Chapter 5 Formulas and Definitions: (from 5.1) Fundamental Trigonometric Identities: Reciprocal Identities 1 cscu 1 cscu = sin u Quotient Identities sin u = 1 secu 1 secu = cosu cosu = 1 cot u 1 cotu = tan u tan u = sin u cosu cotu = cosu sin u Pythagorean Identities tan u = sin 2 u + cos 2 u = 1 Cofunction Identities 1 + tan 2 u = sec 2 u #! & sin % " u ( = cosu $2 ' #! & cos % " u ( = sin u $2 ' #! & tan % " u ( = cot u $2 ' #! & cot % " u ( = tan u $2 ' 1 + cot 2 u = csc 2 u (from 5.2) Guidelines for Verifying Trigonometric Identities: 1. Work with one side of the equation at a time. It is often better to work with the more complicated side first. 2. Look for opportunities to factor an expression, add fractions, square a binomial, or create a monomial denominator. 3. Look for opportunities to use the fundamental identities. Note which functions are in the final expression you want. Sines and cosines pair up well, as do secants and tangents, and cosecants and cotangents. 4. If the preceding guidelines do not help, try converting all terms to sines and cosines. 5. Always try something. Even making an attempt that leads to a dead end provides insight. (from 5.4) Sum and Difference Formulas: sin(u + v) = sin u cos v + cosu sin v sin(u ! v) = sin u cos v ! cosu sin v cos(u + v) = cosu cos v ! sin u sin v cos(u ! v) = cosu cos v + sin u sin v tan u + tan v 1 - tan u tan v tan u ! tan v tan(u + v) = 1 + tan u tan v tan(u + v) = (from 5.5) Double-Angle Formulas: sin(2u) = 2 sin u cosu cos(2u) = cos 2 u ! sin 2 u = 2 cos 2 u ! 1 tan(2u) = 2 tan u 1 - tan 2 u = 1 - 2 sin 2 u Power-Reducing Formulas: 1 ! cos 2u 1 + cos 2u sin 2 u = cos 2u = 2 2 Half-Angle Formulas: u 1 ! cosu sin = ± 2 2 tan cos tan 2u = 1 ! cos 2u 1 + cos 2u u 1 + cosu =± 2 2 u 1 ! cosu sin u = = 2 sin u 1 + cosu The signs of sin u u u and cos depend on the quadrant in which lies. 2 2 2 Product-to-Sum Formulas: 1 sin u sin v = ( cos(u ! v) ! cos(u + v)) 2 1 cosu cos v = ( cos(u ! v) + cos(u + v)) 2 1 sin u cos v = ( sin(u + v) + sin(u ! v)) 2 1 cosu sin v = ( sin(u + v) ! sin(u ! v)) 2 Sum-to-Product Formulas: ! u + v$ ! u ' v$ sin u + sin v = 2 sin # cos # & " 2 % " 2 &% ! u + v$ ! u ' v$ sin u ' sin v = 2 cos # sin " 2 &% #" 2 &% ! u + v$ ! u ' v$ cosu + cos v = 2 cos # cos # " 2 &% " 2 &% ! u + v$ ! u ' v$ cosu ' cos v = '2 sin # sin " 2 &% #" 2 &%
© Copyright 2026 Paperzz