Practice Midterm CMSC426 Themidtermwillcovermaterialuptoandincludinghumanperceptualgrouping. Herearesometopicsitwillbehelpfultomasterforthemidterm: • Correlation o Howdoyouperformcorrelationin1Dor2D?Whatisaboxfilter? HowdoyoucreateaGaussianfilter?Howdoyoucreatefiltersto computederivatives?Fouriertransforms(onlyforchallenge problems). • Edgedetection o Imagegradients § Howtocomputetheimagegradientforacontinuousor discreteimage. § Whatisthedirectionandmagnitudeofagradient? § Howtocomputethedirectionalderivativeofanimage. § Whatdoesthegradienttellyouaboutthedirectioninwhich theimagechangesmostrapidly,andhowrapidlyitchangesin thatdirection. o Non-maximumsuppression • Humanperceptualgrouping o Basicgestaltgroupingcues. • TherewillnotbequestionsaboutMatlabcoding. Inparticular,youshouldunderstandafewequations: 1Dand2Dcorrelation F ! I ( x) = N ∑ F (i) I ( x + i) F ! I ( x, y) = i =− N N N ∑ ∑ F (i, j)I ( x + i, y + j) j =− N i =− N 1D and 2D Convolution F ∗ I ( x) = N ∑ F (i) I ( x − i) i =− N Definition of a gradient: ⎛ ∂I ∂I ⎞ ∇I = ⎜⎜ , ⎟⎟ ⎝ ∂x ∂y ⎠ N F ∗ I ( x, y) = N ∑ ∑ F (i, j) I ( x − i, y − j) j =− N i =− N Formula for using the gradient to determine how the image changes as you move in a particular direction I ( x + Δ cos θ , y + Δ sin θ ) − I ( x, y) ≈ v, ∇I where v ≡ (Δ cosθ , Δ sin θ ) Definitionofthepartialderivative. ∂I ( x, y) I ( x + Δx, y) − I ( x, y) = lim Δx→0 ∂x Δx I’maskingyouto“memorize”theseformulasbecauseIfeelthatifyoureally understandwhatisintheformula,youwillhaveitmemorized. Belowaresomepracticeproblems.Thesearenotguaranteedtocovereverything youneedtoknow,butshouldbehelpful. PracticeProblems 1. Showtheresultofconvolvingthekernel,k,withtheimage,I. Theoutputlookslike: 0,0,…,0,¼,1,2,3,4,5,6,7,8,9,7¼,2½,0,0,0… 2. Giveanexamplethatshowsthatcorrelationisnotassociative Trycombiningthederivativefilterwithasmoothingfilter. Tokeepthingsassimpleaspossible,use[0,-1,1]asthederivativefilter,and[1/3,1/3, 1/3]asthesmoothingfilter. 3. Supposewehaveanimagewhoseintensitiesaredescribedbytheequation x3-2xy+7. a) Whatisthemagnitudeoftheimagegradientatthepoint(7,4)? Thegradientis(3x2-2y,-2x).At(7,4)thisis(138,-14).Themagnitudeofthatis sqrt(1472+16).IfIaskedaquestionlikethatonthetest,thenumberswouldbekinder toyou.ButitisfinetojustwritetheanswerasIjustdid,withoutsimplifying. b) Supposewemoveintheimagetothepoint(7+δ, 4 + 2δ). Use the image gradient to predict what the intensity will be at this point. 138δ - 14δ=124δ. c) Challenge problem: What is the actual intensity at this point. What does this tell you about the accuracy of your solution using the gradient? Ifyouworkthisout,you’llfindit’sthesameastheansweryougotfor(b)plussome termsthatarequadraticorcubicinδ.Whenδ issmall,thesetermsbecomeverysmall. 4. Considerthefollowing,smallimage: 4 6 9 12 15 3 4 6 9 12 3 3 4 6 9 2 3 3 4 6 2 1 3 3 4 a) Computethemagnitudeandthedirectionofthegradientforthe centralpoint(4). Let’susefilters[-1/2,0,½]and[-1/2;0;½]forthexandyderivatives.Thenweget forthegradient(3/2,-3/2).Themagnitudeofthisissqrt(18)/2.Thedirectionisthe gradientdividedbythemagnitude(aunitvectorinthatdirection).Oryoucouldsay thedirectionisadiagonalvectorpointingtowardsthe9. b) WouldtheCannyedgedetectorconsiderthispointtobeanedge? Explainwhyorwhynotindetail,describingwhatconditionsare neededtodecidethis. Youneedtocomparethegradientmagnitudetothegradientmagnitudeatthe diagonalswithvaluesof9and3(theitalicizednumbershere).Youcantelljustby lookingthatthemagnitudeofthegradientatthe9willbelarger,sono,it’snotan edge. WorkshopQuestions 1. ConsideranimageinwhichtheintensitiesaregivenbytheequationI(x,y)= x2+2y. a. Whatisthegradientoftheimage? (2x,2). b. Whatisthegradientatthelocation(x,y)=(2,3)? (4,2) c. Atthelocation(x,y)=(2,3),whatisthedirectionalderivativeinthe directionof(3,2)?Thatis,ifyouweretomoveasmallamountinthis direction,howmuchwouldyouexpecttheimagetochange? Ifyoumovealittleinthisdirection,saymovingby(3δ, 2δ), the change in intensity is 14δ. The distance you moved is sqrt(13)δ. So the direction derivative is: 14δ/sqrt(13)δ=14/sqrt(13). 2. Makepartofadiscreteimagewithintensitieschosenaccordingtothe equationin1.Thatis,forexample,makeanimagesothatthepixelat location(7,3)hasthevalue72+2*3=55. 3 6 11 18 27 5 8 13 20 29 7 10 15 22 31 9 12 17 24 33 11 14 19 26 35 a. Ifyouweretocomputethediscreteimagegradientateachpixelusing derivativefilters,whatvalueswouldyougetfortheimagegradient everywhere? I’llusefilterslike[-1/2,0,½].Atthepointwiththevalue15(x=3,y=3),thegradient is:(6,2). b. Howdothesecomparetothegradientsyougetinproblem1?Ifthere isadifference,whyisthis? Theformulapredicted(6,2).Theyarethesame.Noticethisisn’talwaystrue. Whenthiswillbetrueisalittletricky.Here’saquickdiscussion.Theycomponentof thegradientwillalwaysmatchtheformulawhenwecomputeitdiscretely,because the2ndderivativeoftheimagewithrespecttoyis0.Noticethatthe2ndderivative withrespecttoxisn’t0,butit’sconstant.Thismeansthatusingthefilter[-1/2,0,½] wegetthesameresultastheformula,butthiswouldnotbetrueforthefilter[0,-1,1]. Understandingwhythisistrueisalittlemoreadvanced,butinteresting. 3. Supposeyouhaveanimageinwhichtheintensitiesaregivenbytheequation I(x,y)=100–x2–y2+xy+x+4y.Whatistheintensityofthebrightestpoint intheimage? Thekeyinsighthereisthatatthebrightestpoint,thegradientwillbe(0,0). Otherwise,therewouldbeadirectionwecouldmoveintomakeitbrighter.Thisisjust likethe1Dcase,wherethederivativeis0attheextremalvaluesofafunction. ThegradientI(-2x+y+1,-2y+x+4).Settingthesebothto0givestheequations: -2x+y+1=0 -2y+x+4=0. Sowegety+1–4y+8=0. 9=3y.y=3.x=2.Intensity=100–4–9+6+2+12=107. 4. SupposegisaGaussianfilterwithastandarddeviationof1. a. IfIfilteranimagetwicewithg,showwhythisisequivalenttofiltering itoncewithalargerGaussian. b. WhatshouldthestandarddeviationofthelargerGaussianfilterbe? I’mgoingtoleavethisoneasachallengeproblem.Herearesomehints.Ifyou’re interested,firsttrycombiningthefiltersusingMatlab.Plottheresult,andseethatit lookslikeaGaussian.UseMatlabtoseewhatthevarianceofthenewfilteris. Toshowthisanalytically,youneedtowriteconvolutionasacontinuousoperation, usingintegrals,Thenyoucanplayaroundwiththisexpression,removingoneofthe integralsyouget,andputtingitintheformofasingleconvolutionwithalarger Gaussian. 5. UsingMatlab,createafilterthathasthesameeffectasapplyinga1x3 averagingfilter20times.Whatistherelationshipbetweenthisfilteranda Gaussianfilter? a=ones(1,3)*(1/3); f=a; forI=1:19f=imfilter(a,f);end figure; plot(f); 6. Createa1Dfilterthatsmoothsanimageandtakesaderivativeatthesame time. a. Dothisusinganaveragingfiltertosmooththeimage. [0,-1,1]*[1/3,1/3,1/3]lookslike[-1/3,0,0,1/3].Notsosmooth. b. DoitusingaGaussiantosmooth. DothisinMatlab. c. Whatdoyouthinkaboutthedifferences? LooksalotsmootherwiththeGaussian.Thisgetsevenworsewhenyouuseavery wideaveragingfilter,andawideGaussian.
© Copyright 2026 Paperzz