How Old Is It? Part 2 – Magnetostratigraphy Introduction In addition to biostratigraphy, the stratigraphic record of the episodic reversals of Earth’s magnetic field is another tool to establish a stratigraphy and provide age information for cored crustal rocks, intrusions, and sedimentary sequences. This is just one attribute of the magnetic signature preserved in sediments or oceanic crust (basalt) that can tell us about the changing nature of Earth’s magnetic field through time. TM Teaching for Science • Learning for Life | www.deepearthacademy.org The magnetic signal that geoscientists are interested in measuring is called natural remanent magnetization (NMR). This signal is carried by magnetic minerals such as magnetite. The NMR is preserved in basalt as it cools and crystallizes past the Curie temperature (~580°C for the mineral magnetite), or in sediments as detrital magnetic mineral grains accumulate on the seafloor. In both situations, the magnetic minerals become aligned with the Earth’s magnetic field at the time of crystallization and deposition, respectively. Not all rocks are good carriers of a magnetic signal. The basalt that makes up oceanic crust is a magnetite-bearing rock, while granite, a typical igneous rock of continental crust, is generally poor in magnetic minerals. Likewise, marine sediments composed of terrigenous silt and clay derived from the erosion of continental rocks have a much higher concentration of detrital magnetic mineral grains than does a pure biogenic sediment, such as calcareous or siliceous ooze. Describe the Earth’s magnetic field. What are the key features or characteristics of our magnetic field? A sketch may help. Earth’s Magnetic Field Earth’s magnetic field is somewhat analogous to a bar magnet, in that the field is a dipole with a north pole and a south pole. The magnetic field is induced by an electromagnetic current created by fluid motion in the liquid outer core due to Earth’s rotation. The north and south magnetic poles are close to Earth’s rotational axis, the latter represented by the geographic North Pole and South Pole, but Magnetic North and Magnetic South are offset from true North and true South. Earth’s magnetic field is dynamic and complex. The magnetic poles are not stationary. In 2005, the north magnetic pole was at 82.7°N, 114.4°W, moving northwest at approximately 40 km/yr, while the south magnetic pole (2001) was at 64.7°S, 138.0°E (www.ngdc.noaa.gov/ seg/geomag/faggeom.shtml). In addition, Earth’s magnetic field episodically reverses polarity. Prior to a reversal of the magnetic field, the field randomizes and becomes weaker, and there may be multiple poles for a short time. The pro- Figure 1. Earth’s magnetic field under “normal polarity”. The arrows depicting magnetic lines of force would be oriented in the opposite direction with a reversed field (reversed polarity). Figure from http:// www.geocities.com/CapeCanaveral/Lab/6488/magfield.html. The Nature of the Earth’s Magnetic Field as Recorded in Sediments and Rocks There are two ancient field directions typically preserved in sedimentary or igneous rocks containing magnetic minerals. A reversal of the magnetic field is seen as an abrupt change in these directions. Plate motion over time also affects the field directions preserved in rocks. Inclination, or magnetic dip, represents the angle of magnetization into or out of the Earth’s surface (Figures 1 and 3). middle 0.780 0.78 1.770 r n 1.77 Olduvai 2.140 Reunion 2.150 2 2r 2.581 n GAUSS 1 C2An 2 3.040 3.110 Kaena 3.220 3.330 Mammoth r n r 3n 2.58 3 middle 60 3.58 3.580 GILBERT C2Ar PLIOCENE Depth (mbsf) 1 C2r 1.950 late C2n 4 80 1 C3n 2 3 4.180 Cochiti 4.290 n r 4.480 n r n r 4.620 100 Nunivak 4.800 4.890 Sidufjall 4.980 4n TM 5.230 Thvera 5 5.23 C3r 5.890 Figure 2a. Interpreted paleomagnetic stratigraphy from Site 185-1149 in the northwest Pacific (31°20.095’N, 143°21.805’E; 5817 m water depth). http://www-odp.tamu.edu/ publications/185_IR/chap_04/c4_f66. htm#573212. C3An 1 r 2n C3Ar 120 -90 -50 0 +50 Inclination (°) 2 +90 n 6 late Teaching for Science • Learning for Life | www.oceanleadership.org Make a list of observations about the paleomagnetic record in these two deep-sea sediment sequences. How are they similar, and how are they different? early 0.990 1.070 1.201 1.211 PLEISTOCENE The ancient magnetic field (paleomagnetism) is measured in rocks and sediments using a magnetometer. See http://www-odp.tamu.edu/sciops/labs/ The magnetic lines of force are directed into the pmag/ for a detailed discussion of how shipboard Earth in the Northern Hemisphere (positive down), paleomagnetic data are collected. SHIPBOARD SCIENTIFIC PARTYand directed out of the Earth in the Southern CHAPTER 4, SITE 1149 130 Hemisphere (positive up; magnetic field is oriented Activity In Iother today’s magnetic field (=to the late Figure F66. The inclinations ofupwards). lithologic Unit (Coreswords, 185-1149A-1H through 13H) compared The figures below depict the magnetic character Cenozoic magnetic polarity time scale (Berggren et al., 1995). of two deep-sea sediment 0 cores. Site 1149 (Figure 2a) is located in the northwest Pacific (~31°N latitude) near the Marianas Trench. Site 1172 (Figure 2b) is located in the Chron, Chron, 20 southwest Pacific (~44°S Age subchron subchron Polarity latitude) near Tasmania. late Both records have been C1n BRUNHES interpreted by correlating to the late Cenozoic Geomagr 1 1 n netic Polarity Time Scale Jaramillo 1r Cobb Mountain 1n 40 (Berggren et al., 1995; C1r 2r 2r MATUYAMA Cande and Kent, 1995). MIOCENE How Old Is It? Part 2 – Magnetostratigraphy cess is geologically rapid, taking several thousand years for the field to completely reverse polarity and stabilize again. Today’s field is referred to as “normal polarity” (Figure 1). The last reversal of the magnetic field occurred approximately 780,000 years ago. Refer to http://www.ngdc.noaa.gov/seg/ geomag/faqgeom.shtml#q1 for additional information about Earth’s magnetic field. TM Teaching for Science • Learning for Life | www.oceanleadership.org Depth (mbsf) 3 -90 100 80 60 40 20 0 0 90 10-6 10-4 Normal polarity Reverse polarity C3An.2n Hole 1172B Hole 1172C 90 No recovery 0 10-6 10-4 -90 10-2 0 90 10-6 10-4 10-2 Inclination (°) Intensity (mA/m) Inclination (°) Intensity (mA/m) -90 105.4 107.4 80 60 40 6.26 6.56 94.1 78.9 57.8 60 63.4 66.6 36.9 38.6 40.2 41.7 46.25 30.9 100.75 100 C3An.1n C3n.4n C3n.2n C3n.1n C2An.3n C2An.2n C2An.1n 20 0 6.13 5.89 5.23 4.18 4.29 4.48 4.62 3.04 3.11 3.22 3.33 3.58 2.58 17.1 19.55 C2n Depth (mbsf) 12.5 C1n Polarity 1.77 1.75 Age (Ma) 0.78 10-2 Inclination (°) Intensity (mA/m) Hole 1172A Figure F16. Long-core measurements from 0 to 100 mbsf for Holes 1172A, 1172B, and 1172C showing inclination, intensity, and interpreted magnetostratigraphy. How Old Is It? Part 2 – Magnetostratigraphy Figure 2b. Interpreted paleomagnetic stratigraphy from Site 189-1172 in the southwest Pacific (43°57.575’S, 149°55.701’E; 2622 m water depth). From http://www-odp.tamu.edu/publications/189_IR/ chap_07/c7_f16.htm#382526. How Old Is It? Part 2 – Magnetostratigraphy “normal polarity”) is represented by positive inclination in the Northern Hemisphere, and by negative inclination in the Southern Hemisphere. Ships towing magnetometers across the ocean basins during the post-WWII era recorded patterns of greater and lesser magnetic intensity relative to the present field. These positive and negative magnetic anomalies represent linear bands of alternating polarity that trend parallel to the spreading axis with a mirror image pattern on the opposite side of the ridge. The positive anomalies correspond with a magnetic polarity as today which amplifies the magnetic intensity, while the negative anomalies correspond with a reversed polarity, which partially dampens out the influence of the present-day field. These observations led to a test of the seafloor spreading hypothesis (Vine and Matthews, 1963; Morley, 1963) advanced by Dietz (1961) and Hess (1962). Heirtzler et al. (1968) created the first GPTS by correlating a single marine magnetic anomaly profile from the South Atlantic to radiometrically dated terrestrial reversal sequences. Near the equator, the magnetic lines of force are parallel to the Earth’s surface. In this way, magnetic inclination is a function of latitude; ~90° inclination at the north and south magnetic pole, ~0° at the equator, and intermediate values in between. Inclination is used to determine the paleolatitude of igneous or sedimentary rocks and sediments at the time of crystallization or deposition. Declination, or azimuth, is the angle between true north and the horizontal trace of the magnetic field for your location (Figure 4). It represents the direction of magnetization (today’s field is in a northerly direction (+/- 0°), whereas during a reversed field, the declination would be in a southerly direction (+/- 180°). Declination can only be determined on sediment cores that have been oriented during coring with respect to the present day magnetic field using the Tensor tool. For the Late Cretaceous to present, the prominent positive anomalies (i.e., those corresponding to time intervals, or chrons, of normal geomagnetic polarity) have been numbered from Chron 1n in the central axis of the spreading centers to Chron 34n at the younger end of the Cretaceous Long Normal (also called the Cretaceous Quiet Zone; 83.5 Ma). The suffix “n” after the anomaly number refers to normal polarity, and the “r” refers to reversed polarity. Many of the younger chrons are divided into shorter polarity intervals, or subchrons. TM Teaching for Science • Learning for Life | www.oceanleadership.org The inclination and declination data collected on rock or sediment cores can be used to determine the ancient polarity of the earth, or paleomagnetism. Inclination data are widely used for paleomagnetic studies. However, near the equator, paleomagnetists rely heavily on declination data because inclination is so low. See the Integrated Ocean Drilling Program (IODP) document describing the Paleomagnetism Laboratory aboard the JOIDES Resolution for a discussion of magnetic overprinting and what demagnetization techniques are used to remove this overprint from deep-sea cores (http://www.oceanleadership.org/learning/ classroom/lab_briefs.html). The GPTS based on marine magnetic anomalies extends back through the late Middle Jurassic (Callovian stage, ~162 Ma; e.g., Kent and Gradstein, 1986), while land-based polarity records go back through the Triassic (e.g., Gradstein et al., 1995). A nomenclature called the “M-sequence” is used for marine magnetic polarity chrons of the Early Cretaceous to late Middle Jurassic extending from Chron M0r at the base the Cretaceous Long Normal (Chron 34n; base of the Aptian stage in the Early Cretaceous, ~121 Ma) to Chron M39 in the Jurassic (Callovian stage). Development of the Geomagnetic Polarity Time Scale (GPTS) Sequences of magnetic reversals measured in deep-sea cores can be correlated with the Geomagnetic Polarity Time Scale (GPTS) in order to determine the age and sedimentation history of a drill site (Figure 5). The Geomagnetic Polarity Time Scale is based on the marine magnetic anomaly sequence recorded in the South Atlantic Ocean, which has then been compared with other ocean basin sequences (Cande and Kent, 1992, 1995). This is the currently accepted GPTS for the later part of the Cretaceous Period and Cenozoic Era (0-84 Ma; Ma = mega-annums). Nine radiometric age tie points, plus the zero-age ridge axis, are used to calibrate this part of the timescale (ages for the marine magnetic anomalies between the calibration points are interpolated by a cubic spline function; Berggren et al., 1995). Berggren et al. (1995) correlated Cenozoic calcareous microfossil datum events (calcareous nannofossil and planktic foraminifera) and zonations to the GPTS, which serves as the modern standard for biochronology of the past 65 million years (Figure 6). Astrochronologic calibration (“orbital tuning”) of the GPTS polarity boundaries based on Milankovitch cyclicity in continuous marine sections with excellent magneto- and biostratigraphy has been applied to the Pliocene and Pleistocene (Berggren et al., 1995, and references therein) and older Neogene sequences (e.g., Gradstein, Ogg, 4 How Old Is It? Part 2 – Magnetostratigraphy Smith et al., 2004, and references therein). More recently, the International Commission on Stratigraphic has published the latest time scale for the Phanerozoic Eon, which succeeds the 1989 Harland et al. timescale (Gradstein, Ogg, Smith et al., 2004; http://www.stratigraphy.org). reversals, and motions of the ocean floor and continents. Journal of Geophysical Research, 73:2119-2136. Hess, H.H., 1962. History of the ocean basins. In, Petrologic Studies, A Volume in Honor of A.F. Buddington, Geological Society of America, p. 599-620 Examples of paleomagnetic data collected from two Ocean Drilling Program sites and their interpretations (correlation to the Geomagnetic Polarity Timescale) are shown in Figures 7 and 9. These data provide excellent age control for the two sites. Age-depth plots based on the paleomagnetic reversal ages are shown in Figures 8 and 10. Agedepth plots are used to quantify and graphically depict the sedimentation rate history of the sites. Kent, D.V., and Gradstein, F.M., 1986. A Jurassic to recent chronology. In, The Geology of North America, Western North Atlantic Region, Volume M, Geological Society of America, p. 45-50. Vine, F.J., and Matthews, D.H., 1963. Magnetic anomalies over oceanic ridges. Nature, 199:947-949. References Activity by Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Cenozoic geochronology and chronostratigraphy. In, Geochronology, Time Scales, and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication 54, p. 129-212. Kristen St. John, James Madison University ([email protected]), and R. Mark Leckie, University of MassachusettsAmherst ([email protected]). Adapted from School of Rock materials by Leckie and St. John, 2005. Cande, S.C., and Kent, D.V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 97:13,917-13,951. TM Teaching for Science • Learning for Life | www.oceanleadership.org Cande, S.C., and Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research, 100:6093-6095. Dietz, R.S., 1961. Continent and ocean basin evolution by spreading of the sea floor. Nature, 190:854-857. Gradstein, F.M., Agterberg, F.P., Ogg, J.G., Hardenbol, J., Van Veen, P., Thierry, J., and Huang, Z., 1995. A Triassic, Jurassic, and Cretaceous time scale. In, Geochronology, Time Scales, and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication 54, p. 95-126. Gradstein, F.M., Ogg, J.G., Smith, A.G., et al., 2004. Geologic Time Scale 2004. International Commission on Stratigraphy, Cambridge University Press, 500 p. Harland, W.B., Armstrong, R.L., Cox, A.V., Craig, L.E., Smith, A.G., and Smith, D.G., 1990. A Geologic Time Scale 1989. Cambridge University Press, 263 p. Heirtzler, J.R., Dickson, G.O., Herron, E.M., Pittman, W.C., III, and LePichon, X., 1968. Marine magnetic anomalies, geomagnetic field 5 How Old Is It? Part 2 – Magnetostratigraphy TM Teaching for Science • Learning for Life | www.oceanleadership.org Figure 3. Inclination in the Earth’s magnetic field. (http://www.ngdc.noaa.gov/seg/geomag/icons/wmm2000i.gif) 6 How Old Is It? Part 2 – Magnetostratigraphy TM Teaching for Science • Learning for Life | www.oceanleadership.org Figure 4. Declination in Earth’s magnetic field. (http://www.ngdc.noaa.gov/seg/geomag/icons/WMM-00D.gif) 7 6.935 Ma 7 C3B 8 9 late Miocene 7.432 Ma C4 8.699 Ma C4A 9.740 Ma C1r C2n C3n C2Ar C3A C5r C5AD 14.800Ma C5B 16 16.014 Ma C5C 17 C5Ar C5An C5ADn C5AC C5Br C5Bn 15 C5AA C5AB C5Cr C5Cn 14 middle Miocene 13 TM Teaching for Science • Learning for Life | www.oceanleadership.org 11.935Ma C5A 3.040-3.110 3.220-3.330 Cochiti Nunivak 4.180-4.290 4.480-4.620 4.800-4.890 4.980-5.230 2.140-2.150 C3r C5n C5 12 Kaena Mammoth C3An.2n 10 11 1.770-1.950 C3An.1n C3An 5.894 Ma 6 Olduvai C2n Reunion Sidufjall Thvera C3Bn Gilbert 5 Age (Ma) 3.58 Ma C4n 4 Gauss C2r 2.581 Ma 0.990-1.070 Jaramillo Cobb Mountain C2An 2 3 Chron 0.78 Ma Matuyama Age (Ma) C1n Brunhes Polarity Polarity event C4r 1 Magnetic Epoch C4Ar C4An 0 Pleistocene Epoch Pliocene How Old Is It? Part 2 – Magnetostratigraphy Figure F6. Miocene to Holocene geomagnetic polarity time scale (GPTS). In the polarity colum normal and white = reversed polarity. Absolute ages, geologic periods, and magnetic chron term shown at left. This figure is based on the Berggren et al. (1995b) and Cande and Kent (1995) G 5.894-6.137 6.269-6.567 C3Bn C3Br.2n C4n.1n C4n.2n 6.935-7.091 C4r.1n 8.225-8.257 C4An 8.699-9.025 C4Ar.1n C4Ar.2n C5n.1n 9.230-9.308 9.580-9.642 9.740-9.880 C5n.2n 9.920-10.949 C5r.1n 11.052-11.099 C5r.2n 11.476-11.531 C5An.1n C5An.2n C5Ar.1n C5Ar.2n C5AAn C5ABn 11.935-12.078 12.148-12.401 12.678-12.708 12.775-12.819 12.991-13.139 13.302-13.510 C5ACn 13.703-14.076 C5ADn 14.178-14.612 C5Bn.1n C5Bn.2n 14.800-14.888 15.034-15.155 C5Cn.1n C5Cn.2n C5Cn.3n 16.014-16.293 16.327-16.488 16.556-16.726 7.341-7.375 7.432-7.562 7.650-8.072 Figure 5. Geomagnetic Polarity Time Scale (GPTS) for 17-0 Ma. In the polarity column, black = normal and white = reversed polarity. Absolute ages, geologic periods, and magnetic chron terminology are shown at left. This figure is based on the Berggren et al. (1995b) and Cande and Kent (1995) GPTS. From ODP Leg 191 Initial Reports volume, Explanatory Notes chapter, (http://www-odp.tamu.edu/publications/191_IR/chap_02/ chap_02.htm) 8 How Old Is It? Part 2 – Magnetostratigraphy Interpreting the Paleomagnetic Record Preserved in Deep-Sea Sediments Use Figure 4 to interpret the paleomagnetic stratigraphy (chrons and subchrons) recorded at Site 1208 (below) in the northwest Pacific (Shatsky Rise). What assumptions must you make if you simply correlate the magnetic reversal pattern preserved in Site 1208 with the Geomagnetic Polarity SHIPBOARD SCIENTIFIC PARTY Time Scale shown in Figure 4? Activity Examine Figure 4. Make a list of observations about the character of the Earth’s magnetic field over the last 17 million years. CHAPTER 4, SITE 1208 53 Figure F19. Inclination after AF demagnetization at peak fields of 20 mT as measured with the shipboard pass-through magnetometer at Hole 1208A. The column at the right of each plot shows interpreted zones of normal (black) and reversed (white) polarity. Gray intervals indicate zones in which no polarity interpretation is possible. Polarity zones at the top of the section and certain polarity zones farther downsection are tentatively correlated to polarity chrons. Inclination (°) 0 -80 -40 0 40 80 Inclination (°) Polarity -80 -40 0 40 80 Polarity C2Ar C1n C3n 50 200 50 C3r J C3An C1r C2n 100 250 C4n C4r C4An 100 C2r C4Ar C5n TM Teaching for Science • Learning for Life | www.oceanleadership.org Depth (mbsf) CM C2An C5An K 150 M C5r 150 300 9 C5Ar boundaries are not clearly delimited. All information and references are given in Tables T1, p. 52, T2, p. 54, and T3, p. 57. TC = top of common occurrence, BC = bottom of common occurrence. CK95 = Cande and Kent, 1995. (Continued on next four pages.) C1r 2 C2r 2 1 C2An 2 3 4 C2Ar Pliocene 3 2 3 5 b 4 PT1 a PL6 CN12d NN18 PL5 CN12b+c PL3+4 Messinian 2 PL2 CN11 NN13-15 CN10b NN12 M14 CN9a M13 C4An C4Ar CN8a T Amaurolithus spp. (4.56) B Sphaeroidinella dehiscens s.l. (4.94) T Ceratolithus acutus (5.05) B Ceratolithus rugosus (5.10) T Triquetrorhabdulus rugosus (5.23) B Ceratolithus acutus (5.37) B Nicklithus amplificus (6.84) B Discoaster berggrenii (8.28) B Discoaster loeblichii (8.43) NN10 2 C5n 1 T Globorotalia plesiotumida (4.15) T Hirsutella cibaoensis (4.16) B Globorotalia crassaformis (4.31) T Globoturborotalita nepenthes (4.37) B paracme Reticulofenestra pseudoumbilicus (8.79) B Globorotalia plesiotumida (8.91) B Globigerinoides extremus (8.94) a 1 CN7 3 10 B Globorotalia tosaensis T Menardella miocenica (3.48) B Hirsutella cibaoensis (7.91) CN8b Tortonian 9 2 T Discoaster surculus (2.63) T Globigerina decoraperta (2.70) T Discoaster tamalis (2.83) T Menardella multicamerata (2.95) T Dentoglobigerina altispira (3.02) T Sphaeroidinellopsis seminulina (3.18) B Globoconella conomiozea (7.12) 1 C4r T Discoaster pentaradiatus (2.52) T paracme Reticulofenestra pseudoumbilicus (7.29) B Amaurolithus primus (7.39) b late Miocene C4n 2 T Globigerina apertura (1.68) B medium Gephyrocapsa (1.71) [= B "G. oceanica"] T Globigerinoides extremus (1.91) T Discoaster brouweri (1.95) B Globorotalia truncatulinoides (2.03) T Pulleniatina finalis (2.05) T Globoturborotalia woodi (2.30) T Menardella miocenica (2.38) CN9bB M12 NN9 T Discoaster hamatus (9.63) T Catinaster calyculus (9.64) T Catinaster coalitus (9.69) B Hirsutella juanai (9.75) B Neogloboquadrina acostaensis (9.89) T = Top B = Base TM Teaching for Science • Learning for Life | www.oceanleadership.org 1 T large Gephyrocapsa spp. (1.24) T Globigerinoides obliquus (1.3) B Tuborotalia humilis (5.84) B Globigerinoides conglobatus (5.84) B Globorotalia tumida (5.96) B Hirsutella margaritae (5.99) T Nicklithus amplificus (6.00) T Fohsella lenguaensis (6.00) CN9bA 3 B Gephyrocapsa parallela (1.05) [= reentrance medium G.] T Discoaster quinqueramus (5.54) NN11 C3Br 2 T Pseudoemiliania lacunosa (0.46) CN10c C3Ar 1 B Emiliania huxleyi (0.26) T Pulleniatina primalis (3.65) T Sphenolithus spp. (3.66) T Reticulofenestra pseudoumbilicus (3.80) T Neogloboquadrina acostaensis (3.83) T Hirsutella margaritae (3.88) CN9bC 1 C3Bn NN17 CN12aB NN16 CN10a C3An 8 CN13b NN19 CN13a C3r 7 NN21 NN20 Datum events T Globorotalia tosaensis (0.61) PL1 5.33 6 CN15 CN14 CN12aA early Age (Ma) 1 C3n middle - late 1.81 1 late C2n middle 2 early 1 1 Pleistocene C1n Age Foraminifers Nannofossils Piacenzian Gelasian Pleistocene + Holocene Epoch Zanclean How Old Is It? Part 2 – Magnetostratigraphy Chron 0 Figure 6.(page 1 of three pages) Integration of biostratigraphy and magnetostratigraphy. Calcareous nannofossil and planktonic foraminiferal zonation used during ODP Leg 208. Use this as a reference for the exercise that follows. References are cited in the text for each microfossil group. Shaded bands with dashed lines indicate that the zonal boundaries are not clearly delimited. T = top, or last occurrence (LO) datum; B = base, or first occurrence (FO) datum; TC = top of common occurrence, BC = bottom of common occurrence. CK95 = Cande and Kent, 1995. From ODP Leg 208 Initial Reports volume, Explanatory Notes chapter, (http://www-odp.tamu. edu/publications/208_IR/chap_02/chap_02.htm) 10 46 Figure F4 (continued). 10 Chron Epoch Age Foraminifers Nannofossils C5n 11 2 1 C5r Tortonian M12 late 1 1 C5Ar 2 14 3 NN8 C5ABr C5ACn CN5b CN5a NN6 T Globigerina decoraperta (11.46) TC Discoaster kugleri (11.60) B Globoturborotalita nepenthes (11.64) B Triquetrorhabdulus rugosus (12.81) TC Cyclicargolithus floridanus (13.19) B Fohsella fohsi s.l. (13.33) T Sphenolithus heteromorphus (13.55) M7 CN4 NN5 T Hirsutella praescitula (13.73) B Menardella archeomenardii (13.92) T Fohsella peripheroronda (13.92) B Menardella praemenardii (13.95) B Fohsella peripheroacuta (14.02) T Praeorbulina circularis (14.58) T Praeorbulina sicana (14.63) B Orbulina spp. (14.71) Langhian C5Br T Paragloborotalia mayeri (10.70) B Catinaster coalitus (10.79) B Fohsella robusta (12.85) M6 Miocene 2 T Paragloborotalia sikaensis (10.43) B Discoaster neohamatus (10.45) B Discoaster hamatus (10.48) Discoaster bellus gr. (10.48) M9 C5ACr C5Bn 1 T Menardella praemenardii (10.09) BC Discoaster kugleri (11.88) T Fohsella fohsi s.l. (11.91) T Clavatorella bermudezi (12.02) C5ADr 15 Datum events T Coccolithus miopelagicus (11.02) B Globigerina apertura (11.06) M8 middle C5AAn C5AAr C5ABn C5ADn Age (Ma) CN6 M11 M10 C5An 2 13 NN9 NN7 3 12 CN7 2 Serravallian How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 2, EXPLANATORY NOTES T Helicosphaera ampliaperta (15.03) B Praeorbulina circularis (15.15) b T Acme Discoaster deflandrei (15.6) B Discoaster signus (15.6) M5 16 a 2 3 17 CN3 NN4 B Praeorbulina sicana (16.86) C5Cr M4 C5Dn T Catapsydrax dissimilis (17.51) B Globigerinatella insueta s.s. (17.57) B Sphenolithus heteromorphus (17.76) T Sphenolithus belemnos (17.89) M3 C5Dr C5Er 19 C6n 20 early C5En Burdigalian 18 TM Teaching for Science • Learning for Life | www.oceanleadership.org B Praeorbulina glomerosa (16.16) B Menardella archeomenardii (16.16) C5Cn 1 CN2 NN3 B Sphenolithus belemnos (18.92) T Globoquadrina binaiensis (19.08) M2 CN1c T Triquetrorhabdulus carinatus (19.6) NN2 C6r B Globoquadrina binaiensis (19.98) T = Top B = Base TC = Top common BC = Base common s.s. = senso stricto s.l. = senso lato Figure 6, page 2. 11 47 Figure F4 (continued). 1 2 C6AAr 3 C6Bn 12 C6Br 1 23 C6Cn 2 22 3 CN1a+b 2 C9n 28 C9r C10n 12 C16r C17n 39 CP16b CP16a C17r 1 2 3 C18n 1 T Pseudohastigerina (32.0) T Increase Ericsonia obruta (32.2) T Isthmolithus recurvus (32.7) T Ericsonia formosa (32.9) NP21 NP20 Priabonian C16n 2 37 38 CP16c NP22 P16 C15r T Turborotalia ampliapertura (30.12) B Sphenolithus distentus (30.32) B Paragloborotalia opima (30.54) T Reticulofenestra umbilicus ≥14 µm (31.7) 33.7 C15n T Subbotina angiporoides (29.67) CP17 P19 C13n C13r T Sphenolithus pseudoradians (29.10) NP23 P18 1 36 Rupelian early C12r B Cassigerinella chipolensis (33.6) T Hantkenina spp. (33.7) B Increase Ericsonia obruta (33.7) T Turborotalia cerroazulensis (33.8) T Discoaster saipanensis (34.0) T Discoaster barbadiensis (34.2) T Globigerinatheka index (34.3) T Calcidiscus protoannulus (35.4) T Globigerinatheka semiinvoluta (35.3) CP15 P15 Bartonian 35 P20 Switch to CK95 break in timescale late 34 B "Globigerina" angulisuturalis (28.89) CP18 NP19 NP18 B Isthmolithus recurvus (36.6) B Chiasmolithus oamaruensis (37.0) T Chiasmolithus grandis (37.1) T Subbotina linaperta (37.7) CP14b NP17 T Morozovella spinulosa (38.1) B Globigerinatheka semiinvoluta (38.4) B Dictyococcites bisectus (38.5) T Acarinina coalingensis (39.0) P14 TM Teaching for Science • Learning for Life | www.oceanleadership.org 33 TC Chiloguembelina cubensis (27.92) B Sphenolithus ciperoensis (27.55) P21a 1 middle 32 T Acme Cyclicargolithus abisectus (24.79) T Paragloborotalia pseudokugleri (25.15) T Sphenolithus distentus (25.98) P21b Eocene Age (Ma) 31 CP19b NP25 CP19a NP24 C11n 2 C11r C12n P22 T Paragloborotalia opima (26.64) C10r 30 NN1 B Sphenolithus disbelemnos (22.67) B Discoaster druggii (22.82) T Paragloborotalia kugleri (22.87) B Globigerinoides trilobus (22.87) T Globigerina euaptertura (23.03) T Sphenolithus delphix (23.07) B Sphenolithus delphix (23.33) T Tenuitella gemma (23.54) BC Globigerinoides primordius (23.54) T Sphenolithus ciperoensis (24.33) C7r C7An C7Ar 1 C8r T Paragloborotalia kugleri (21.03) T Paragloborotalia pseudokugleri (21.22) B Globoquadrina dehiscens (21.44) T "Globigerina" angulisuturalis (21.90) 2 27 29 M1 1 C8n 26 NN2 23.03 Chattian 25 CN1c C6Cr C7n Datum events M2 late 24 Age Foraminifers Nannofossils Aquitanian C6An 12 21 C6Ar C6AAn Epoch early Chron Miocene 20 Oligocene How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 2, EXPLANATORY NOTES 40 2 B = Base Figure 6, page 3. 12 T = Top TC = Top common BC = Base common Declination (°) 0 180 Inclination (°) -90 0 90 Brunhes 0 Chron A Polarity 4 Matuyama How Old Is It? Part 2 – Magnetostratigraphy Figure F12. Composite magnetic stratigraphy at Site 1218. Virtual geomagnetic pole (VGP) latitudes were obtained after partial AF demagnetization of continuous measurements at a peak field of 20 mT. Polarity column shows interpreted zones of normal (black) and reversed (white) magnetization, and gray intervals indicate zones with an uncertain polarity interpretation. A. Top 24 m of Hole 1218B, including cores not oriented with the Tensor tool. (Continued on next two pages.) 12 Gauss Depth (mcd) 8 16 TM Gilbert Teaching for Science • Learning for Life | www.oceanleadership.org 20 24 Figure 7. (page 1 of 3 pages) An example of geomagnetic data and interpretation. Composite magnetic stratigraphy at ODP Site 1218. Virtual geomagnetic pole (VGP) latitudes were obtained after partial AF demagnetization of continuous measurements at a peak field of 20 mT. Polarity column shows interpreted zones of normal (black) and reversed (white) magnetization, and gray intervals indicate zones with an uncertain polarity interpretation. A. Top 24 m of Hole 1218B, including cores not oriented with the Tensor tool. Note that both declination and inclination data are provided. B. Early Miocene-Pliocene section. Note the use of VGP (Virtual Geomagnetic Pole). VGP shows the latitude of the magnetic pole based on a single location rather than an average of locations; it is calculated from the declination, inclination, and the drillsite location. C. Early Oligocene-early Miocene section. From ODP Leg 199 Initial Reports volume, Site 1218 chapter, (http://www-odp.tamu.edu/publications/199_IR/chap_11/chap_11.htm) 13 54 -90 10 -60 -30 0 30 60 90 VGP latitude (°) -90 35 -60 -30 0 30 60 90 Chron/ Subchron VGP latitude (°) Polarity B Chron/ Subchron Figure F12 (continued). B. Early Miocene–Pliocene section. Polarity How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 11, SITE 1218 C5n Hole 1218A Hole 1218B 40 15 C5AAn C2Ar C5ABn C3n.1n 20 C3n.2n C3n.3n C3n.4n Depth (mcd) C5An.1n C5An.2n 45 C5ACn C5ADn C5Bn C3An.1n C3An.2n 50 25 TM Teaching for Science • Learning for Life | www.oceanleadership.org C5Cn C3Bn 55 30 C5Dn C4n C4An C5En C5n 35 60 Figure 7 (page 2). 14 C6n 55 -100 60 -50 0 50 100 VGP latitude (°) -100 140 C6n 0 50 100 C9n C6An.1n 70 -50 Chron/ Subchron VGP latitude (°) Polarity C Chron/ Subchron Figure F12 (continued). C. Early Oligocene–early Miocene section. Polarity How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 11, SITE 1218 C6An.2n 150 C6AAn C6AAr.1n 80 C6AAr.2n C6Bn.1n C6Bn.2n 90 160 C10n.1n C10n.2n Depth (mcd) C6Cn.1n C6Cn.2n 170 C6Cn.3n 100 C7n.1n 110 180 C11n.1n C7n.2n TM Teaching for Science • Learning for Life | www.oceanleadership.org C7An 120 190 C11n.2n C8n.1n C8n.2n 200 130 C12n C9n 140 210 Hole 1218A Hole 1218B Hole 1218C Figure 7 (page 3). 15 How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 11, SITE 1218 61 Figure F18. LSRs and chronostratigraphic markers. 0 4.44 m/m.y. 2.69 m/m.y. Slump? 1.1 m/m.y. 2.63 m/m.y. 50 5.92 m/m.y. 8.64 m/m.y. Depth (mcd) 100 150 18.11 m/m.y. 200 10.32 m/m.y. Nannofossils TM Teaching for Science • Learning for Life | www.oceanleadership.org 250 Radiolarians 4.84 m/m.y. Foraminifers Paleomagnetic reversal 300 0 10 11.1 m/m.y. 20 30 40 50 Age (Ma) Figure 8. Age-depth plot of Site 1218 using paleomagnetic chron boundaries and biostratigraphic datums. LSRs (linear sedimentation rates) and chronostratigraphic markers. Data tables for the depths and ages of the paleomagnetic chrons and biostratigraphic datums are also available online at the following URL. From ODP Leg 199 Initial Reports volume, Site 1218 chapter. (http:// www-odp.tamu.edu/publications/199_IR/chap_11/chap_11.htm) 16 How Old Is It? Part 2 – Magnetostratigraphy Figure F19. Inclination after AF demagnetization at peak fields of 20 mT as measured with the shipboard pass-through magnetometer at Hole 1208A. The column at the right of each plot shows interpreted zones of normal (black) and reversed (white) polarity. Gray intervals indicate zones in which no polarity interpretation is possible. Polarity zones at the top of the section and certain polarity zones farther downsection are tentatively correlated to polarity chrons. Inclination (°) 0 -80 -40 0 40 80 Inclination (°) Polarity -80 -40 0 40 80 Polarity C2Ar C1n C3n 50 50 C3r J Depth (mbsf) CM C3An C1r C2n 100 C4n C4r C4An 100 C4Ar C5n C2An C5An K 150 M C5r 150 C5Ar TM Teaching for Science • Learning for Life | www.oceanleadership.org C2r Figure 9. A second example of geomagnetic data and interpretation. Inclination after AF demagnetization at peak fields of 20 mT as measured with the shipboard pass-through magnetometer at Hole 1208A. The column at the right of each plot shows interpreted zones of normal (black) and reversed (white) polarity. Gray intervals indicate zones in which no polarity interpretation is possible. Polarity zones at the top of the section and certain polarity zones farther downsection are tentatively correlated to polarity chrons. From ODP Leg 198 Initial Reports volume, Site 1208 chapter. (http://www-odp.tamu.edu/publications/198_IR/chap_04/chap_04.htm) 17 SHIPBOARD SCIENTIFIC PARTY CHAPTER 4, SITE 1208 54 How Old Is It? Part 2 – Magnetostratigraphy Figure F20. Age-depth curve for Site 1208 derived from the magnetic stratigraphy shown in Figure F19, p. 53, using the geomagnetic polarity timescale of Cande and Kent (1995). Average sedimentation rates in meters per million years are also plotted. Geomagnetic polarity timescale C1n C2n C2An C3n C3An C4n C4An C5n C5An 0 50 40 m/m.y. Depth (mbsf) 100 150 24 m/m.y. 200 TM Teaching for Science • Learning for Life | www.oceanleadership.org 250 10 m/m.y. 300 0 2 4 6 8 10 12 Age (Ma) Figure 10. Age-depth curve for Site 1208 derived from the magnetic stratigraphy shown in Figure 9 using the geomagnetic polarity timescale of Cande and Kent (1995). Average sedimentation rates in meters per million years are also plotted. From ODP Leg 198 Initial Reports volume, Site 1208 chapter. (http://wwwodp.tamu.edu/publications/198_IR/chap_04/chap_04.htm) 18 How Old Is It? Part 2 – Magnetostratigraphy Paleomagnetic Stratigraphy Exercise In this exercise, you will interpret the polarity chrons (geomagnetic reversal stratigraphy) for ODP Site 1237 in the southeast Pacific, located on the continental margin of Peru (16°0.421’S, 76°22.685’W; Figures 11 and 12). First, notice the latitude of this site. In the Northern Hemisphere, normal polarity is represented by positive inclination. Since this site is in the Southern Hemisphere, normal polarity will be represented by negative inclination (positive upwards, out of the Earth). Second, well-preserved magnetic data are either normal polarity or reversed polarity, and there have been many reversals during the past 30 million years represented by the sequence cored at Site 1237. You will need some independent means of age control in order to interpret the black and white stripes of normal and reversed polarity, respectively. Biostratigraphy based on the established sequence of first and last occurrences of microfossil species provides that first-order age control. 1. Using the Site 1237 biostratigraphic data provided (Table 1), interpret the polarity chrons for ODP Site 1237 (Holes 1237B, 1237C, and 1237D). The cored sequence is shown in 4 separate figures: Figure 13 (upper 100 meters composite depth, mcd); Figure 14 (100-200 mcd); Figure 15 (200-300 mcd); and Figure 16 (300-360 mcd). Construct your paleomagnetic stratigraphy to the right of the data presented in Figures 13-16. Color in segments representing normal polarity, and leave segments of reverse polarity blank (white). 2. Plot an age versus depth profile based on your paleomagnetic interpretations (you can plot it on the same graph as your biostratigraphic datums from the biostrat exercise). Use the graph paper provided. How well do the calcareous nannofossil datums compare with the polarity chron boundaries? TM Teaching for Science • Learning for Life | www.oceanleadership.org 19 A Water depth (m) Pisco <1000 1000-2000 2000-3000 3000-4000 4000-5000 5000-7000 >7000 14° S 16° Peru Site 1237 18° ca ge Pe ru id R az N e tur 20° ca az ch en Tr How Old Is It? Part 2 – Magnetostratigraphy Figure F1. A. Locations of Sites 1236 and 1237 and bathymetry. B. Site locations and oceanograph tures off Peru and northern Chile (CC = Coastal Current, PCCC = Peru-Chile Countercurrent, PCC = Chile Current), after Strub et al. (1998). Modern mean annual sea-surface temperatures (SSTs) (conto in degrees Celsius, after Ocean Climate Laboratory, 1999. ne Zo c Fra N Site 1236 22° 24° B 22 Pisco 14° S Peru 1237 16° C 20° 22° CC CC PC TM Teaching for Science • Learning for Life | www.oceanleadership.org PC 18° 20 20 1236 24° 18 84°W 82° 80° 78° 76° 74° 72° 70° Figure 11. A. Locations of Sites 1236 and 1237 and bathymetry. B. Site locations and oceanographic features off Peru and northern Chile (CC = Coastal Current, PCCC = Peru-Chile Countercurrent, PCC = Peru-Chile Current), after Strub et al. (1998). Modern mean annual sea-surface temperatures (SSTs) (contours are in degrees Celsius, after Ocean Climate Laboratory, 1999. From ODP Leg 202 Initial Reports volume, Site 1237 chapter. (http://www-odp.tamu.edu/ publications/202_IR/chap_08/chap_08.htm) 20 SHIPBOARD SCIENTIFIC PARTY CHAPTER 8, SITE 1237 32 Annual mean sea-surface temperature (°C) 0° S SEC 24 24 10° 25 Ma 20° 5 Ma 22 How Old Is It? Part 2 – Magnetostratigraphy Figure F4. Tectonic backtrack of Site 1237, relative to a fixed South America. Poles of rotation are from Duncan and Hargraves (1984) and Pisias et al. (1995). The dotted path represents positions in million-year increments. Numbers note ages (in millions of years) of changes in rate or direction of drift. Contours of modern mean annual sea-surface temperature are superimposed. PCC = Peru-Chile Current, SEC = South Equatorial Current). Site 1237 5 Ma 25 Ma Site 1236 38 Ma 32 Ma 20 22 20 PCC 30° 20 18 18 14 100° 90° 80° 70° Figure 12. Tectonic backtrack of Site 1237, relative to a fixed South America. Poles of rotation are from Duncan and Hargraves (1984) and Pisias et al. (1995). The dotted path represents positions in million-year increments. Numbers note ages (in millions of years) of changes in rate or direction of drift. Contours of modern mean annual sea-surface temperature are superimposed. PCC = Peru-Chile Current, SEC = South Equatorial Current). From ODP Leg 202 Initial Reports volume, Site 1237 chapter. (http://www-odp.tamu.edu/publications/202_IR/chap_08/chap_08.htm) TM Teaching for Science • Learning for Life | www.oceanleadership.org 40° 110°W 14 16 16 21 60° 62 Figure F29. Inclination after demagnetization at peak alternating fields of 25 mT for the upper 100 mcd of (A) Hole 1237B, (B) Hole 1237C, and (C) Hole 1237D with the accompanying polarity interpretations. -90 0 -30 30 B 90 -90 C Hole 1237C Inclination (°) -30 30 90 -90 Hole 1237D Inclination (°) -30 30 90 Polarity Polarity zone interpretation Interpretation C1n 1n 20 1r 1r.1n 2n 2r.1n 2r Depth (mcd) Matuyama 1r 40 C1r C2n C2r C2An Jaramillo Hole 1237B Inclination (°) 2Ar 3n.3n 3n.3n 3r 100 Gilbert 3n.2n Mammoth Kaena C3r C3An C3Ar/C3Bn/ C3Br C4n C4Ar/C4An/ C4Ar C5n C5r C5An C5Ar C5AAn/C5AAr/ C5ABn/C5ABr/ C5ACn C4ACn/C5ACr/ C5ADn Figure 13. Inclination after demagnetization at peak alternating fields of 25 mT for the upper 100 mcd of (A) Hole 1237B, (B) Hole 1237C, and (C) Hole 1237D with the accompanying polarity interpretations. From ODP Leg 202 Initial Reports volume, Site 1237 chapter. (http://www-odp.tamu.edu/ publications/202_IR/chap_08/chap_08.htm) TM Teaching for Science • Learning for Life | www.oceanleadership.org 3n.1n 80 Nunivak Sifurfall Cochiti 3n Thvera 2n Gauss 2An.1n 60 C2Ar C3n Reunion Oldavai A Brunhes How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 8, SITE 1237 22 How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 8, SITE 1237 63 Figure F30. Inclination after demagnetization at peak alternating fields of 25 mT for the 100- to 200-mcd interval of (A) Hole 1237B, (B) Hole 1237C, and (C) the stacked and smoothed record with the accompanying polarity interpretations. A Hole 1237B B Inclination (°) -90 -60 -30 0 30 60 90 100 -90 Hole 1237C Inclination (°) -30 30 C 90 MCD stack Inclination (°) -90 -30 30 90 Polarity zone Polarity interpretation Interpretation C1n C1r C2n C2r 3r C2An 3An.1n ? 120 C2Ar C3n 3An.2n? 3Ar C3r 3Bn/3Br/4n Depth (mcd) 140 160 4r 4An C3An C3Ar/C3Bn/ C3Br C4n C4Ar/C4An/ C4Ar 4Ar 180 5r 3n.3n 5An.1n 5An.2n 200 C5n C5r C5An C5Ar C5AAn/C5AAr/ C5ABn/C5ABr/ C5ACn C4ACn/C5ACr/ C5ADn Figure 14. Inclination after demagnetization at peak alternating fields of 25 mT for the 100- to 200mcd interval of (A) Hole 1237B, (B) Hole 1237C, and (C) the stacked and smoothed record with the accompanying polarity interpretations. From ODP Leg 202 Initial Reports volume, Site 1237 chapter. (http://www-odp.tamu.edu/publications/202_IR/chap_08/chap_08.htm) TM Teaching for Science • Learning for Life | www.oceanleadership.org 5n 23 A Hole 1237B Inclination (°) -90 -60 -30 0 30 60 90 200 B Hole 1237C Inclination (°) -90 -60 -30 0 30 60 90 C Hole 1237D Inclination (°) -90 -60 -30 0 30 60 90 D Stack Inclination (°) -90 -60 -30 0 30 60 90 PolarityPolarity zone interpretation Interpretation C1n 5Ar AAn to 5ADn How Old Is It? Part 2 – Magnetostratigraphy Figure F31. Inclination after demagnetization at peak alternating fields of 25 mT for the 200- to 300-mcd interval of 1237C, (C) Hole 1237D, and (D) the stacked and smoothed record with the accompanying polarity interpretations. 5Br C2r C2An 5Cn 220 C1r C2n C2Ar 5Cr 5Dn 5Dr C3r 5En C3An 6n 260 C3Ar/C3Bn/ C3Br C4n 280 C4Ar/C4An/ C4Ar C5n C5r C5An 6Bn C5Ar 6Br C5AAn/C5AAr/ C5ABn/C5ABr/ C5ACn 6Cn 300 C4ACn/C5ACr/ C5ADn Figure 15. Inclination after demagnetization at peak alternating fields of 25 mT for the 200- to 300-mcd interval of (A) Hole 1237B, (B) Hole 1237C, (C) Hole 1237D, and (D) the stacked and smoothed record with the accompanying polarity interpretations. From ODP Leg 202 Initial Reports volume, Site 1237 chapter. (http://www-odp.tamu.edu/publications/202_IR/chap_08/chap_08.htm) TM Teaching for Science • Learning for Life | www.oceanleadership.org Not interpreted Depth (mcd) 240 C3n 24 How Old Is It? Part 2 – Magnetostratigraphy SHIPBOARD SCIENTIFIC PARTY CHAPTER 8, SITE 1237 65 Figure F32. Inclination after demagnetization at peak alternating fields of 25 mT for the 300- to 360-mcd interval of (A) Hole 1237B, (B) Hole 1237C, and (C) the stacked and smoothed record with the accompanying polarity interpretations. A Hole 1237B Inclination (°) -90 -60 -30 0 30 60 90 300 B -90 Hole 1237C Inclination (°) -30 30 C 90 MCD Stack Inclination (°) -90 -30 30 Polarity zone Polarity interpretation Interpretation 90 C1n 6Cn.3n 6Cr C2An 310 7N Depth (mcd) C1r C2n C2r 8N 320 C2Ar C3n C3r 9N C3An 330 C3Ar/C3Bn/ C3Br C4n 350 C4Ar/C4An/ C4Ar C5n C5r C5An C5Ar C5AAn/C5AAr/ C5ABn/C5ABr/ C5ACn 360 C4ACn/C5ACr/ C5ADn Figure 16. Inclination after demagnetization at peak alternating fields of 25 mT for the 300- to 360mcd interval of (A) Hole 1237B, (B) Hole 1237C, and (C) the stacked and smoothed record with the accompanying polarity interpretations. From ODP Leg 202 Initial Reports volume, Site 1237 chapter. (http://www-odp.tamu.edu/publications/202_IR/chap_08/chap_08.htm) TM Teaching for Science • Learning for Life | www.oceanleadership.org Not interpreted 340 25 TM Teaching for Science • Learning for Life | www.oceanleadership.org FO Emiliania huxleyi FO Globorotalia hirsuta LO Pseudoemiliania lacunosa LO Nitzschia reinholdii LO Globorotalia tosaensis LO Nitzschia fossilis LO Reticulofenestra asanoi LO Rhizosolenia matuyamai FO Reticulofenestra asanoi FO Rhizosolenia matuyamai LO Gephyrocapsa (large) FO Gephyrocapsa (large) LO Calcidiscus macintyrei LO Globigerinoides extremus LO Discoaster brouweri FO Fragilariopsis doliolus LO Globorotalia puncticulata LO Thalassiosira convexa s.l. LO Discoaster pentaradiatus LO Discoaster surculus LO Discoaster tamalis LO Nitzschia jouseae LO Dentoglobigerina altispira LO Sphaeroidinellopsis seminula FO Rhizosolenia praebergonii s.l. FO Sphaeroidinella dehiscens LO Globorotalia plesiotumida LO Reticulofenestra pseudoumbilicus FO Pseudoemiliania lacunosa LO Globoturborotalia nepenthes LO Sphaeroidinellopsis kochi LO Nitzschia cylindrica FO Nitzschia jouseae LO Discoaster quinqueramus FO Thalassiosira oestrupii FO Globorotalia tumida LO Nitzschia miocenica s.s. FO Globorotalia margaritae FO Globigerinoides conglobarus FO Pulletianita primalis FO Thalassiosira convexa v. aspinosa LO Absence interval Reticulofenestra pseudoumbilicus >7 µm FO Globorotalia conomiozea FO Amaurolithus primus FO Nitzschia miocenica s.l. FO Nitzschia reinholdii Datum CN PF CN D PF D CN D CN D CN CN CN PF CN D PF D CN CN CN D PF PF D PF PF CN CN PF PF D D CN D PF D PF PF PF D CN PF CN D D 0.26 0.45 0.46 0.62 0.65 0.70 0.88 1.05 1.08 1.18 1.24 1.45 1.59 1.77 1.96 2.00 2.41 2.41 2.44 2.61 2.76 2.77 3.09 3.12 3.17 3.25 3.77 3.80 4.00 4.20 4.53 4.88 5.12 5.56 5.64 5.82 6.08 6.09 6.20 6.40 6.57 6.80 7.12 7.24 7.30 7.64 0.26 0.45 0.46 0.62 0.65 0.70 0.88 1.05 1.08 1.18 1.24 1.45 1.59 1.77 1.96 2.00 2.41 2.41 2.44 2.61 2.76 2.77 3.09 3.12 3.17 3.25 3.77 3.80 4.00 4.20 4.53 4.88 5.12 5.56 5.64 5.82 6.08 6.09 6.20 6.40 6.57 6.80 7.12 7.24 7.30 7.64 Source Minimum Maximum Age (Ma) 202-1237B1H-4, 75 1H-CC, 9 2H-5, 75 2H-CC, 24 1H-CC, 9 2H-CC, 24 3H-4, 60 3H-3, 75 3H-CC, 19 3H-CC, 19 4H-1, 75 4H-2, 75 4H-3, 75 2H-CC, 24 4H-CC, 20 4H-3, 40 3H-CC, 19 4H-6, 40 5H-6, 75 5H-6, 75 6H-1, 75 6H-1, 75 5H-CC, 22 6H-CC, 30 7H-1, 110 6H-CC, 30 7H-CC, 19 8H-1, 75 9H-3, 78 8H-CC, 39 8H-CC, 39 8H-CC, 39 9H-CC, 20 11H-4, 75 11H-CC, 25 10H-CC, 10 12H-4, 38 11H-CC, 25 12H-CC, 18 12H-CC, 18 13H-CC, 1 14H-CC, 26 13H-CC, 1 15H-3, 75 13H-CC, 1 14H-CC, 26 Core, section, interval (cm) 5.26 5.51 12.28 15.47 5.51 15.47 20.13 18.77 25.00 25.00 25.25 26.76 28.27 15.47 34.55 27.92 25.00 32.46 42.30 42.30 44.25 44.25 44.02 53.51 54.10 53.51 62.80 63.25 75.78 72.66 72.66 72.66 81.86 96.28 101.10 91.29 105.40 101.10 109.81 109.81 119.75 129.40 119.75 132.77 119.75 129.40 Depth (mbsf) Top sample (FO presence/LO absence) 202-1237B1H-CC, 9 2H-CC, 24 2H-7, 40 3H-5, 75 2H-CC, 24 3H-CC, 19 3H-5, 60 3H-5, 75 4H-1, 75 4H-1, 40 4H-2, 75 4H-3, 75 4H-6, 75 3H-CC, 19 5H-1, 75 4H-6, 40 4H-CC, 20 4H-CC, 20 5H-CC, 22 5H-CC, 22 6H-2, 75 6H-2, 22 6H-CC, 30 7H-CC, 19 7H-3, 73 7H-CC, 19 8H-CC, 39 8H-2, 78 9H-4, 75 9H-CC, 20 9H-CC, 20 9H-6, 30 10H-CC, 10 11H-5, 75 12H-1, 22 11H-CC, 25 13H-CC, 1 12H-CC, 18 13H-CC, 1 13H-CC, 1 14H-3, 34 15H-1, 75 14H-CC, 26 15H-5, 75 14H-3, 34 15H-CC, 1 Core, section, interval (cm) 5.51 15.47 14.94 21.79 15.47 25.00 21.64 21.79 25.25 24.90 26.76 28.27 32.81 25.00 34.75 32.46 34.55 34.55 44.02 44.02 45.76 45.23 53.51 62.80 56.74 62.80 72.66 64.79 77.27 81.86 81.86 79.83 91.29 97.79 100.72 101.10 119.75 109.81 119.75 119.75 122.86 129.75 129.40 135.79 122.86 138.66 Depth (mbsf) Bottom sample (LO presence/FO absence) Table T10. Age-depth control points, Hole 1237B. (See table notes. Continued on next page). 0.26 0.45 0.46 0.62 0.65 0.70 0.88 1.05 1.08 1.18 1.24 1.45 1.59 1.77 1.96 2.00 2.41 2.41 2.44 2.61 2.76 2.77 3.09 3.12 3.17 3.25 3.77 3.80 4.00 4.20 4.53 4.88 5.12 5.56 5.64 5.82 6.08 6.09 6.20 6.40 6.57 6.80 7.12 7.24 7.30 7.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uncertainty Average (±) Age (Ma) 5.39 10.49 13.61 18.63 10.49 20.24 20.89 20.28 25.13 24.95 26.01 27.52 30.54 20.24 34.65 30.19 29.78 33.51 43.16 43.16 45.01 44.74 48.77 58.16 55.42 58.16 67.73 64.02 76.53 77.26 77.26 76.25 86.58 97.04 100.91 96.20 112.58 105.46 114.78 114.78 121.31 129.58 124.58 134.28 121.31 134.03 5.39 10.07 12.76 18.76 10.07 20.36 21.99 21.38 27.83 27.65 30.31 31.82 34.84 20.36 38.44 34.49 32.48 37.81 46.43 46.43 50.73 50.46 53.26 63.80 60.99 63.80 73.38 69.74 83.91 83.81 83.81 82.79 94.87 106.71 111.13 105.64 123.49 115.68 125.69 125.69 132.71 141.73 135.98 146.83 132.71 146.18 0.13 4.98 1.33 3.16 4.98 4.77 0.75 1.51 0.13 –0.05 0.76 0.75 2.27 4.77 0.10 2.27 4.78 1.04 0.86 0.86 0.75 0.49 4.75 4.65 1.32 4.65 4.93 0.77 0.75 4.60 4.60 3.59 4.72 0.75 –0.19 4.90 7.18 4.36 4.97 4.97 1.56 0.17 4.83 1.51 1.56 4.63 Average Average Uncertainty (mbsf) (mcd) (±m) Depth How Old Is It? Part 2 – Magnetostratigraphy Table 1. (two pages) Age-Depth control points for ODP Hole 1237B. These are the biostratigraphic datums (microfossil first and last occurrence datums; FOs and LOs) used to calibrate the paleomagnetic record of Site 1237. This image is scanned from the ODP Leg 202 Initial Reports volume, Site 1237 site chapter (choose pdf version rather than online html version), http://www-odp.tamu.edu/publications/202_IR/chap_08/chap_08.htm. 26 TM Teaching for Science • Learning for Life | www.oceanleadership.org Table 1, page two. 27 PF CN CN PF CN PF CN CN PF CN PF CN PF PF PF PF PF PF PF PF PF CN CN CN PF CN PF PF PF PF PF CN PF CN CN PF CN CN CN PF CN PF PF 8.58 8.85 9.40 9.82 10.40 11.19 12.43 11.6 11.68 12.4 13.42 13.57 14.2 14.6 14.80 14.9 15.9 16.1 16.7 17.30 17.30 17.40 18.20 18.50 19.10 19.20 21.50 21.60 22.10 23.20 23.40 23.90 24.30 24.50 24.75 26.70 27.5 27.5 29.1 29.40 29.9 30.00 30.30 8.58 8.85 9.40 9.82 10.40 11.19 12.43 13.19 11.68 12.4 13.42 13.57 14.2 14.6 14.80 14.9 15.9 16.1 16.7 17.30 17.30 17.40 18.20 18.50 19.10 19.20 21.50 21.60 22.10 23.20 23.40 23.90 24.30 24.50 24.75 26.70 27.5 27.5 29.1 29.40 29.9 30.00 30.30 Source Minimum Maximum 15H-CC, 1 17H-1, 75 17H-5, 75 17H-1, 98 18H-4, 75 18H-CC, 1 19H-3, 75 19H-5, 75 18H-CC, 1 19H-6, 75 19H-CC, 13 20H-7, 40 19H-CC, 13 20H-CC, 24 21H-CC, 14 21H-CC, 14 21H-CC, 14 22H-CC, 1 23H-CC, 16 23H-CC, 16 23H-CC, 16 23H-3, 75 23H-CC, 16 23H-CC, 16 24H-CC, 10 24H-6, 75 25H-CC, 10 25H-CC, 10 27H-CC, 14 27H-CC, 14 28H-CC, 16 29H-4, 75 29H-CC, 15 29H-5, 75 29H-5, 75 30H-CC, 0 31H-7, 40 31H-CC, 16 33H-5, 75 31H-CC, 16 33H-5, 75 32H-CC, 25 32H-CC, 25 Core, section, interval (cm) 138.66 148.75 154.78 148.98 162.43 166.89 170.78 173.80 166.89 175.30 176.81 185.95 176.81 186.41 195.79 195.79 195.79 205.44 214.67 214.67 214.67 208.77 214.67 214.67 224.17 222.81 233.68 233.68 252.80 252.80 262.48 267.27 271.95 268.78 268.78 281.24 290.47 291.07 306.78 291.07 306.78 300.54 300.54 Depth (mbsf) 16H-CC, 12 17H-1, 86 17H-6, 75 17H-CC, 21 18H-5, 75 19H-CC, 13 19H-4, 75 19H-6, 75 19H-CC, 13 19H-7, 40 20H-CC, 24 20H-CC, 24 20H-CC, 24 21H-CC, 14 22H-CC, 1 22H-CC, 1 22H-CC, 1 23H-CC, 16 24H-CC, 10 24H-CC, 10 24H-CC, 10 23H-4, 75 24H-1, 75 24H-1, 75 25H-CC, 10 24H-7, 40 26H-CC, 9 26H-CC, 9 28H-CC, 16 28H-CC, 16 29H-CC, 15 29H-5, 75 30H-CC, 0 29H-5, 75 29H-5, 75 31H-CC, 16 31H-CC, 16 32H-1, 75 33H-6, 75 32H-CC, 25 33H-6, 75 33H-6, 75 33H-6, 75 Core, section, interval (cm) 148.21 148.86 156.28 158.00 163.94 176.81 172.29 175.30 176.81 176.46 186.41 186.41 186.41 195.79 205.44 205.44 205.44 214.67 224.17 224.17 224.17 210.28 215.25 215.25 233.68 223.96 243.48 243.48 262.48 262.48 271.95 268.78 281.24 268.78 268.78 291.07 291.07 291.25 308.29 300.54 308.29 308.29 308.29 Depth (mbsf) Bottom sample (LO presence/FO absence) Notes: FO = first occurrence, LO = last occurrence. CN = calcareous nannofossils, PF = planktonic foraminifers, D = diatoms. FO Globorotalia plesiotumida FO absence interval Reticulofenestra pseudoumbilicus >7µm LO Discoaster hamatus FO Neogloboquadrina acostaensis LO Coccolithus miopelagicus FO Globoturborotalia nepenthes LO Coronocyclus nitescens LO Cyclicargolithus floridanus LO Globorotalia fohsi s.l. LO Calcidiscus premacintyrei FO Globorotalia fohsi s.l. LO Sphenolithus heteromorphus LO Globorotalia archeomenardii LO Globorotalia peripheroronda FO Globorotalia peripheroacuta FO Globorotalia praemenardii LO Globorotalia miozea FO Globigerinoides diminitus FO Globorotalia birnageae LO Globorotalia semivera LO Catapsydrax dissimilis FO Calcidiscus premacintyrei FO Sphenolithus heteromorphus LO Sphenolithus belemnos LO Globoquadrina binaiensis FO Sphenolithus belemnos LO Paragloborotalia kugleri LO Globoturborotalia angulisuturalis FO Globoquadrina binaiensis FO Globoquadrina dehiscens FO Globigerinoides trilobus LO Reticulofenestra bisecta FO Globigerinoides primordius common LO Zygrhabdolithus bijugatus LO Sphenolithus ciperoensis FO Globigerinoides primordius LO Sphenolithus distentus LO Sphenolithus predistentus LO Sphenolithus pseudoradians FO Globoturborotalia angulisuturalis FO Sphenolithus ciperoensis LO Subbotina angiporoides LO Turborotalia ampliapertura Datum Age (Ma) Top sample (FO presence/LO absence) 8.58 8.85 9.40 9.82 10.40 11.19 12.43 12.40 11.68 12.40 13.42 13.57 14.20 14.60 14.80 14.90 15.90 16.10 16.70 17.30 17.30 17.40 18.20 18.50 19.10 19.20 21.50 21.60 22.10 23.20 23.40 23.90 24.30 24.50 24.75 26.70 27.50 27.50 29.10 29.40 29.90 30.00 30.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uncertainty Average (±) Age (Ma) 143.44 148.81 155.53 153.49 163.19 171.85 171.54 174.55 171.85 175.88 181.61 186.18 181.61 191.10 200.62 200.62 200.62 210.06 219.42 219.42 219.42 209.53 214.96 214.96 228.93 223.39 238.58 238.58 257.64 257.64 267.22 268.03 276.60 268.78 268.78 286.16 290.77 291.16 307.54 295.81 307.54 304.42 304.42 156.06 163.61 170.33 168.29 178.92 188.39 188.89 191.90 188.39 193.23 199.36 204.33 199.36 209.78 220.39 220.39 220.39 231.31 242.17 242.17 242.17 231.68 237.71 237.71 253.50 246.74 264.31 264.31 286.40 286.40 297.55 299.64 309.21 300.39 300.39 320.67 326.18 327.77 347.40 332.42 347.40 355.28 355.16 4.78 0.06 0.75 4.51 0.75 4.96 0.75 0.75 4.96 0.58 4.80 0.23 4.80 4.69 4.83 4.83 4.83 4.62 4.75 4.75 4.75 0.75 0.29 0.29 4.76 0.57 4.90 4.90 4.84 4.84 4.74 0.75 4.65 0.00 0.00 4.91 0.30 0.09 0.75 4.74 0.75 3.88 3.88 Average Average Uncertainty (mbsf) (mcd) (±m) Depth How Old Is It? Part 2 – Magnetostratigraphy Table T10 (continued). CHAPTER 8, SITE 1237 86 How Old Is It? Part 2 – Magnetostratigraphy TM Teaching for Science • Learning for Life | www.oceanleadership.org 28
© Copyright 2026 Paperzz