Development of Resonance Ionization Spectroscopy for Single Ion Transport María Montero Díez Karl Twelker Stanford University APS April Meeting 2011 1 Motivation - Full EXO R&D Full EXO ~ ton scale gas or liquid TPC • “Tagging” of 0nbb daughter nucleus 136Ba ion for background rejection – R&D underway • Ion extraction from a TPC • Hot Tip • Cryo Tip • RIS Tip – presented here • Ion trapping • Buffer gas cooled quadrupole linear ion trap • Ion identification with • Laser Induced Fluorescence (LIF) • Resonant ionization spectroscopy (RIS) •Others… Transporting single Ba+ ions NON TRIVIAL! “Tagging” 136Ba ion in real time may allow for rejection of all backgrounds except 2nbb. 2 Resonance Ionization Spectroscopy • RIS uses lasers tuned to atomic resonances to first excite and then ionize specific atoms. • We use pulsed dye lasers at 553.5 nm and 389.7 nm. Ba+ 5d 5d8d 1P1 Ba+ 6s 389.7nm Autoionization: •The 5d8d 1P1 state decays to a lower energy ionized state. This allows use of the high cross section of the resonance to achieve ionization. 6s6p 1P1 553.5nm 6s2 1S0 Ba ground state electron configuration: [Xe]6s2 3 Initial DRIS Setup • Neutral Ba is deposited on the target with a Barium oven. • An infrared Nd:YAG laser releases ions from the target. • RIS lasers ionize the neutral Ba. (spectroscopic identification) • The ion drifts to a channeltron. (time of flight mass spectrometry) 3 cm Si 5 cm 2-3 usec channeltron 4 Presented at APS April Meeting 2010 Low-Flux Setup Ion Source Si Target Ti Support • Si target (4x4mm, 8x8 mm) • Ti components for low background • Uses our radionuclidedriven ion source. 5 Ion Source Schematic BaF2 148Gd alpha Surface Barrier Detector M. Montero Díez, et al. Rev. Sci. Instrum. 81 113301 (2010) 6 Low-Flux Operation Loading 7 DRIS How We Use the Low Flux Setup • We deposit overnight in the loading configuration. • We run the lasers at 10 or 1 Hz, alternating RIS on/off. • Simulations show that the barium time of flight should be about 7.5 μsec. (after the RIS lasers) • The delay between the desorption and RIS lasers is 1.5 μsec. 8 With and Without RIS Lasers Desorption+RIS lasers (Black) Desorption only (Red) Barium window Desorption laser fires RIS lasers fire 9 Detuning • We detuned the 553.5 nm laser by +/- 3nm On Resonance (Black) Detuned -3 nm (Red) Detuned +3 nm (Blue) 10 Efficiency? • The ion source produces about 2 Ba+/sec, we run it for 14 hours: about 105 ions deposited. • Over the entire run we get about 250 back from RIS. • That’s only half, because in 50% of the shots we didn’t use RIS lasers. • Finally, detection is not 100% efficient (optics, CEM). Thus, approximately 10-3 efficiency 11 Single Ion Setup 12” 12 Loading the Target Green: Ion trajectories Red: Potentials Simulated loading efficiency with plate around target: 85%. Without plate: 65% 13 DRIS Stage Green: Ion trajectories Red: Potentials Simulated transport efficiency: 99% 14 Desorption Optics • Suggested to achieve an even illumination across the target • Can be imaged using a CCD to make sure that the image is focused 15 New Target Design A voltage across the Si target will help bring ions to the center of the target 16 DRIS R&D Progress Trap Ba ions in buffer gas Trap single Ba ions Gas phase RIS Desorption RIS (DRIS) Single ion DRIS Implement DRIS in ion trap Done In progress To do Demonstrate single ion DRIS in trap Integrate DRIS probe with LXe cell 17 D.Auty, M.Hughes, R.MacLellan, A.Piepke, K.Pushkin, M.Volk, Dept of Physics & Astronomy, U. of Alabama, Tuscaloosa AL M.Auger, D.Franco, G.Giroux, R.Gornea, M.Weber, J-L.Vuilleumier, High Energy Physics Lab,Bern,Switzerland P.Vogel Physics Dept Caltech, Pasadena CA A.Coppens, M.Dunford, K.Graham, P.Gravelle, C.Hägemann, C.Hargrove, F.Leonard, K.McFarlane, C.Oullet, E.Rollin, D.Sinclair, V.Strickland, Carleton University, Ottawa, Canada C.Benitez-Medina, S.Cook, W.Fairbank Jr., K.Hall, N.Kaufhold, B.Mong, T.Walton, Colorado State U., Fort Collins CO L.Kaufman, Indiana University M.Moe, Physics Dept UC Irvine, Irvine CA D.Akimov, I.Alexandrov, V.Belov, A.Burenkov, M.Danilov, A.Dolgolenko, A.Karelin, A.Kovalenko, A.Kuchenkov, V.Stekhanov, O.Zeldovich, ITEP Moscow, Russia E.Beauchamp, D.Chauhan, B.Cleveland, J.Farine, D.Hallman, J.Johnson, U.Wichoski, M.Wilson, Laurentian U., Canada C.Davis, A.Dobi, C.Hall, S. Slutsky, Y-R. Yen, U. of Maryland, College Park MD J. Cook, T.Daniels, K.Kumar, A.Pocar, K.Schmoll, C.Sterpka, D.Wright, UMass, Amherst D.Leonard, University of Seoul, Republic of Korea M.Breidenbach, R.Conley, W.Craddock, S.Herrin, J.Hodgson, J.Ku, D.Mackay, A.Odian, C.Prescott, P.Rowson, K.Skarpaas, M.Swift, J.Wodin, L.Yang, S.Zalog, SLAC, Menlo Park CA P.Barbeau, L.Bartoszek, J.Davis, R.DeVoe, M.Dolinski, G.Gratta, F.LePort, M.Montero Diez, A.Müller, R.Neilson, A.Rivas, A. Saburov, K.O’Sullivan, D.Tosi, K.Twelker, Physics Dept Stanford U., Stanford CA W.Feldmeier, P.Fierlinger, M.Marino, TUM, Garching, Germany 18 19 20 EXO Majorana mass <mbb> sensitivity Assumptions 1. 136Xe, 80% enrichment 2. Intrinsic low backgrounds & Ba tagging eliminate all radioactive backgrounds 3. Energy resolution used to separate 0nbb from 2nbb modes (select 0n events in +/- 2s interval around 2.458 MeV endpoint) 4. 2nbb (T1/2 > 1x1022 yr, Bernabei et al.) Case Mass [ton] Efficiency [%] Run time [yr] sE/E @ 2.5 MeV [%] 2nbb background [events] T1/20nbb [yr, 90% CL] Neutrino majorana mass [meV] QRPA NSM Conservative 1 70 5 1.6(3) 0.5 (~1) 2.0x1027 19 (1) 24 (2) Aggressive 10 70 10 1.0(4) 0.7 (~1) 4.1x1028 4.3 (1) 5.3 (2) (1) Simkovic et al. Phys. Rev. C79, 055501(2009) ) (use RQRPA and gA = 1.25) (2) Menendez et al., Nucl. Phys. A818, 139(2009) (use UCOM results) (3) sE/E = 1.6% obtained in EXO R&D, Conti et al., Phys. Rev. B 68 (2003) 054201 (4) sE/E = 1.0% considered aggressive but realistic guess with large light collection 21
© Copyright 2026 Paperzz