Mat h 12 06 Ca lc ul us – Sec . 7. 2: T ri gono met ric Inte gral s I. Eval uati ng ! sin m x cosn x dx A. Strategy for Evaluating ! sin m n x cos x dx 1. If the power of cosine is odd (n = 2k + 1) , save one cosine factor and use cos2 x = 1! sin2 x to express the remaining factors in terms of sine: ! sin m x cos2k +1 x dx = ! sin m x cos2k x cos x dx ( ) x (1 " sin x ) k = ! sinm x cos2 x cos x dx = ! sinm 2 k cos x dx Then substitute u= sinx. 2. If the power of sine is odd (m = 2k + 1) , save one sine factor and use sin2 x = 1 ! cos2 x to express the remaining factors in terms of cosine: ! sin 2k +1 x cosn x dx = ! sin 2k x cos n x sin x dx ( ) = ! (1 " cos x ) cos k = ! sin 2 x cosn x sin x dx 2 k n x sin x dx Then substitute u= cosx. 3. If the powers of both sine and cosine are odd, either 1 or 2 can be used. (Easier problem if you factor out the term with the smaller exponent.) 4. If the powers of both sine and cosine are even, use the half-angle 2 identities sin x = 12 (1! cos2x ) cos2 x = 5. It is sometimes helpful to use the identity B. Examples -- Evaluate the following 1. " sin ! cos ! d! 4 1 2 (1 + cos2x ) sin x cos x = 12 sin2x 2. 3. " sin ! 3 ! d! sin 2 x cos3 x x dx 4. Find the area bounded by the curve of 4 y = sin (3x ) and the x-axis from x = 0 to x = !3 . II. Eval uati ng ! tan m x sec n x dx A. Strategy for Evaluating ! tan m x sec n x dx 1. If the power of secant is even 2 (n = 2k ) , save a factor of sec x and use 2 2 sec x = 1 + tan x to express the remaining factors in terms of tangent: " tan m x sec 2k x dx = " tan m x sec 2k !2 x sec2 x dx ( ) sec x dx x (1 + tan x ) sec x dx = " tan m x sec 2 x k !1 = " tan m 2 Then substitute u= tanx. 2 k !1 2 2. If the power of tangent is odd (m = 2k + 1) , save a factor of secxtanx and use tan2 x = sec 2 x ! 1 to express the remaining factors in terms of secant: " tan 2k +1 x sec n x dx = " tan2k x sec n!1 x sec x tan x dx ( ) = " (sec x ! 1) sec k = " tan2 x sec n!1 x sec x tan x dx 2 Then substitute u= secx. B. Examples -- Evaluate the following 1. ! tan 6 " 2. y dy 6 # tan ! 0 sec3 ! d! k n!1 x sec x tan x dx 3. Find the volume of the solid generated by revolving the region bounded by the curve of III. ( ) ( ) y = sec2 x 2 tan 2 x 2 , the x-axis and the line x = Eval uati ng ! 2 about the y-axis. ! tan x dx , ! cot x dx , ! sec x dx , ! csc x dx A. Strategy for Evaluating 1. When evaluating ! tan x dx , ! cot x dx , ! sec x dx , ! csc x dx ! tan x dx or ! cot x dx rewrite the integrand in terms of sine and cosine and then use u-substitution. 2. When evaluating sec x + tan x ! sec x dx multiply the integrand by the form of one, sec x + tan x , and then use u-substitution. 3. When evaluating csc x + cot x ! csc x dx multiply the integrand by the form of one, csc x + cot x and then use u-substitution. , B. Examples " 1. # " 2. 2 cot ! d! 4 ! sec x dx C. Integral Formulas for tan(x), cot(x), sec(x), csc(x) 1. 2. 3. 4. ! tan u du = ! cot u du = ! secu du = ! csc u du = - ln cosu + C = ln sec u + C ln sinu + C = - ln cscu + C ln secu + tan u + C - ln cscu + cot u + C
© Copyright 2026 Paperzz