85 2.18 1.9c 2.3C 1.90 1.76 2.21. 1.92 2.31 1.9: 2.6C 1.9E 2.61 1.98 2.81 2.00 2.9( 2.0( 3.35 2.05 3.4C 2.06 3.71 2.01 8.8C 2.06 4.18 2.08 4.21 4.60 2.09 4.50 2.0g 208 209 2.61 1.89 3.40 2 02 2.13 2.81 1.9f 2.N 2.2: 2.21 1.7( 1.8 3.21 2.01 4.01 2.31 2.5' 3.18 2.0: 3.1( 2.3f 2.3f 1.8: 1.91 3.51 2 1: 4.2: 2.4' 2.7: 2.4. 2.1: 3.41 2.06 3.21 2.4s 2.4c 1.91 2.OE 3.7( 2.11 4.51 2.5: 2.8: 3.91 2.18 3.45 2.66 2.6E 2.OC 2.2c 4.1: 2.21 4.75 2.7( 3.11 4.2' 2.2 a.61 2.78 2.61 2.1 2.3' 4.46 4.68 e 28 3.71 2.00 2.92 2.28 2.41 4.71 2.21 5% 2.9( 5.00 a.30 3.80 3.00 3.00 2.32 2.49 6.0C a.3~ 6.4( 3.0( 3.H 3.0( 2.N 210 211 212 1.92 1.62 2.04 1.8E 2.01 2.2! 2.0( 2.2; 2.31 2.0 3.11 2.3c 2.31 2.6: a.ar 2.5; 2.21 - eaoh year of record. 2.6E 2.7( 2.31 3.11 2.21 6.N 2.N 3.21 2.M 2.31 - 2.08 3.1( 2.9: 2.41 a.oo 3.70 2.50 a.oo a.60 3.50 3.00 2.10 6.00 3.00 2.50 6.00 - - a13 214 215 216 856 NEW MEXICO AND ARIZONA TABLE 3.- No . Elevation (feet) Statlon I . CORD u8gD FOR l-FAyz& EACJJ: FRBQWNCI ARRAY E;$): . I I AvlDBhOl OF Average annual praoipl- Le:fth tation through 1938 (Inches) I Dates Ouclndve) . . I (b) ARIZONA- . . Tucson Univ of A h .. Childs (Verde Hot Springs) Superior .............. Alnmo Ranger Station .. Vnil .................. Globe ................ 2.423 11.28 72 1915-1940 26 1.32 1.46 2.650 2.990 3. 155 3.241 3.440 16.93 18.63 13.88 9.07 16.17 24 19 1915-1940 i92n-1940 1899.1910 . 1912-1915 1916-1040 26 21 25 16 37 1.38 1.52 1.34 1.08 1.29 3.17 1.81 3.465 11.31 17.79 19.82 13.19 12.89 17.19 18.411 17 45 27 14 15 32 14 1.21 1.51 1.47 1.32 1.04 1.51 1.43 19.28 17 49 25 15 14 33 158 22 4. 000 4.044 4.300 4. 400 21.89 17.85 19.70 21.75 205 18 245 29 20 19 24 18 1.62 1.46 1.69 1.46 235 236 Pinal Ranch .......... 4.530 4.522 25.57 19.72 46 465 46 43 1.65 1.44 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 Tonto Ranger Station .. Rosmont ............. Yeager Canyon ........ Elgin ................. Payson ............... Natural Bridge ........ 4.732 4. 800 4. 850 4.900 4.906 4.607 5.225 5.250 5.354 6.000 141 350 492 538 685 737 871 1.652 1.770 1.775 2 .072 3. 688 4.782 4.150 4. 900 16.36 17.73 18.10 15 85 21.04 25.50 19.82 19.12 20.52 28.09 3.47 6.16 4.81 4.12 4.57 5.88 6.19 7.33 9.16 8.22 9.55 13.55 19.10 7.07 6.29 24 17 22 27 40’ 49 28 42 73 24 69 46 23 56 213 453 24 183 26 30 385 14 25’ 12 44 23 13 23 28 35 48 30 43 25 25 43 45 23 41 20 39 27 13 27 32 32 1.53 1.42 1.45 1.62 1.56 1.62 1.89 1.32 1.31 15 35 .69 262 263 264 Winslow ............. 4. M8 Holbrook ............. 5.069 St Johns ............. 5. 650 8.60 9.25 12.17 266 266 267 268 269 2711 Pinto ................. b e n t s .............. Chin Lee ............. Ft . Defiance .......... 8t Mlohaels .......... Ft MohaPe ........... 5. 660 5.800 6.090 6.950 6. 950 640 I 3. 142 217 218 219 220 221 222 223 224 225 226 227 228 229 230 23 1 232 233 234 ........ ....... Clemenceau Walnut Grove ..... Miami. ............... Silverbell Cordes ......... Nogales .............. Fieanal Ranch ......... Santa Marpuerita ...... Sycamore Ranger Station ............. Pataganis ............. Helvetia .............. Young ................ ....... CanUte ............... Jerome ............... Preacott .............. Crown King ........... S i p 1................ AJO.................. Salome ............... Wickenhurg ....... Congress.......... YarneU ............... Leupp ................ Tuba City ............ 3.469 3.603 3.604 3.773 3.839 4.000 4.000 . .. 271 Lee’s Ferry ........... . 6 . . . 2Pa 143 20 1894; 1901-1902; 1905; 1907-1928; 1930- 24 1.82 1.96 .90 ...80 68 83 .on .81 .95 14 .83 1.12 1.01 1.25 1.22 18 1.50 40 42 393 30 44 35 1.00 .97 1.06 11.83 8.80 8.75 13.68 13.15 5.09 19 26 25 30 22 58 18 24 22 20 20 26 1.06 .82 .92 .94 1.12 6.20 22 20 .73 .75 .81 . 1 Average of the maximum 1-1 Average of the maximum I d %Somemissinn montlla iiiterii 1 rain reoordl rain recorde ted from SUI 1.48 1.26 1.50 857 1.85 1.73 2.19 1.92 1.75 1.61 I 1.78 2.02 1.91 2.00 1.61 1.81 1.88 2.48 2.55 1.88 2.28 2.11 I 2.12 1.30 2.57 2.38 2.03 1.97 1.98 !.38 !.61 1.30 !.lo 1.90 1.93 2.96 2.25 2.05 2.35 2.03 2.10 2.60 1.68 2.58 1.28 2.19 2.28 2.30 1.99 .75 .03 A0 .7 1 I 3.08 2.29 2.60 2.51 , 1.10 1.50 2.69 2.30 2.11 1.89 1.96 2.11 2.18 2.08 !.76 !A0 !.55 !.11 i.70 1.90 2.63 2.22 2.35 2.50 2.58 2.72 1.83 1.70 2.60 1.30 1.05 .96 1.27 1.43 1.17 1.35 1.06 1.53 1.47 1.87 2.02 2.00 .98 1.05 3.30 2.72 2.37 2.31 2.28 3.20 2.28 1.98 2.50 1 2.51 3.12 1.60 1.41 1.87 1.70 1.57 1.60 1.62 1.56 1.5? 1.45 1.65 1.61 2.1( 2.0! 2.0: 2.61 2.8' 1.0: 1.1! 2.50 I 2.50 2.28 2.08 2.72 3.76 1.95 2.55 1.48 2.41 2.6s I 3.19 3.00 2.61 2.38 2.21 2.85 1.20 1.to 1.66 1.52 2.51 2.81 3.70 2.60 2.20 3.00 2.50 2.26 3.30 3.35 2.95 2.48 2.25 2.72 2.55 2.03 3.83 3.50 4.23 2.81 2.26 3.44 2.79 2.31 3.75 3.90 3.20 2.61 2.30 3.10 2.71 2.07 4.00 1.08 .15 .45 .63 .05 3.30 2.55 2.75 2.70 1.34 2.70 1.75 3.19 3.42 2.71 2.81 2.82 3.45 2.89 2.82 3.25 8.80 2.90 ,BO 2.43 1.18 1.95 1.00 !.55 1.41 1.51 1.23 .93 .43 .55 .70 .80 .19 t.27 3.31 3.40 3.28 3.23 2.78 3.88 3.9( 3.04 2.51 .I5 .60 .70 .82 .99 .56 1.60 2.99 2.30 3.79 3.00 2.36 4.10 4.60 3.55 - - 00 :.lo 00 35 87 49 .40 i.00 1.40 t.90 t.01 1.70 3.20 4.64 3.56 3.00 2.57 2.6B 6.50 6.00 3.45 2.40 4.9a 3.80 2.45 5.40 7.85 4.61 3.35 2.46 5.40 3.59 2.19 5.95 .90 .75 .15 38 3.90 3.77 3.15 3.45 1.00 1.00 3.20 3.50 #.20 8.50 .oo .oo 131 !32 !33 !34 ,.65 :.91 G.35 4.70 3.80 3.00 1.80 1.00 !35 4.50 3.50 3.50 3.5c 1.50 1.00 1.50 LOO LBO 3.20 5.70 137 138 139 240 241 242 243 .so .20 3.8C 3.5( 3.06 3.4( 5.30 4.00 ;.'lo 1.80 5.7: 4.3 1.30 !.70 3.57 3.50 3.40 2.9G 4.22 4.2( 1.59 !.90 1.00 1.08 3.32 4.33 4.40 .50 3.M .I30 3.01 31 .01 .54 1.45 !.32 1.33 t.70 1.80 2.51 1.23 1.60 3.2( 4 1( 7.2( 2.8: 2.3 2.0: 2.2: 2.3 1.91 2.8' 1.9 2.9 2.71 2.7 3.0 3.5 1.2 1.7 1.46 1.12 5.80 3.32 2.38 1.31 2.18 2.72 1.58 3.3c 1.56 2.85 2.6: 2.95 2% 2.7( 13 1.8' 3.88 4.00 3.80 3.30 4.95 4.8C 4.4E 3.5c 4.6E 8.N 3.4i 2.7: 2.14 2.5( 2.7: 2.0: 3.41 2.0: 3.2: 2.91 .30 .40 .08 1.89 1.10 1.20 1.21 1.55 1.91 L.80 217 '.OO 8.00 8.50 3.G6 3.25 2.98 3.36 .57 32 .16 I 7.90 6.70 3.65 2.45 5.50 4.19 2.47 6.00 .66 .12 .95 .O 6 .40 00 00 30 .70 5.42 3.80 3.18 2 05 2.86 5.00 3.60 3.05 2.G5 2.80 .12 .74 .94 .OB 60 .oo .oo 6.40 3.82 3.20 2.68 2.91 .40 .I5 .ll .38 I 3.80 3.43 5.40 5.40 3.25 2.38 4.45 3.48 2.41 4.85 30 .75 .92 I 3.43 3.25 .11 31 .01 .5! .51 ,.2 .si #.71 3.01 3.0, 3.7 1.3 2.0 3.53 3.20 5.40 3.83 2.70 1.34 2.30 3.00 1.61 3.81 1.67 2.9: 2.86 3.K 2.9: 2.N 1.34 2.0( 23 1.32 :.40 1.40 1.80 i.62 i.30 1.62 .31 .58 30 .81 .15 .75 35 8.89 t.50 1.01 .51 1.30 1.26 !.87 1.28 L.24 1.50 1.09 1.65 1.16 3.43 3.09 3.95 1.38 2.40 .30 .70 .oo !.50 1.00 1.80 !.20 1.40 4.0C 6.2( 5.H 2.M 2.3 8.0( 5.0( 3.4! 1.4( 2.51 3.51 1.71 5.01 1.81 3.51 3.2' 3.5 3.0 3.0 1.4 2.3 .oo .oo .10 .so .50 .oo .45 .50 .50 4.00 !18 !19 !20 !21 122 !23 224 125 126 227 228 229 230 !36 244 a.ii 1.88 3.49 1.92 1.46 1.12 1.68 1.90 1.37 1.90 1.28 1.71 1.91 2.30 2.60 2.29 1.15 1.32 1.85 3.48 5.98 2.18 1.9s 1.88 1.91 1.91 1.71 2.21 1.81 2.5: 2.41 2.35 2.8! 3.21 1.11 1.41 '25 .96 .05 1.32 .72 ..20 ..86 1.15 1.45 1.28 1.38 1.14 1.18 2.53 1.75 2.41 1.20 1.49 3.0f 3.8: 6.6! 2.5: 2.21 1.91 2.11 2.1! 1.8 2.5' 1.9 2.7 2.6 2.5 2.9 3.4 1.2 1.6 2.: 1.25 7.35 4.49 3.12 1.37 2.42 3.28 1.67 4.50 1.73 3.2f 3.06 3.4( 2.9s 2.91 1.36 2.1( 1.95 1.83 1.80 2.0 1.9 1.8 2.09 1.99 1.95 2.15 2.05 2.00 2.41 2.31 2.2: 2.4 2.3 2.2 2.61 2.5 2.4: 2.1 2.: 2.1 2.8! 2.71 2.6! 2.86 2.82 2.61 3.00 2.98 2.80 3.00 3.00 2.80 262 263 264 3.15 2.47 1.72 1.80 2.21 1.01 1.8 1.41 1.6 2.1 2.4 2.9 1.8 2.4! 1.6 1.8' 1.4' 1.6 2.2 2.1 3.: l.! 2.1 2. 2. 2.7! 1.6. 1.91 1.4' 1.7 2.2 2.8: 3.6: 1.N 2.1: 2.8! 2.41 2.97 1.66 2.00 1.50 1.71 2.29 3.0C 2.01 2.2( 3.0( 2.51 265 266 267 268 289 270 2.4 2. 2.7 2.8 3.01 271 .62 .91 .25 .99 !.31 ,.50 !.GO 1.38 1.31 1.33 1.41 1.41 1.4' 1.73 1.65 1.63 1.8 1.7 1.71 1.34 1.30 1.29 1.16 1.45 1.32 1.5 1.5 1.2 1.4 1.6 1.6 1.61 1.51 1.52 1.26 1.55 1.90 1.8 1.9: 1.5. 1.6 1.9 1.9 i.nc 1.5: 1.6; 1.31 1.5; 2.0! 2.0 2.2 l.f 1.7 2.1 2.1 1.94 1.58 1.7C 1.34 1.61 2.N 1.03 1.2 1.39 1.6 1.61 1.1 1.78 ~ I - L - I 1.98 cord. each year pmiid June 1-Septa er 3 year of reoord. for computation of average annual precipitation. 2.1 80 . 1.2 :.9 1.0 1.2 !.6 1.0 1.1 3.9 !.O 3.4 3.0 3.2 3.C 3.6 1.: - 3.00 _ . 245 246 247 3.51 248 2.30 249 3.00 250 3.50 251 2.30 252 5.00 253 2.10 254 3.80 255 3.25 256 3.60 257 3.10 258 4.00 259 1.41 260 2.54 261 5.80 0.80 5.00 4.0( - 858 N E W MEXICO AND ARIZONA Average NO. Elevation (feet) Station AvERAaa OF annual Le:fth precipltation through record 1938 (years) l-k:'","N EACE: RECOEDUSEDFOR FREQUENCY ARRAY (Inched Dates (Inclusive) (b) ARIZONA- - - 272 Supal . . . . . . . . . .. . . . . , 3,200 .. 273 Kingman. . . . . . . . . . . 3,326 274 Truxton.. . . . . . .. .. .. , 3,997 Cedar Glade. . . . . . . . . . Pmoott Dry Farm. . . . Walnut Creek Ranner Station.. . .. . . . . . . . . Ashfork.. . . . . . . . . .. . . 275 276 277 278 Selipman. . . . . , . . . . . . . Williams.. . . . ... . . .. .. Grand Canyon. . . . . . . . Flagstaff.. .. . . . . . . . . .. Ft. Valley. . . . . . . . .. . . 279 280 281 282 283 - 4,610 5.008 14.30 14.34 1 Tt 5,138 5,160 1914-1915; 1917-1918; 1921-1922; 19241927; 1930-1932 1901-1902; 1904-1940 1910-1917; 1921-1022; 1924-1925; 1927lOAn I19i5-;940 1913-1928 1916-1910 19~,9;~910;1912-1913; 1915-1928; 1930- 13 39 1.17 39 26 1.13 1.24 1.74 1.46 26 16 1.28 1.47 1.68 1.59 25 29 1.42 1.20 1.95 1.44 33 35 36 45 17 1.14 1.39 1.10 1.20 1.25 1.37 1.97 1.38 1.82 1.73 lUY" 6,219 6,750 6,866 6 907 7:500 11.04 22.32 17.22 22.80 24.33 343 43 38 51 30 1905-1909; 1012-1935; 1937-1940 1904-1905; 1908-1940 1904; 1906-1940 1894; 1897-1940 1914-1924; 1935-1940 I Average of the maximum 1-day rain recordei ir the Averare of the maximum I-day rain recorded each a Some missing months interpolated from surrounding 1 2 given year, in which case i t was necessary to decide whether to include the year. The decision was made after inspection of the complete record t o determine what quantity constituted a high rainfall at that station. Depending on the number and season of the missing months, the year was included in the array if i t appeared probable t h a t the available record included the day of highest rainfall for the year. If the data do not plat as a straight line in the recurrence-interval curve, the relatively few widely-spaced points in the upper limits of the series determine how the curve will be drawn and will control the extrapolation. I n this study two curves (summer and all-year) were drawn for each of 283 stations. They represent stations in all kinds of topography in regions of average annual precipitation varying from 8 to 30 in. By far the most important factor affecting the extrapolation of the curves was neither the manner of choosing the series, nor the length of record, but the occurrence of aberrant points in the upper limits of the series. When such an aberrancy occurred the position of the curve was mostly a matter of judgment. I n the Southwestern States there is great variability in both the average annual precipitation and in the magnitude of the highest one-day rainfalls that occur in successive years. One year may include a number of heavy rainfalls and may have a high total precipitation] whereas tho following year may be dry, with no high rains. To demonstrate this variability t h e heaviest rain of record each year was used in the present analysis. The recurrenceinterval array, therefore, is comparable to the method used by the late Allen Hazen,6 M. Ani. Soc. C. E., in which he computed from stream-flow records 0 "Flood Flows," by Allen H:i7en, John Wdey and Sons. New Yorh, N. Y . . 1930 859 N E W M E X I C O A N D ARIZONA _. - -- - 2.60 1.82 2.90 1.93 3.11 2.14 3.47 2.29 3.68 2.40 3.86 2.50 4.00 272 3.10 2.82 2.61 2.90 3.40 3.18 2.71 3.20 331 3.41 2.89 3.75 4.05 3.95 2.95 4.20 4.3 1 4.30 2.99 4.65 4.65 4.72 3.00 5.00 4.90 5.00 273 2 74 2.61 2.23 2.16 2.33 2.68 2.35 2.20 2.41 2.78 2.41 2.28 2.55 2.93 2.55 2.30 2.Gl 3.00 2.G3 2.32 2.71 3.10 2.71 2.32 2.75 3.20 2.75 275 27G 3.05 1.98 3.05 2.00 3.46 2.07 3.40 2.04 3.79 2.14 4.20 2.12 4.46 2.28 4.75 2.18 5.00 2.35 5.50 2.21 5.55 2.42 6.00 2.22 6.00 2.50 277 278 2.17 3.10 2.00 2.24 2.39 2.00 2.04 2.00 1.85 1.90 2.30 3.33 2.17 2.40 2.57 2.09 2.10 2.15 1.91 2.00 2.41 3.51 2.30 2.51 2.70 2.24 2.20 2.42 2.06 2.16 2.62 3.86 2.53 2.75 3.00 2.31 2.27 2.60 2.18 2.28 2.75 4.10 2.70 2.90 3.18 2.41 2.31 2.83 2.27 2.39 2.90 4.33 2.88 3.08 3.38 2.48 2.35 3.00 2.32 2.48 3.00 4.50 3.00 3.19 3.50 279 280 281 282 283 - period June 1-Septen er 30 in each year of - ~ -__ cord stations for computation of average annual precipitation. the highest peak discharge each year of record, the average of which he termed “average annual flood.” I n Table 3, the data on the average of highest rainfall each summer and of highest rainfall each year are comparable t o Mr. Hazen’s “average annual flood.” ISOPLUVIAL MAPS The isopluvial maps published by Mr. Yarnell2 were based on five stations in the Southwestern States. I n spite of the fact that the present analysis includes frequency curves for 283 stations in the same region, due to marked variation in frequency curves for closely adjacent stations of comparable records, isopluvial maps are difficult to construct. This difficulty can be attributed to a number of facts. Owing to the great divergence in topographic relief between closely adjacent points, two stations within a very short distance of one another may be in very different topographic settings. One may be in the middle of a broad, flat plain, the other in a deep, narrow mountain canyon. It appears from the present analysis that stations above El. 7500 experience relatively few high rainfalls. This indicates that elevation above sea level has some effect on the frequency characteristics, although ruggedness of relief and position of the station in relation to the source of moisture and the surrounding mountainous areas probably are of more direct importance. The small areal extent of high rainfalls occurring in summer-type storms is a factor leading to differences between stations since any high-intensity, individual storm rarely is recorded a t more than one station. The 24-hr rainfall quantity expected t o be equaled or exceeded once in 50 years a t various stations in relation to topography is shown by the relief maps 860 NEW MEXICO AND ARIZONA N E W MEXICO AND ARIZONA 86 1 862 NEW MEXICO AND ARIZONA NEW MEXICO AND ARIZONA 863 864 NEW MEXICO AND ARIZONA of Figs. 3 and 4. These maps demonstrate the variability of the recurrenceinterval figure between closely adjacent stations, and they indicate the position of the stations relative to the major mountain masses. Stations in deep mountain valleys, for the most part, are shielded from the effect of moisturebearing air masses moving into the area and tend to have low rainfall expectancy. This is not true in all cases, but the relief apparently offers sufficient explanation for the relative magnitude of the recurrence-interval figure for certain stations. I n other cases, two stations in apparently similar topographic positions have quite different expectancies. I n spite of these differences between individual stations, certain general patterns of rainfall expectancies are apparent in New Mexico and Arizona. The area in southeastern New Mexico, particularly along the eastern flanks of the Delaware, Sacramento, and Capitan mountains, is subject to high rainfalls because summer moisture moving in from the south or southwest impinges on these topographic barriers. The same is true for northeastern New Mexico: I n the central Pecos watershed no important topographic barrier obstructs the moisture-bearing winds south of the relatively rugged country in the headwaters of the Pecos and Canadian rivers. The Black Range between Silver City and Hillsboro in southwestern New Mexico forms a barrier to south winds and protects northwestern New Mexico from high rainfalls. Stations in the Rio Grande Valley as far north as Albuquerque, N. Mex., however, are subject to high rains from moisture moving up the valley. I n Arizona, the mountainous area of the central and northwestern portion, particularly along the Mogollon and Yarnell escarpments, is subject to high rainfalls and tends to protect or shadow the northeastern plateau country. These relationships can be easily visualized by inspection of Figs. 3 and 4. From these generalized relations an isopluvial map for 50-yr frequency has been drawn and is presented in Fig. 5 . No attempt was made in the preparation of this map to draw each "isopluve" in the exact position indicated by the computed value for each individual station, but the lines were generalized to indicate broadly the comparative expectancies of various regions. I n the use of the recurrence-interval data presented herewith, engineers are cautioned to compare the topography and position of the point for which a recurrence-interval value is desired with those factors affecting all stations near the particular point. Moreover, it must be remembered t h a t the data presented are for a 24-hr period, but in the summer type of rainfalls, the maximum rainfall in 24 hr probably fell in a much shorter period of time. The value of total storm rainfall for a given recurrence-interval in the summer period may be used in connection with average intensity-time patterns for the purpose of designing engineering structures. APPLICABILITY OF STATION-YEAR ANALYSIS One method of ironing out differences between recurrence-interval curves of adjacent stations and improving the value of short records is a combination of stations by the station-year method. The requirements for use of this NEW MEXICO AND ARIZONA 865 method discussed by H. C. S. Thorn‘ and Katharine Clarke-Hafstade may be summarized as follows: f (1) Stations grouped must be mutually independent-that is, far enough apart so that no single storm covers more than one of the stations; and (2) Stations grouped must be included in a meterologically homogeneous region. FIQ.(I.-ISOPLUVIAL MAP O F ARIZONAA N D Nmw M X U C O (24-HR RAIN EQVALSD OR EXCEHlDBD O N C l I N 50 YmAR8) Mr. Thorn defines a meteorologically homogeneous region as an area each point of which would have identical frequency curves of rainfall. He states that delineation of such a region by this criterion is impractical since “assignable causes,” such as topographic differences, operate to produce dissimilarity of rainfall experience at various points within the region; and he suggests, therefore, that homogeneity must be established by meteorological studies. Assignable causes operate in the following way: A storm situation, one favorable for rain, prevailing over a region may be so weak t h a t rainfall occurs only at points that are subject to significant orographic effects, and these stations, over a long period, would therefore experience more rainy days than do stations with assignable causes of lesser magnitude. Although i t is possible, in New Mexico and Arizona, to delineate meteorologically homogeneous areas defined by meteorologic studies, recurrenceinterval curves at various stations within such a region may be so different that assignable causes appear to operate in these states to such a n extent that there may be more difference between curves of stations within the homogeneous area than between two stations in dissimilar meteorologic regions. - 7 “On t p e Statistical Analysin of Rainfall Data,” by Herbert C. 8. Thorn, Tmneaetiona, Am. Geophysical Uxuon, Pt. 11, 1940, pp. 490-498. 8 “Reliability of the Station-Year Rainfall-Frequency Determinations,” by Katharine Clarke-Hafstad. Tranaaclions, Am. Soa. C. E.. Vol. 107 (1942), p. 633. 866 . NEW MEXICO AND ARIZONA Examples of station-year groupings were platted in connection with the present'study. It did not appear satisfactory to group stations by the stationyear method, although the stations were in meteorologically similar regions, inasmuch as the frequency curves were so distinctly different. RAINS I n the use of frequency-magnitude data for design, it usually is necessary to apply an intensity pattern to a given rainfall total. I n general, i t may be stated that in New Mexico and Arizona summer rainfall depths published as 24-hr totals characteristically fall in a period much less than 24 hr-usually less than 10 hr. Since design storms ordinarily are assigned an intensity pattern that would result in relatively high stream discharge, the rainfall magnitudes for summer listed in Table 3 logically may be used with the characteristic intensity patterns presented in Fig. l(a). The great winter floods in these states are the result of rainfalls extending over a period of days, as was the case in the flood of the upper Gila River in January, 1916. For the determination of the probability of long-duration storms, the recurrence-interval of various total amounts of precipitation in periods greater than 24 h r was derived by tabulating the highest rainfall amounts each year t h a t fell on two or three consecutive days, arranging the terms in order of magnitude, and platting as in the studies of 24-hr rains. These arrays were prepared for a limited number of stations, each of which was chosen to represent a certain area with characteristic topographic relief and elevation. This analysis showed that the ratio of the total rainfall in a 48-hr period to that falling in a 24-hr period is essentially constant regardless of the recurrence-interval of the rain, and similarly, the ratio of 72-hr total to 24-hr is approximately constant. At any given recurrence-interval the amount of rain in any consecutive 48-hr period is about lOv0 to 20% greater than the 24-hr amount expected, and the total for any 72 consecutive-hr period is 20y0 to 30% greater than the amount in 24 hr. These ratios are only an indication of the relation between 1-day, 2-day, and 3-day rains, since the present analysis did not include sufficiently detailed studies of long-duration rains and winter intensity patterns to form the basis for positive statements on this subject. The rains experienced in the Pecos River watershed of eastern New Mexico in Septemher, 1941, indicate that, a t least in that section of the state, summer-type rainfalls of very high amounts may fall on two consecutive days. C O M P A R I S O N OF MAGNITUDE O F 1-DAY,%DAY, AND $DAY ACKNOWLEDGMENTS The writer gratefully acknowledges the assistance of Thomas Maddock, Jr., for suggestions during the progress of the study, B. T. Mitchell in checking original records, and a number of workers of the Work Projects Administration, principally the late E. F. Blanchard, who copied data from the original ohservers' records and assisted in the frequency tabulations. The cooperation of E. L. Hardy and G. K. Greening, U. S. Weather Bureau, in allowing access to the original records of cooperative observers is appreciated.
© Copyright 2026 Paperzz