EXPANDING BRACKETS Higher Tier EXPANDING BRACKETS LIKE 3(X + 2) MULTIPLYING OR EXPANDING BRACKETS The number or letter outside the bracket is multiplied by every separate term inside the bracket. The “Rectangle Method” can also be used. Examples 1. 3(x + 9) = 3x + 27 2. 4(x 3) = 4x 12 3. 3(4 + x) = 12 3x 4. 5(x 2) = 5x + 10 5. a(a + 3) = a² + 3a 6. 2x(x 1) = 2x² 2x 7. 3x(4 x) = 12x + 3x² 8. r(2r + h) = 2r² + rh 9. ½ w(2 + 4r) = w + 2wr 10. Expand and Simplify 3(x 9) + 2(x + 8) [be careful with the signs] 3(x 9) + 2(x + 8) = 3x 27 + 2x + 16 = 5x 11 expandingbrackets Multiply out the brackets Collect like terms ©RSH 26-Mar-10 Page 1 of 4 EXPANDING BRACKETS Higher Tier EXERCISE 1 1. 2. 3. 4. Multiply out a. 5(x + 3) h. 2(1 - 3n) b. 3(n - 4) i. n(5 + 3n) c. 2(5 + 3n) j. x(2x + 3) d. 4(3 - 2a) k. x(3 - 2x) e. 4(2x - 7) l. a(a - 5) f. 5(3p + 1) m. 2a(3 - a) g. 6(3 - 4n) n. 4n(2n + 3) Expand a. -3(n + 2) g. -2p(p + 2) b. -2(3 + 4a) h. -3a(2a + 5) c. -4(2n -1) i. -3x(4 - x) d. -5(3 - 4x) j. -2n(3 - n) e. -6(3x + 5) k. -3q(2q - 5) f. -5(4 - 5x) Multiply out a. 4(x + b) h. -2x(3a + x) b. 3(x - a) i. -4x(x - a) c. x(n - 2a) j. -2a(3n - 4x) d. n(4a + n) k. pq(p + q) e. 3a(4 - 5x) l. pr(r + 2h) f. 2n(3 - 4a) m. ab(h - a) g. 5n(3a - 2n) n. rs(s - r) Expand and simplify a. 4 + 3(2n + 3) h. 3(x + 4) + 2(3 + 2x) b. n - 5 + 2(3 - 2n) i. 5(2a -1) - 3(1 - 2a) c. 3n² + n(3 + 2n) j. 5n(n - 2) + 2n(1 - 2n) d. 2n(3 - n) + 5n k. x(3 + 4x) + 2x(x - 2) e. x(2x + 5) – x l. x(2 + x) - 2(2 - x) f. 2a(4 - a) + 5 + 6a m. 5(2 - n) + 2n(n + 3) g. 3(2n + 5) - 6 – n n. 2x(2x - 3) - 3(4 – x) expandingbrackets ©RSH 26-Mar-10 Page 2 of 4 EXPANDING BRACKETS Higher Tier EXPANDING BRACKETS LIKE (X + 2)(X + 4) MULTIPLICATION OF TWO BRACKETS Each term in the first bracket is multiplied with each term in the second bracket. The expansion is then simplified. Be careful with signs! Examples Expand and simplify 1. (x + 2)(x + 5) = x² + 5x + 2x + 10 = x² + 7x + 10 2. (2x 3)(x + 1) = 2x² + 2x 3x 3 = 2x² x 3 3. (x + y)² = (x + y)(x + y) = x² + xy + yx + y² = x² + 2xy + y² 4. (a + b)(2 + c) = 2a + ac + 2b + bc 5. (x 2)(x 4) = x² 4x 2x + 8 [remember that xy = yx] = x² 6x + 8 expandingbrackets ©RSH 26-Mar-10 Page 3 of 4 EXPANDING BRACKETS Higher Tier EXERCISE 2 EXPAND AND SIMPLIFY 1. (x + 1)(x + 2) 2. (x + 2)(x + 4) 3. (x + 8)(x + 3) 4. (x + 4)(x + 5) 5. (x + 3)(x + 12) 6. (x - 1)(x - 2) 7. (x - 3)(x - 4) 8. (x - 2)(x - 8) 9. (x - 10)(x - 2) 10. (x - 5)(x - 2) 11. (x - 1)(x + 2) 12. (x - 4)(x + 5) 13. (x - 3)(x + 1) 14. (x - 7)(x + 4) 15. (x - 5)(x + 5) 16. (x + 1)(x - 2) 17. (x + 5)(x - 7) 18. (x + 10)(x - 2) 19. (x + 10)(x - 3) 20. (x + 5)(x - 2) 21. (x + 3)(x - 4) 22. (2x + 1)(3x + 2) 23. (2x + 3)(2x + 4) 24. (3x + 8)(2x + 3) 25. (4x + 4)(3x + 6) 26. (2x + 3)(5x + 12) 27. (2x - 7)(2x + 10) 28. (4x + 2)(2x - 1) 29. (3x - 5)(4x + 4) 30. (2x + 9)(4x - 2) 31. (5x - 8)(3x + 4) 32. (2x + 3)(3x - 3) expandingbrackets ©RSH 26-Mar-10 Page 4 of 4
© Copyright 2026 Paperzz