Arts Sci 1D06 Solutions to Assignment #9 1. 2. 3. 4. 5. 6. Z 7. (a) sin4 (x) cos2 (x)dx Use the identities sin2 (x) = 21 (1 − cos(2x)) and cos2 (x) = 12 (1 + cos(2x)) to get the integral Z 1 (1 − cos(2x))2 (1 + cos(2x))dx = 8 Z 1 (1 − 2 cos(2x) + cos2 (2x))(1 + cos(2x))dx = 8 Z 1 1 − cos(2x) − cos2 (2x)) + cos3 (2x)dx = 8 Z Z 1 1 2 3 x − sin(2x) − cos (2x)dx + cos (2x)dx = 8 2 Z Z 1 1 1 2 (1 + cos(4x))dx + (1 − sin (2x)) cos(2x)dx = x − sin(2x) − 8 2 2 Z 1 1 1 1 2 x − sin(2x) − x + sin(4x) + (1 − sin (2x)) cos(2x)dx . 8 2 2 4 To compute the last integral, R make the substitution u = sin(2x). Then du = 2 cos(2x)dx and (1 − sin2 (2x)) cos(2x)dx becomes Z 1 1 1 3 1 1 2 3 (1 − u )du = u− u = sin(2x) − sin(2x) . 2 2 3 2 3 Putting this all together, we get that the integral is 1 1 1 1 1 3 1 x − sin(2x) − (x + sin(4x)) + sin(2x) − sin (2x) = 8 2 2 4 2 3 1 1 1 1 3 x − sin(4x) − sin (2x) + C = 8 2 8 6 1 1 1 3 x − sin(4x) − sin (2x) + C 16 4 3 Z (b) sin3 (x) cos−2 (x)dx Use the substitution u = cos(x). Then du = − sin(x)dx and the integral becomes Z Z Z (1 − u2 ) 2 −2 2 −2 − sin(x)(1 − cos (x)) cos (x)dx = − (1 − u )u du = − du = u2 Z 1 − (u−2 − 1)du = u−1 + u + C = + cos(x) + C = cos(x) + sec(x) + C. cos(x) Z (c) 1 dx Use the trig substitution x = tan(u). Then dx = (1 + x2 )2 sec2 (u)du and the integral becomes Z Z 1 sec2 (u) 2 du = cos2 (u)du = sec (u)du = (1 + tan2 (u))2 sec4 (u) Z 1 1 1 u + sin(2u) + C. (1 + cos(2u))du = 2 2 2 Z To express this in terms of x, use that u = arctan(x) and 12 sin(2u) = x sin(u) cos(u). If tan(u) = x, then sin(u) = √1+x 2 and cos(u) = x √ 1 so sin(u) cos(u) = 1+x2 . Thus the integral is 1+x2 1 2 x arctan(x) + 1 + x2 + C. 3/2 Z (d) 1 dx (9 − x2 )3/2 0 Use the trig substitution x = 3 sin(u). Then dx = 3 cos(u)du and the lower and upper limits of integration become arcsin(0/3) = 0 and arcsin(1/2) = π/6 respectively. Then the integral becomes π/6 Z 0 1 9 Z 0 1 1 3 cos(u)du = 2 9 (9 − 9 sin (u))3/2 π/6 sec2 (u)du = Z 0 π/6 cos(u) du = (cos2 (u))3/2 1 1 1 π/6 tan(u)|0 = (tan(π/6) − tan(0)) = √ . 9 9 9 3
© Copyright 2026 Paperzz