Applied Calculus I Lecture 15 Trigonometric identities and limits Let us recall that sin2 x + cos2 x = 1, 1 sec x = , cos x 2 2 1 + cot x = csc x, sin x tan x = , cos x cos x cot x = sin x 1 csc x = , sin x 1 + tan2 x = sec2 x, sin 2x = 2 sin x cos x, cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x 2 = 2 cos x − 1 Trigonometric identities and limits Let us recall that sin2 x + cos2 x = 1, 1 sec x = , cos x 2 2 1 + cot x = csc x, sin x tan x = , cos x cos x cot x = sin x 1 csc x = , sin x 1 + tan2 x = sec2 x, sin 2x = 2 sin x cos x, cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x 2 = 2 cos x − 1 We also have the following identities sin (x + y) = sin x cos y + cos x sin y sin (x − y) = sin x cos y − cos x sin y cos (x + y) = cos x cos y − sin x sin y cos (x − y) = cos x cos y + sin x sin y Trigonometric identities and limits Let us recall that sin2 x + cos2 x = 1, 1 sec x = , cos x 2 2 1 + cot x = csc x, sin x tan x = , cos x cos x cot x = sin x 1 csc x = , sin x 1 + tan2 x = sec2 x, sin 2x = 2 sin x cos x, cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x 2 = 2 cos x − 1 We also have the following identities sin (x + y) = sin x cos y + cos x sin y sin (x − y) = sin x cos y − cos x sin y cos (x + y) = cos x cos y − sin x sin y cos (x − y) = cos x cos y + sin x sin y And it can be shown that sin x lim =1 x→0 x Many other trigonometric limits can be found from this one and the identities. cos h − 1 Find lim . h→0 h Example cos h − 1 Find lim . h→0 h Example cos h − 1 cos h − 1 cos h + 1 cos2 h − 1 = lim · = lim = lim h→0 h→0 h h cos h + 1 h→0 h(cos h + 1) 2 − sin h sin h 1 = lim = lim (− sin h) = h→0 h(cos h + 1) h→0 h cos h + 1 1 =0·1· =0 1+1 The derivative of sin x sin (x + h) − sin x = (sin x) = lim h→0 h sin x cos h + cos x sin h − sin x = lim = h→0 h sin x(cos h − 1) + cos x sin h = lim = h→0 h sin x(cos h − 1) cos x sin h = lim + lim = h→0 h→0 h h = (sin x) · 0 + (cos x) · 1 = = cos x 0 The derivative of sin x sin (x + h) − sin x = (sin x) = lim h→0 h sin x cos h + cos x sin h − sin x = lim = h→0 h sin x(cos h − 1) + cos x sin h = lim = h→0 h sin x(cos h − 1) cos x sin h = lim + lim = h→0 h→0 h h = (sin x) · 0 + (cos x) · 1 = = cos x 0 Therefore, 0 (sin x) = cos x The derivative of cos x Notice that sin π 2 − x = sin π cos x − cos π sin x = 2 2 = 1 · cos x + 0 · sin x = cos x The derivative of cos x Notice that sin π 2 − x = sin π cos x − cos π sin x = 2 2 = 1 · cos x + 0 · sin x = cos x Therefore, π 0 (cos x)0 = sin −x = cos −x · −x = 2 2 π h 2 π π i = − cos − x = − cos cos x + sin sin x = 2 2 2 = −(0 · cos x + 1 · sin x) = − sin x h π i0 π The derivative of cos x Notice that sin π 2 − x = sin π cos x − cos π sin x = 2 2 = 1 · cos x + 0 · sin x = cos x Therefore, π 0 (cos x)0 = sin −x = cos −x · −x = 2 2 π h 2 π π i = − cos − x = − cos cos x + sin sin x = 2 2 2 = −(0 · cos x + 1 · sin x) = − sin x h π i0 π Therefore, 0 (cos x) = − sin x The derivatives of tan x and cot x 0 0 0 sin x (sin x) cos x − sin x(cos x) (tan x)0 = = = 2 cos x cos x 2 2 cos x + sin x 1 2 = = = sec x cos2 x cos2 x The derivatives of tan x and cot x 0 0 0 sin x (sin x) cos x − sin x(cos x) (tan x)0 = = = 2 cos x cos x 2 2 cos x + sin x 1 2 = = = sec x cos2 x cos2 x Similarly, 0 0 (cos x) sin x − cos x(sin x) = (cot x)0 = = 2 sin x sin x 2 1 − sin x − cos2 x 2 = = − = − sec x 2 2 sin x sin x h cos x i0 The derivatives of sec x and csc x −1 0 (sec x)0 = (cos x) = −(cos x)−2 (cos x)0 = −(cos x)−2 (− sin x) = sin x sin x = = = sec x tan x 2 cos x cos x cos x The derivatives of sec x and csc x −1 0 (sec x)0 = (cos x) = −(cos x)−2 (cos x)0 = −(cos x)−2 (− sin x) = sin x sin x = = = sec x tan x 2 cos x cos x cos x Similarly, 0 −1 0 (csc x) = (sin x) = −(sin x)−2 (sin x)0 = −(sin x)−2 cos x = cos x cos x =− 2 =− = − csc x cot x sin x sin x sin x Example Let f (x) = ln | tan2 x|. Find f 0 (x). 2 2 First notice that ln | tan x| = ln(| tan x| ) = 2 ln(| tan x|). Example Let f (x) = ln | tan2 x|. Find f 0 (x). 2 2 First notice that ln | tan x| = ln(| tan x| ) = 2 ln(| tan x|). Then, 1 cos x 1 0 0 0 f (x) = 2 ln | tan x| = 2 (tan x) = 2 = 2 tan x sin x cos x 2 4 4 = = = = 4 csc 2x sin x cos x 2 sin x cos x sin 2x
© Copyright 2026 Paperzz