Winter 2017 Ma 1b Analytical Problem Set 4 Solutions 1. (5 pts) From Ch. 2.20 in Apostol: Problem 9 Solution. We are given the system of simultaneous equations: 2. (5 pts) From Ch. 2.20 in Apostol: Problem 10 Solution. x + y + 2z = 2 2x − y + 3z = 2 5x − y + az = 6 (a) We are given the system of simultaneous equations: 5x + 2y − 6z + 2u = −1 We turn this into augmented matrices and solve x − y + z − u = −2 1 2 5 1 ∼ 0 0 1 ∼ 0 0 1 2 2 −1 3 2 R2 = R2 − 2R1 R3 = R3 − 5R1 −1 a 6 1 2 2 −3 −1 −2 R3 = R3 − 2R2 −6 a − 10 −4 1 2 2 −3 −1 −2 0 a−8 0 When a 6= yielding 1 0 0 1 ∼ 0 0 1 ∼ 0 0 8, we can divide the last row by a − 8 2 1 2 R1 = R1 − 2R3 −3 −1 −2 R2 = R2 + R3 0 1 0 1 0 2 R1 = R1 + 13 R3 −3 0 −2 R2 = − 31 R2 0 1 0 0 0 43 1 0 23 0 1 0 So, we have a unique solution (x, y, z) = ( 43 , 23 , 0). If on the other hand, a = 8, we get 1 1 2 2 0 −3 −1 −2 0 0 0 0 Thus, setting z = t, and reading off each row gives −3y − t = −2 and hence, y = 23 − 31 t. The other equation is x + 53 t = 34 yielding x = 34 − 53 t. So, our solution set is 4 2 5 1 (x, y, z) = , ,0 + t − ,− ,1 . 3 3 3 3 We turn this into augmented matrices and solve ∼ 5 2 −6 2 −1 1 −1 1 −1 −2 1 −1 1 −1 −2 5 2 −6 2 −1 swap rows 1 −1 1 −1 −2 0 7 −11 7 9 4 5 1 0 −7 0 −7 ∼ 0 1 − 11 1 97 7 R2 = R2 − 5R1 ∼ R1 = R1 + 71 R2 R2 = 17 R2 Thus, setting z = s and u = t, it follows from the rows that x = − 75 + 47 s and y = 97 + 11 7 s−t giving us 5 9 (x, y, z, u) = − , , 0, 0 7 7 4 11 +s , , 1, 0 7 7 + t (0, −1, 0, 1) (b) Since we are adding the equation x+y+z =6 to the previous system of simultaneous equations, we can simply add it to our reduced augmented matrix: 1 Winter 2017 Ma 1b Analytical Problem Set 4 Solutions And thus, 1 0 − 47 0 − 75 0 1 − 11 1 9 7 7 1 1 1 0 6 R3 = R3 − R1 1 0 − 47 0 − 75 1 97 ∼ 0 1 − 11 7 0 1 11 0 47 R3 = R3 − R2 7 7 4 5 0 −7 1 0 −7 9 1 ∼ 0 1 − 11 7 7 38 7 0 0 22 −1 R3 = 22 R3 7 7 5 4 −7 1 0 −7 0 4 11 9 R1 = R1 + 7 R3 1 ∼ 0 1 −7 7 R2 = R2 + 11 19 7 7 R3 0 0 1 − 22 11 3 2 1 0 0 − 11 11 1 4 ∼ 0 1 0 2 7 19 0 0 1 − 22 11 Thus, setting u = t, it follows from the rows 3 2 that x = 11 + 11 t and y = 4 − 21 t and 7 z = 19 11 + 22 t giving us 3 19 2 1 7 (x, y, z, u) = , 4, , 0 +t ,− , ,1 11 11 11 2 22 3. (5 pts) From Ch. 2.20 in Apostol: Problem 13 Solution. We shall find the inverse of the matrix A by augmenting [A|I] to [I|A−1 ]. 1 2 2 1 0 0 2 −1 1 0 1 0 R2 = R2 − 2R1 1 3 2 0 0 1 R3 = R3 − R1 1 0 0 1 2 2 ∼ 0 −5 −3 −2 1 0 R2 ↔ R3 0 1 0 −1 0 1 1 2 2 1 0 0 R1 = R1 − 2R2 0 −1 0 1 ∼ 0 1 0 −5 −3 −2 1 0 R3 = R3 + 5R2 1 0 2 3 0 −2 R1 = R1 + 23 R3 ∼ 0 1 0 −1 0 1 0 0 −3 −7 1 5 R3 = − 13 R3 2 4 1 0 0 − 53 3 3 1 ∼ 0 1 0 −1 0 7 1 0 0 1 3 − 3 − 53 −1 5 2 −3 1 2 2 3 2 −1 1 = −1 0 7 1 3 2 − 13 3 4 3 1 − 53 4. (5 pts) From Ch. 3.6 in Apostol: Problem 2 Solution. Note, that adding any scalar multiple of one row of a square matrix to any other row does not change the value of the determinant. On the other hand, multiplying a row by a scalar changes the determinant by that same multiple. We are given the matrix x y z A = 3 0 2 . 1 1 1 We are also given that |A| = 1. (a) We get our new matrix by multiplying the first row of A by 2 and the second row of A by 12 . Thus, 2x 2y 2z 3 = 2 · 1 · 1 = 1. 0 1 2 2 1 1 1 (b) We get our new matrix by adding three times the first row of A to the third row of A and one times the first row of A to the third row of A, so the determinant does not change. ie. x y z 3x + 3 = 1. 3y 3z + 2 x+1 y+1 z+1 (c) We get our new matrix by adding −1 times the third row of A to the first row of A and 1 times the third row of A to the second row of A, so the determinant does not change. ie. x−1 y−1 z−1 4 = 1. 1 3 1 1 1 2 Winter 2017 Ma 1b Analytical Problem Set 4 Solutions 5. (5 pts) From Ch. 3.6 in Apostol: Problem 3 and 1 1 1 2 2 2 a b c a3 b3 c3 Solution. (a) 1 1 1 a b c a2 b2 c2 (R2 = R2 − a2 R1, R3 = R3 − a3 R1) 1 1 1 2 2 2 2 = 0 b − a c − a 0 b3 − a3 c3 − a3 (R2 = R2 − aR1, R3 = R3 − a2 R1) 1 1 1 c − a = 0 b − a 0 b2 − a2 c2 − a2 (R3 = R3 − (b + a)R2) 1 1 1 c−a = 0 b − a 0 0 c2 − bc − ac + ba (R3 = (b + a)R3 − (b2 + ab + a2 )R2) 1 1 1 1 2 2 2 2 0 b − a c − a = b+a 0 0 (∗) ∗ = (b + a)(c3 − a3 ) − (b2 + ab + a2 )(c2 − a2 ) 1 · 1 · (b2 − a2 ) · (∗) = b+a =(b − a) · (∗) =1 · (b − a) · (c2 − bc − ac + ba) To get a nicer form for this we analyse (∗). Note that when c = a we clearly have (∗) = 0. Moreover, when c = b, we have (∗) = (c + a)(c3 − a3 ) − (c2 + ac + a2 )(c2 − a2 ) = (c4 + ac3 − a3 c − a4 ) − (c4 + ac3 − a3 c − a4 ) = 0. So (∗) has the factors (c − a) and (c − b). Polynomial division gives =(b − a)(c − a)(c − b) Note, that we have used that the determinant of an upper triangular matrix is simply the product of the diagonal. (b) 1 1 1 a b c a3 b3 c3 (∗) = (c − a)(c − b)(bc + ac + ab) And 1 2 a a3 (R2 = R2 − aR1, R3 = R3 − a3 R1) 1 1 1 c − a = 0 b − a 0 b3 − a3 c3 − a3 (R3 = R3 − (b2 + ab + a2 )R2) 1 1 1 c−a = 0 b − a 0 0 c3 − b2 c − a2 c + b2 a + a2 b − abc thus, the determinant is 1 1 b2 c2 = (b−a)(c−b)(c−a)(ab+ac+bc). b3 c3 Note, if you’re worried about the factorisation of (∗), here is an example (let c − a = α): ∗ = (b + a)(c3 − a3 ) − (b2 + ab + a2 )(c2 − a2 ) = α (b + a)(c2 + ac + a2 ) − (b2 + ab + a2 )(c + a) =1 · (b − a) · (c3 − b2 c − a2 c + b2 a + a2 b − abc) = α(bc2 + ac2 − b2 c − ab2 ) − expanding =(b − a)(c − a)(c2 + ac − b2 − ab) = α(c − b) (bc + a(c + b)) =(b − a)(c − a)(c − b)(a + b + c) = (c − a)(c − b)(ab + ac + bc) 3
© Copyright 2026 Paperzz