13 13 Honey Coils 13 13 Honey Coils A thin, downward flow of viscous liquid, such as honey, often turns itself into circular coils. Study and explain this phenomenon. 2 13 3 13 Inception Dynamics liquid with low viscosity 4 13 Inception Dynamics pressure liquid with high viscosity shear stress 5 13 Inception Dynamics thin stream + small disruption flow bending pressure liquid with high viscosity 6 13 Partial Analogy honey viscous forces (inner friction) elastic rope elastic forces 77 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 = 0.085 Pa s 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s (100 × that of water) values at 22o C non-newtonian liquid newtonian liquid 8 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 = 0.085 Pa s 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s (100 × that of water) values at 22o C non-newtonian liquid newtonian liquid 9 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 = 0.085 Pa s 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s (100 × that of water) values at 22o C non-newtonian liquid newtonian liquid 10 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 = 0.085 Pa s 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s (100 × that of water) values at 22o C non-newtonian liquid newtonian liquid 11 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 = 0.085 Pa s 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s (100 × that of water) values at 22o C non-newtonian liquid newtonian liquid 12 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 = 0.085 Pa s 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s (100 × that of water) values at 22o C non-newtonian liquid newtonian liquid 13 13 High Viscosity is Necessary glycerine soap glycerol shampoo acacia honey 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s linear oscillation 𝜂 = 0.085 Pa s (100 × that of water) values at 22o C 𝜂 = 1.2 Pa s non-newtonian liquid newtonian liquid 14 13 High Viscosity is Necessary glycerine soap glycerol linear oscillation 𝜂 = 0.085 Pa s (100 × that of water) values at 22o C 𝜂 = 1.2 Pa s shampoo acacia honey circular spirals 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s non-newtonian liquid newtonian liquid 15 13 High Viscosity is Necessary glycerine soap glycerol linear oscillation shampoo acacia honey circular spirals to start the bending viscosity ≥ 1 Pa s 𝜂 = 0.085 Pa s (100 × that of water) values at 22o C 𝜂 = 1.2 Pa s 𝜂 ≤ 19 Pa s 𝜂 = 17.6 Pa s non-newtonian liquid newtonian liquid 16 13 Why Did the Other Liquids Fail? • viscosity problem – low viscosity = low shear stress water, glycerin soap, olive oil, motor oils, syrup – could be solved by greater fall height surface tension issue (Plateau-Raileygh instability: stream turns into drops) but 17 13 Why Did the Other Liquids Fail? • viscosity problem – low viscosity = low shear stress water, glycerin soap, olive oil, motor oils, syrup – could be solved by greater fall height surface tension issue (Plateau-Raileygh instability: stream turns into drops) but 18 13 EXPERIMENTS 19 13 Parameters height of fall viscosity 20 13 Height gravity flow velocity rises r0 continuity 𝑆𝑣 = const. h flow becomes thinner r(h ) 21 13 max spiral height [cm] Coil Height vs. Height of Fall acacia honey 𝜂 = 17.6 Pa s 𝜌 = 1410 kg m−3 2 1,5 1 0,5 0 0 𝑄 = 0.045 ml s −1 𝑟0 = 1 ml 10 20 30 40 50 fall height [cm] 22 13 Coiling Frequency vs. Height of Fall 180 160 frequency [Hz] 140 acacia honey 𝜂 = 17.6 Pa s 𝜌 = 1410 kg m−3 120 100 80 60 40 20 0 0 𝑄 = 0.045 ml s −1 𝑟0 = 1 ml 10 20 30 40 fall height [cm] 23 13 Viscosity • must be high enough (> 1 Pa s) • greater viscosity - • coiling frequency decreases with increasing viscosity 24 13 Coiling Frequency vs. Viscosity 35 frequency [Hz] 30 25 insufficient viscosity 20 15 10 5 0 35 h = 10 cm 30 25 20 ←temperature← [ C] →viscosity→ 15 10 25 13 NOT ALL COILING IS THE SAME different regimes of coiling 26 13 Regimes Results of Ribe et.al. [Ribe et.al., 2006, Dynamics of liquid rope coiling, Physical Review E 74] • different regimes found • affected by height of fall (velocity) • determined by relative importance of forces 1. viscous 2. gravitational • gravitational-inertial (transition) 3. inertial 27 13 dimensionless frequency Physical Review E 74 (2006) Ribe et.al., Dynamics of liquid rope coiling dimensionless height of fall 28 13 Viscous Regime • • • • very low height of fall viscous force dominant coiling driven by fluid extrusion very hard to observe 29 13 Gravitational Regime • height of fall up to 9 cm • gravitational force dominant • slow & stable coiling • very predictable 30 13 Inertial Regime • heights ≫ 10 cm • inertial forces dominant • highest coiling frequencies, unstable 31 13 Gravitational-Inertial Regime • transition - between gravitational and inertial regime (height 9 to 10 cm in our case) • both forces are relevant • frequency: discrete mathematic pendulum) resonant frequency • 8-like pattern • history (hysteresis) 32 13 stable gravitationalinertial regime slightly moving down non-stable state 33 13 Coiling Frequency vs. Height of Fall 180 coiling frequency [Hz] 160 140 acacia honey 𝜂 = 17.6 Pa s 𝜌 = 1410 kg m−3 120 100 80 60 40 20 0 0 𝑄 = 0.045 ml s −1 𝑟0 = 1 ml 10 20 30 40 fall height [cm] 34 13 Coiling Frequency vs. Height of Fall coiling frequency [Hz] 160 140 acacia honey 𝜂 = 17.6 Pa s 𝜌 = 1410 kg m−3 coiling frequency [Hz] 180 120 100 80 60 40 transition 20 gravitational 15 10 5 0 2,5 20 6,5 8,5 fall height [cm] 0 0 𝑄 = 0.045 ml s −1 𝑟0 = 1 ml 4,5 10 20 30 40 fall height [cm] 35 13 acacia honey 𝜂 = 17.6 Pa s 𝜌 = 1410 kg m−3 1,5 1 0,5 0 0 𝑄 = 0.045 ml s −1 𝑟0 = 1 ml inertial transition 2 gravitational max spiral height [cm] Coil Height vs. Height of Fall 10 20 30 40 50 fall height [cm] 36 13 Coiling Frequency vs. Viscosity transition 35 25 gravitational insufficient viscosity 20 15 10 inertial frequency [Hz] 30 5 0 35 h = 10 cm 30 25 20 ←temperature← [ C] →viscosity→ 15 10 37 13 FURTHER OBSERVATIONS 38 Inertial Regime: Stable Position 13 ℎ ≈ 10 cm honey flowing in honey flowing out 39 13 Inertial Regime: ℎ ≈ 10 cm Spiral height [cm] Stable Position 1,5 1 0,5 0 0 0,2 0,4 0,6 0,8 1 1,2 Time [s] - 0s = 20 seconds after beginning 40 Inertial Regime: Buckling 13 ℎ ≈ 12 cm disturbance instability 41 13 Inertial Regime: ℎ ≈ 12 cm Buckling low fall heights bigger fall height unstable stable 𝑡 =0s disruption o effect 𝑡 = 0.1 s 𝑡 = 0.2 s 𝑡 = 0.3 s disruption 42 Inertial Regime: Periodic Falling 13 ℎ > 20 cm max height honey flowing in coil falls coil height honey flowing out 43 13 Inertial Regime: ℎ > 20 cm Periodic Falling rise height of spirals [cm] 2 fall 1,5 1 0,5 0 0 0,5 1 1,5 time [s] 44 13 Inertial Regime: ℎ > 20 cm Periodic Falling 5x slower 4,5 fall frequency [Hz] 4 3,5 3 2,5 2 1,5 1 0,5 0 0 2 4 6 time [s] 8 45 10 Inertial Regime: Coilception 13 ℎ ≫ 20 cm 46 13 Inertial Regime: ℎ ≫ 20 cm Coilception inertial regime spirals as a new source viscous regime 47 13 Thank you for your attention! Conclusion • dynamics of creation shown • viscous forces qualitatively equivalent to elasticity • influence of relevant parameters: f f h ←T← – height – viscosity • different regimes 1. 2. • 3. viscous gravitational gravitational-inertial (transition) inertial + additional effects shown 48 13 APPENDICES 13 What does the viscosity look like? 25 Viscosity [Pas] 20 15 Shampoo Acacia Honey 10 5 0 0 5 10 Shear rate [s-1] 15 13 Viscoelasticity The fluid can have „memory“ „Die Swell“ effect Thin tube-contraction 13 Die Swell? Shampoo Agate honey Circular spirals Glycerol Just bending 13 Shampoo • No observed viscous regime • Similar behavior • Without inertial regimes Kaye effect 13 Bubbles-on the way to the Kaye effect Air-necessary for the Kaye effect Ann. Rev. of Fluid Mechanics, N. M. Ribe, M. Habibi, and D.Bonn Liquid Rope Coiling 13 Tube viscometer Rabinowitsch–Mooney equation piston We change Q We observe p d Method from l R. Bragg, F. A. Holland; Fluid Flow for Chemical Engineers Measuring viscosity 13 13 Measuring rheology-theory Shear stress on the wall– stabilized flow Q p wall d p ( ) 4 l Pressure change d Volumetric flow rate 2 Q dQ 2xvh dx d l 0 Velocity profile Integrating per partes x dQ 2xv dx d h vhorizontal d 2 d 2 x 2 vh x 2 dvh 0 2xvh dx 2 2 2 0 2 dx dx 0 2 Velocity gradient 0 – Stabilized flow– No „Slipping“) Method from R. Bragg, F. A. Holland; Fluid Flow for Chemical Engineers 13 Measuring rheology Volumetric flow rate d 2 Q x dx 2 0 Gradually editing d 2 wall For the flow in the tube x 2x wall d d x flow Z R. Bragg, F. A. Holland; Fluid Flow for Chemical Engineers d3 Q 3 2 d 8 wall 0 Differentiating relative to and editing 32Q d ln 3 32Q 3 1 d wall 3 d 4 4 d ln wall Rabinowitsch–Mooney equation wall d p ( ) 4 l 13 Measuring rheology-Agate honey 0,2 Rabinowitsch–Mooney equation Steady flow wall 0,5 1 1,5 2 2,5 3 -0,4 Ln(ζ) -0,2 0 -0,6 -0,8 -1 -1,2 -1,4 d p ( ) 4 l 32Q d ln 3 d 0,7292 d ln wall wall 1 17,6 Pas wall 0,052 -1,6 -1,8 Velocity Gradient[s-1] wall 32Q d ln 3 32Q 3 1 d 3 d 4 4 d ln wall y = 0,7292x - 2,1295 0 1 0,9 y= 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 Ln(τwall) 0,052x + 0,0568 0 5 10 Shear Stress[Pa] 15 20 13 Measuring rheology-Shampoo 3 Rabinowitsch–Mooney equation Ln(ζ) 1,5 1 0,5 0 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 -1 -1,5 Stabilized flow wall d p ( ) 4 l 32Q d ln 3 d 2,39 d ln wall Viscosity largest in the beginning biggest 2 wall 19,6 Pas wall -2 -2,5 Ln(τwall) Velocity gradient [s-1] wall 32Q d ln 3 32Q 3 1 d 3 d 4 4 d ln wall y = 2,3949x - 5,222 2,5 16 14 12 10 8 6 4 2 0 0 5 10 15 20 Shear Stress[Pa] 25 30 13 Why is it the shape stable? View from top v( x ) x corotating frame of reference M viscous Fviscous→ longitudal Fviscous Due to Rayleigh-Stokes analogy[1] x Qualitatively the same M inertial behavior as in Elastic ropes dAof(Centrifugal, 0 Fnet Torques Coriolis) rdA 0 M viscous Proved in L. Mahadevan, Equlibrium William S. Ryuimplies and Aravinthan D.T. Samuel Fluid rope trick investigated. Nature, Volume 392 Number 6672.1998 M 0 [1] Love. A Treatise on Mathematical Theory of Elasticity. Dover 1944 61
© Copyright 2026 Paperzz