MATHEMATICS 1 (a) (i) (ii) (iii) (b) ˆ sin 72 36.671 MBD


600 
Total cost  300  5 

300 

 300(5  2)
(iii)
MATHEMATICS
4016/02
 $2100
600
y  5
x
600
5.2  5 
x
600
0.2 
x
600
 3000 copies
x
0.2
1
Total amount  1299   24  40.30
3
 $1400.20
1400.20  1299
1027
 100%  7
%
1299
1299  7.79%
27 OCTOBER 2010
1 (iv)
(a) (i) MB  ( DB)2  ( DM )2
 72 2  432
 3335
 57.749
(ii)  57.7 m
AB  AM  MB
3
(a)
43
 57.749 
tan 62  80.613
(ii)
 80.6 m
(iii) 72
CD 
sin 23
 184.27  184 m
(b) ˆ  sin 1 43
MBD
72  36.671
Bearing of D from B  270  36.671
(b)
1299(1.06 3  1)  $248.13 (c)
759 
 233.329
 233.3
2 (a) x 50

8
x
4
(a)
4
( x  ( 5))
3
3 y  4 x  4(5)  3(4)
3 y  4 x  32
(b)
x  8  50  400 The equation of line AB is 3 y  4 x  32 . 2 x  9 y  68
2 x  68  9 y 4 x  136  18 y
x   400
100
 $660 115
y  y1  m( x  x1 )
y4 
2
 20
(b) t  p q

4
5
4q
tp
5
4q
t
p
5
4q  5 p
t 
5
(c) (i) 600
y  a
x
600
17  a 
50
 a  17  12  5
(ii) 600
y  5
x
600
 5
100
 $11
(i)
Substitute this equation into 3y  4 x  32 . 3 y  136  18 y  32
21y  168
y8
68  9(8)
 2
2
The coordinates of B is ( 2,8) . 
(i)
AE  6 2  12  37  6.08 E( 5  6, 4  1)  E(1, 5)
(ii)
(iii)     1   4   3 
DE  OE  OD           5  2  3 
    2   4   6 
DB  OB  OD           8  2  6 
(iv) 1. D, E and B are collinear since there is  1 
a common vector   . 1
2. E is exactly midway between B and 

D since DB  2 DE . x
(c)
5 (a) (i) (ii) ˆ  360  24 XCD
15
ˆ
CXD  180  2(24)  132 (d)
(i)
(ii)
(b) ˆ  24, triangle XCD is isosceles.
Since XDC
 XC  XD
Given BC  DE,
(c) XB  XC  BC  XD  DE  XE
ˆ  CDX
ˆ  24
BED
8
(a)
(i)
Let Y denote a point on FE extended.
ˆ  24 (exterior angle)
DEY
6 (a) (b) (ii)
(c) 42
x 1
2

(d) 2(2)
x  11.478 OR x  10.978
7 (e) (iii)
2
( 1)  ( 1)  4(2)( 252)
(b)
Since x is positive, let x  11.478 . 42
Time taken 
11.478
 3.659 hours
 3 h 39 min 33 s
(a) ˆ
170 2  952  102 2  2(95)(102) cos PQR
(b) 2
2
2 

ˆ  cos 1  170  95  102 
PQR
 2(95)(102) 


 119.255
 119.3
Angle of depression of Q from B
23
95
 13.6097
 13.6
1
(170)( RS) sin 52  5200
2
2(5200)
RS 
170 sin 52
 77.634
(c)  77.6 m
(i)
(ii)
1 2
r θ
2
1
 11.225  (8 2 )(3.5) 2
 11.225  112
Total area  11.225 
 123 m 2
Total volume
 Volume of pyramid
 Volume of cuboid
1
  10  10  12  30  10  10
3
 3400 cm 3
Let M denote the midpoint of AB. MN  10  2  5
VM  ( MN )2  (VN )2
 52  12 2
 13
1
 10  13
2
2
 65 cm
Total area  4(65)  4(30  10)
 1460 cm 2
See graph below (i)
m  5.15 (ii)
t  17
(iii) t  31
(i)
3.55  2.20
Gradient 
10  40
1.35

50
 0.027
Area of triangle VAB 
 tan 1
ˆ  2π  3 1 POQ
2
Area of triangle POQ
 11.2 m 2
2 x 2  x  252  0
x
1
2
1
ˆ
(8)(8) sin POQ
2
 11.225
6  42 x  42( x  1 )   x( x  1 ) 2 
2

x
252 x  252 x  126  x 2 
2
2 x 2  x  252  0
 26  1
 27
Total cost  26(28.50)  27(14.95)
 $1144.65
PRQ  44  2(8)  28
From s  r θ ,
28  8 θ

42 10

x 60
Number of posts required
θ 3
ˆ  180  24  24  132
BEF
42
Number of hours taken 
x
42
Number of hours taken 
x 1
2
77.634  3  25.878
 26 panels need to be bought
9
(a)
(b)
(c)
(ii) The gradient represents the rate of change of mass at the particular instant. When t  7 , the mass is decreasing at –0.027 kg/day instantaneously. (d) The relationship between m and t may be different for values of t beyond the given range. In this case, t  365  70 . a  28  4  7
10 (a) (i) b  60  (12  15  10  7  4  0  2  1)  9
c  12  0  0
d  3  9  27
e  0  15  20  27  28  20  0  14  8
 132
(ii) Σ fx 132
1
Mean 

2 Σf
60
5
Standard deviation 

Σ fx 2  Σ fx 
 

Σf
Σf 
510  1 
2 
60  5 
2
2
183
50
 1.91

(b) (c) Probability  0 Number of pupils who had read more than 4
books
 4 21  7
P(both had read more than 4 books)
7
6
7



60 59 590
Copyright © 2010 MathsGuidebook.com. All rights reserved. No part of this
document, text or graphics, shall be reproduced, stored or transmitted in
any means, whether electronically or physically, without the prior written
permission of the publisher. All care is taken to ensure that the contents of
this publication are free from errors. The publisher shall not be held liable for
any damages inflicted. Website: http://www.mathsguidebook.com
9 (a)
m
6
5
4
(–10, 3.55)
3
(40, 2.20)
2
0
10
20
30 40 50 60
70
t