Magnetic Hysteresis and Flux Prof iles in Type

Revista Brasileira de Física, Vol. 8, N? 1, 1978
Magnetic Hysteresis and Flux Prof iles in Type- I Superconductors
GUNTER ZERWECK
Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas*, Campinas SP
Recebido em 23 de Novembro de 1977
Dedicated to the memory of Dr. Herman Trauble
The c r i t i c a l
interaction
(" pinning" )
current
of
of
type- l
superconductors
quantized magnetic
. Measurements o f
f l u x lines
i s determined by the
with
inhomogeneities
the p r o f i l e s o f the magnet i c i n d u c t i o n are
e q u i v a l e n t , i n many r e s p e c t s , t o c r i t i c a l
c u r r e n t rneasurements, and f r e -
q u e n t l y are much simpler. A f t e r a s h o r t i n t r o d u c t i o n about the general
p r o p e r t i e s o f type-l
superconductors,
this article
microscopic p i n n i n g mechanisms, t h e i r s t a t i s t i c
croscopic volume p i n n i n g f o r c e ,
del i n c l u d i n g surface e f f e c t s .
reviews t h e
main
cooperation t o the ma-
and the general i z e d c r i t i c a l s t a t e moThe b a s i c methods o f measurement
are
described, together w i t h some important r e s u l t s about b u l k , surface, and
near- surface p i n n i n g . The f i n a l discussion stresses e s p e c i a l l y two
ob-
s e r v a t i o n s s t i I l h a r d l y understood: the d i f f e r e n t e f f e c t s o f the s u r f a ce and the i n f l u e n c e o f magnetic f i e l d h i s t o r y .
A c o r r e n t e c r i t i c a de supercondutores de
tipo-l
é determinada
i nteração de L
i nhas quant i zadas de f l u x o magnético com
("pi nni ng", aprisionamento)
. Medi das
pela
i nomogene i dades
de p e r f i s da i ndução magnét i ca são
equivalentes, em muitos aspectos, a medidas da c o r r e n t e c r i t i c a , e f r e quentemente bem mais simples.
Após uma introdução c u r t a sobre as
priedades g e r a i s de supercondutores de t i p o - l l , e s t e a r t i g o
uma resenha dos mecanismos microscópicos de aprisionamento mais
tantes, a cooperação e s t a t í s t i c a deles
Posta! Address: C.P.
1170, 13.100
-
impor-
à f o r ç a macroscópica por volume,
e o modelo do estado c r i t i c o generalizado,
*
pro-
apresenta
i n c l u i n d o e f e i t o s da
Campinas SP
super-
f ície.
Descrevem-se os métodos básicos da medida, e alguns
r e s u l tados
importantes sobre aprisionamento no volume, na s u p e r f í c i e e nas
midades da s u p e r f í c i e .
proxi-
A discussão f i n a l acentua especialmente duas ob-
servações ainda pou :o entendi das: os d i f e r e n t e s e f e i t o s de s u p e r f í c i e e
a i n f l u ê n c i a da h i s t ó r i a do campo magnético.
INTRODUCTION
A p p l i c a t i o n o f s u p e r c o n d u c t i v i t y began i n 1961 when Kunzler e t aZ. d i s coveredl
t h a t the compound Nb,Sn
destroying superconductivity.
i s able t o c a r r y a h i gh c u r r e n t without
Since then, h i g h l y s o p h i s t i c a t e d conduc-
t o r s have been developed, mainly f o r the p r o d u c t i o n o f magnet c o i l s f o r
a wi de range o f appl i cations; rangi ng f rom the l a b o r a t o r y magnets for bas i c research purpose t o the l e v i t a t i n g magnets i n high-speed t r a i n systems6'".
Another f i e l d where s u p e r c o n d u c t i v i t y rnay become o f increasing
p r a c t i c a l i n t e r e s t i s the transmission o f e l e c t r i c power
i n cryogenic
cables, a p r o j e c t which i s p r e s e n t l y being s t u d i e d i n a number o f labor a t o r i e s a11 over t h e w o r l d (see, e.g.,
~ e f . 1 5 ) . A survey o f the a c t u a l
s t a t e o f appl i c a t i o n o f s u p e r c o n d u c t i v i t y was pub 1 i s h e d
r e c e n t l y by
Schwartz and ~ o n e r ~ .
AI1 these devices make use o f t h e a b i l i t y o f t y p e - l l superconductors t o
This.
cric a r r y a l o s s l e s s c u r r e n t up t o a c e r t a i n c r i t i c a l c u r r e n t Ic
t i c a l c u r r e n t i s a f u n c t i o n o f temperature and magnetic f i e l d ,
and
is
mainly determined by t h e i n t e r a c t i o n o f magnetic f l u x v o r t i c e s w i t h extended c r y s t a l imperfect:ions l i k e p r e c i p i t a t e s , d i s l o c a t i o n
g r a i n boundaries.
walls,
or
A t r a n s p o r t c u r r e n t creates a f o r c e on the v o r t i c e s ,
and t o keep them from moving, which would cause power d i s s i p a t i o n , they
must be "pinned".
The s t r o n g e r the i n t e r a c t i o n between defects and f l u x
v o r t i c e s , the h i g h e r the c r i t i c a 1 c u r r e n t .
On the o t h e r hand, the c r i -
t i c a l c u r r e n t o f an " i d e a l " type-l l superconductor ( s i n g l e c r y s t a l
thout any defects)
i n the mixed s t a t e would be zero, even i n
wi-
materiais
w i t h h i g h c r i t i c a 1 temperature and h i g h c r i t i c a 1 f i e l d s .
The sameinteraction prevents, i n magneti z a t i o n e ~ e r i m e n t s ,the f l u x v o r t i
-
ces from reaching t h e i r thermdynamic equi 1 i b r i u m d i s t r i b u t i o n , thus a l -
lowing f o r the presence o f f l u x gradients w i t h i n a b u l k superconductor,
and g i v i n g r i s e t o a h y s t e r e t i c magnetization curve.
This equivalence between a t r a n s p o r t c u r r e n t and a f l u x densi t y gradient,
i n t y p e - l l superconductors,
i s t h e basis f o r the experimental study o f
.
"pinni ng" forces i n m d e l systems by magneti z a t ion measurements Such model
systems, each o f which i d e a l l y represents o n l y a s i n g l e i n t e r a c t i o n mechanism, i n s t e a d o f the m e t a l l u r g i c a l l y complicated s t a t e o f the
tech-
n i c a l superconductor, are, e.g.,
type:
dislocations,
s i n g l e c r y s t a l s wi t h one d e f e c t
i r r a d i a t i o n defects, o r p r e c i p i t a t e s . Because o f the h i g h
c r i t i c a 1 c u r r e n t s (up t o 106~/cm2), sample p r e p a r a t i o n f o r magnetization measurements (long c y l i n d r i c a l rods) i s much e a s i e r i n such
systems
than f o r d i r e c t current-v01 tage measurements ( t h i n tapes o r threads).The
purpose o f t h e present a r t i c l e i s t o describe
how much
information
about p i n n i n g forces can be drawn from magnetization measurements,
p e c i a l l y from the so c a l l e d "minor h y s t e r e s i s loops".
t o present a complete review o f i r r e v e r s i b l e p r o p e r t i e s o f t y p e - l I
perconductors.
es-
intend
We do n o t
su-
Thi s was excel l e n t l y done by Campbell and ~ v e t t s ' and,
more recently, by u l l m a i e r 9 .
hensive b i b l i o g r a p h y .
Both reviews a l s o c o n t a i n a more
compre-
D e t a i l e d i n f o r m a t i o n about many s p e c i f i c problems
may be obtained from the proceedings o f the discussion meeting
Andreasberg i n 1974, Ref . l O .
Melvi 1l e ' s review paperll
g r e a t influence of t h e surface on a.C.
in St.
s t resses
losses, which are c l o s e l y
ted t o the magneti z a t i o n h y s t e r e s i s t r e a t e d i n the present paper.
a r t i c l e o f L i v i n g s t o n and schadler12, although 13 years o l d , may
the
relaThe
still
serve as a valuable i n t r o d u c t i o n t o t h e whole f i e l d o f r e l a t i o n s between
superconductivi t y and metal l u r g y .
I n Section 1, a s h o r t i n t r o d u c t i o n t o t h e general p r o p e r t i e s o f type-l l
superconductors i s presented. The second Section descri bes, i n a qual i
-
t a t i v e r a t h e r than i n a mathematically exact way, the main
microscopic
i n t e r a c t i o n mechanisms and the s t a t i s t i c summation o f these
elementary
forces t o the macroscopic volume p i n n i n g force.
One o f the m s t f r u i t -
f u l ideas f o r the understanding o f i r r e v e r s i b l e e f f e c t s
perconductors was t h e concept o f
Bean16,
the c r i t i c a l s t a t e ,
i n t y p e - l l su-
i ntroduced
which w i l l be t r e a t e d i n Section 3, followed by
a
by
review o f
d i f f e r e n t methods o f measurement. The l a s t two Sections present some imp o r t a n t experimental r e s u l t s about bulk and surface pinning,and discuss
r
s p e c i a l l y the d i f f e r e n t e f f e c t s o f surface
and near- surface p i n n i n g as
w e l l as the i n f l u e n c e o f magnetic f i e l d h i s t o r y .
1. TYPE-II SUPERCONDUCTORS
This S e c t i o n i s j u s t t o g i v e a concise i n t r o d u c t i o n t o the
equilibrium
p r o p e r t i e s of t y p e - l l superconductors and the b a s i c phenomeno lo g i c a I
concepts f o r d e s c r i b i n g them. For more d e t a i 1 s,
I must r e f e r t o one of the
textbooks 1 i s t e d i n the f i r s t p a r t o f the b i b ~ i o ~ r a ~ h ~ l - ~ .
The d i f f e r e n c e between type- l and t y p e - l l superconductors i s b e s t i 1 l u s t r a t e d by t h e i r e q u i l i b r i u m r e l a t i o n betweenmagnetic i n d u c t i o n
d e n s i t y ) B and the a p p l i e d f i e l d H (Figs. l a and l b ) .
(flux
Type-l supercon-
ductors are c h a r a t e r i z e d by a complete e x c l u s i o n of the m a g n e t i c f l u x
( p e r f e c t diamagnetism) up t o the c r i t i c a 1 f i e l d Hc,
tion
t o the normal s t a t e takes place.
where
the transi-
I n t y p e - l l superconductors, the
surface energy between superconducting and normal
phases
i s negative,
thus t h e f r e e energy can be decreased, i n f i e l d s above the lower c r i t i c a l f i e l d Hcl,
by a s p l i t t i n g i n t o normal and superconducting "domins"
on a very f i n e scale.
magnetic f l u x ,
ween Hcl
This i s accomplished by a p a r t i a 1 p e n e t r a t i o n o f
r e f l e c t e d by t h a t p a r t o f the B-H curve o f F i g . l b
and Hc2 ("mixed s t a t e " ) . At the upper c r i t i c a 1 f i e l d Hc2,
f l u x p e n e t r a t i o n i s complete and the b u l k o f the specimen becomes
betthe
nor-
mal.
For p r a c t i c a l reasotis ( h i g h e r r e s o l u t i o n o f the o r d i n a t e ) , the m g n e t i z a t i o n curve - M ( H )
i s glven i n s t e a d o f the i n d u c t i o n curve B(H) i n most
cases ( ~ i g . 1 ~ ) .The magnetization M may be defined by
a1though i t does n o t have the d i r e c t physi c a l meani ng o f a magneti c d i pole d e n s i t y as, e.g.,
i n ferromagnets.
With t h i s d e f i n i t i o n , the i n i -
t i a 1 slope o f the magnet:ization curve i n the p e r f e c t l y diamagnetic s t a t e becomes -1.
A t h e o r e t i c a l descr , i p t i o n o f t h i s behavior i s provided by the Ginzburg-Landau equations17, twa coupled n o n l i n e a r d i f f e r e n t i a l equations f o r the
228
Fig.1
-
Equilibrium induction vs. f i e l d , and magnetization curves o f su-
perconductors: a ) type- l superconductors, b) type- l l superconductors, c )
magneti z a t i o n curve o f a type- l l superconductor
Fig.2
-
.
Structure of a s i n g l e vortex l i n e ( s o l i d l i n e : microscopic
n e t i c f i e l d h ; dotted l i n e : order parameter +).
mag-
order parameter Ji which might be i n t e r p r e t e d as a k i n d
of
macroscopic
wave f u n c t i o n f o r the condensed e l e c t r o n s , and f o r t h e vector
potential
A. They c o n t a i n two m a t e r i a l parameters w i t h t h e dimension o f
a length,
+
i .e.,
X
(Itpenetration depthl') and
5
("range o f coherence")
,
which repre-
sent the c h a r a c t e r i s t i c lengths o f v a r i a t i o n o f the microscopic f i e l d h
and o f t h e order parameter $, r e s p e c t i v e l y .
X
TypicaJ values o f
and
5
are o f the order o f some hundred Angstroms.
The r a t i o h/< i s the dirnensionless Ginsburg-Landau parameter
-II superconductors, K
I/&.
I n type-
K.
The r a t i o o f the c r i t i c a l f i e l d s Hc2/Hcl
increases monotonical 1y (but n o t 1i nearl y) wi t h
K.
The two c h a r a c t e r i s t i c
lengths and t h e Ginsburg-Landau parameter vary s t r o n g l y wi t h the mean free
path o f t h e normal e l e c t r o n s .
K
I n a c e r t a i n a l l o y system, t h e
parameter
increases l i n e a r l y w i t h the r e s i d u a l r e s i s t i v i t y l e . Therefore,
general l y are type-1 l superconductors wi t h
K
alloys
> 1/42.
I n 1957, ~ b rkosov'9
i
found p e r i o d i c sol u t i o n s o f the Ginsburg-Landau e quations which o n l y severa1 years l a t e r were recognized
e x a c t l y t h e mixed s t a t e o f type-l 1 superconductorsle.
t i o n showed t h a t t h e mixed s t a t e consist;
as
describing
Abri kosov's
o f a two-dimensional
Each f l u x l i n e can be imagined t o c o n s i s t o f a normal
w i t h a maximum o f t h e microscopic magnetic f i e l d
ji' =
array o f
4
v o r t i c e s o r f l u x l i n e s each o f which c a r r i e s one f l u x quantum
solu-
o
:
conducting
3
core
surrounded
c u r l A,
by c i r c u l a t i n g supercurrents (Fig.2).
i n an i d e a l ( r e v e r s i b l e ) type-1 1 superconductor,
these v o r t i c e s
form
r e g u l a r two-dimensional l a t t i c e , u s u a l l y o f hexagonal symnetry. The
perimental
observation o f
t h i s r e g u l a r l a t t i c e (Fig.3),
f i r s t by
a
exneu-
t r o n d i f f r a c t i o n 2 ' and I a t e r d i r e c t l y by a decoration t e ~ h n i ~ u e ~ ' ' ~ ~ , w a s
t h e p r o o f f o r t h e correcteness o f Abrikosov's s o l u t i o n s .
The
rnagnetic
s t r u c t u r e o f a s i n g l e f l i ~ xl i n e w i t h i n the l a t t i c e was a l s o s t u d i e d by a
p r e c i s e determination o f the form f a c t o r i n neutron d i f f r a ~ t i o n ~ ~ .
Because each v o r t e x contains one quantum o f magnetic f l u x ,
4
f l u x densi t y B = <h> i s r e l a t e d t o the 1i n e densi t y n o f
the
O
*
the
mean
vortices
Fig.3
-
Perfect triangular flux line lattice (FLL) as emerging from the
top face of a superconducting niobium cylinder (B = 73 mT).
The
points
of exi t of the flux lines are decorated by small ferromagnetic particles
(photograph by U. Essmann).
Fig.4
-
Irreversible magnetization curve with minor hysteresis loop.
23 1
by B =
n.4,.
I n thermodynamic e q u i l i b r i u m , t h e l i n e d e n s i t y n, and
the i n d u c t i o n B, i s constant throughout the sample, and
at
a
thus
certain
ternperature a unique f u n c t i o n o f the a p p l i e d f i e l d H ( ~ i g . l b ) : B = B ~ ( H ) .
Although the l a t t i c e parameter o f the f l u x l i n e l a t t i c e (FLL) i s severa1
orders o f magnitude g r e a t e r than t h a t o f c r y s t a l l a t t i c e s (severa1 thousand Angstroms) , there a r e many analogies between them.
The FLL i s elas-
t i c a l l y deformable, and can be described by tensors o f e l a s t i c s t r a i n and
s t r e ~ s ~ and
~ ' ~e l~a s, t i c constants connecting them27931. However, because o f the long-range i n t e r a c t i o n between the f l u x l i n e s ,
theory o f the FLL i s h i g h l y non- local.
the
This has important
elasticity
consequences
~ ~ not conf o r s t r a i n s and stresses v a r y i n g a t s h o r t d i ~ t a n c e s b~u~t 'was
sidered u n t i 1 q u i t e r e c e n t l y (Refs.24,25,34).
Another analogy
between
FLL and a c r y s t a l l a t t i c e i s t h e existence o f l a t t i c e defects (vacant li-
nes, i n t e r s t i t i a l s , d i s l o c a t i o n s , s t a c k i n g f a u l t ~ which
~ ~ ~ i ~n ~ s o
)m
cases may s t r o n g l y influente f l u x movement and t h e c r i t i c a 1 c ~ r r e n t ~ ~ - ~ ' .
2. PINNING FORCES
I n thermodynamic equi 1ibrium, the 1 i n e densi t y n o f the v o r t i c e s i s cons-
if
t a n t throughout the sample, a s t a t e which can o n l y be r e a l ized
v o r t i c e s are f r e e l y movable.
inhomogeneities w i t h s p a t i a l v a r i a t i o n s o f t h e f r e e energy
which g i v e r i s e t o a t t r a c t i v e o r r e p u l s i v e i n t e r a c t i o n
forces.
the
I n r e a l c r y s t a l s , however, there are always
The maximum e f f e c t i v e i n t e r a c t i o n force, fm,
f o r a vortex
p o t e n t i a1 s and
between
flux
one
l i n e and one d e f e c t i s c a l l e d " e l e m n t a r y p i n n i n g force". I n the f o l l o w ing, t h e main i n t e r a c t i o n mechanisrns
i n the bulk and a t
of the specimen are d e s c r i bed i n a qual i t a t i v e way.
the
More de t a i 1 s
q u a n t i t a t i v e formulations can be found i n the o r i g i n a l papers we
red to, and i n the two review a r t i c l e s of Refs. 8 and
surface
and
refer-
9.
2.1. Pinning Interactions in the Bulk
The s p e c i f i c volume o f a metal increases by about 1 0 - ~a t the t r a n s i t i o n
t o t h e superconducting s t a t e .
Thus the core o f a v o r t e x i s a contracted
c y l i n d e r w i t h i n a superconducting m a t r i x .
This e f f e c t i s f u r t h e r accen-
around
t u a t e d by the m a g n e t o s t r i c t i o n caused by the microscopic f i e l d
each vortex.
Thus each f l u x l i n e ,
e s p e c i a l l y the core b u t a l s o the r e -
g i o n o f decreasing f i e l d , i s a source o f eigen-stressesb2 which i n t e r a c t
w i t h the s t r e s s f i e l d o f a l a t t i c e d e f e c t .
This f i r s t - o r d e r i n t e r a c t i o n
( A - ~ e f f e c t , para- e l a s t i c i n t e r a c t i o n ) was f i r s t described
by
Krarner
and ~ a u e r ' and
~
f u r t h e r studied, f o r s p e c i f i c defects, by KronmÜl l e r and
~ c h m u c k e r ~5". ~
A second-order e l a s t i c i n t e r a c t i o n i s due t o the s o f t e n i ng o f the c r y s t a l
l a t t i c e i n the t r a n s i t i o n t o the superconducting s t a t e . The r e l a t i v e decrease o f the e l a s t i c constants i s o f t h e o r d e r o f 10'~. The e l a s t i c s e l f -energy o f a l a t t i c e d e f e c t depends on the e l a s t i c constants, thus i t i s
higherinandnearthecoreof afluxline.
A first
estimate
of
this
r e p u l s i v e i n t e r a c t i o n (A-E e f f e c t , d i e l a s t i c i n t e r a c t i o n ) between a screw
d i s l o c a t i o n and a s i m p l i f i e d f l u x l i n e was published by ~ e b b " ;
a
very
general treatment based on Seeger's and KronmÜl l e r ' s m i cromagnet i c equations o f superconductors47~48
was r e c e n t l y given by ~ c h n e i d e r ~ " ~ ~ .
A t h i r d , n o n - e l a s t i c , i n t e r a c t i o n i s caused by s p a t i a l v a r i a t i o n s o f su-
perconducti ng m a t e r i a l parameters li k e t h e G i nzburg-Landau
parameter
K
(hence A-K e f f e c t ) i n p r e c i p i t a t e s o r c l u s t e r s o f defects. The self-energy o f a v o r t e x 1 ine can be decreased, f o r example,
by
through a normal conducting p r e c i p i t a t e o r a void.
A
passing
partly
s i m i l a r mechanism
a c t s i n a g r a i n boundary: because o f t h e a n i s o t r o p y o f m a t e r i a l
parame-
t e r s 1i ke Hcp ( ~ e.SI)
f
and thus o f t h e Ginzburg-Landau parameter K,
self- energy o f the v o r t e x may be d i f f e r e n t i n two adjacent grains,
the
thus
l e a d i n g t o p i n n i n g e f f e c t s due t o the g r a i n boundary.
A general f e a t u r e o f a1 1 these p i n n i n g mechanisms i s t h a t they
effective if,
least o f
l o o s e l y speaking, t h e dimensions o f
the o r d e r o f the core diameter, i.e.
the defects
are o n l y
are
at
some hundred Angstroms.
Thus, defects l i k e vacancies o r non-magnetic i m p u r i t y atoms can o n l y p i n
weakl y through t h e i r eventual dens i t y f 1u c t u a t i ons, whereas a homgeneous d i s t r i b u t i o n
does n o t g i v e r i s e t o any p i n n i n g e f f e c t .
2.2. Statistic Summation
A comparison o f the observed mean volume p i n n i n g forces,
elementary
pinning
pv,
w i t h these
forces revealed t h a t the former were frequentl y one
o r d e r o f magnitude smaller than expected from a simple summation o f t h e
elementary fm forces.
This i s due t o the e l a s t i c c o u p l i n g o f the v o r t i -
ces w i t h i n the FLL which allows o n l y a small f r a c t i o n o f the p i n n i n g s i tes t o a c t w i t h the maximal f o r c e fm.
A c o n s i d e r a t i o n o f the two l i m i t i n g
cases o f a completely r i g i d and a completely s o f t FLL w i l l c l a r i f y
argument:
I f the FLL i s completely r i g i d and i f t h e r e
d i s t r i b u t i o n o f p i n n i n g s i t e s , t h e r e w i l l be an equal number
+
a c t i n g w i t h f o r c e fm,
-+
and w i t h f o r c e -fm,
this
is a statistical
of
sites
thus the n e t p i n n i ng f o r c e on
a r i g i d FLL w i l l be zero.ln a completely s o f t l a t t i c e , on the o t h e r hand,
the v o r t i c e s can occupy the p o s i t i o n s o f maximum f o r c e fm a t a11 p i n n i n g
s i tes, thus f o r a densi t y N o f t h e p i n n i n g centers, the mean w l m p i n P
The intermediate case, however, the s t a t i s t i c
n i n g f o r c e w i l l be N f
P: m'
summation o f the p i n n i n g forces i n an e l a s t i c FLL, i s a r a t h e r complicat e d problem, and i t s d e t a i l e d d e s c r i p t i o n i s f a r beyond the scope o f t h i s
article.
The f i r s t approach t o a s o l u t i o n o f t h i s problem
was made by
Yamafuji and l r i e 5 2 ' 5 3 , who considered the energy d i s s i p a t e d d u r i n g f l u x
movements (dynamic approach)
. The s t a t i s t i c a l
treatment o f the s t a t i c FLL
i n the c r i t i c a 1 s t a t e was e l a b o r a t e d by ~ a b u s c h ~ ' .For s t a t i s t i c a l l y d i s t r i b u t e d p o i n t p i n n i n g centers, both t h e o r i e s y i e l d , f o r the mean volume
p i n n i n g force, the expression
where a i s the radius o f t h e p i n n i n g centers o f d e n s i t y N B t h e magneP'
t i c induction, 0, the f l u x quantum, and S ( O ) the maximum displacement of
the f l u x a t the p i n n i n g center. The l o c a l theory o f e l a s t i c i t y o f the FLL
gives f o r t h i s d i ~ ~ l a c e m e n t ~ ~
where Ceff
i s an e f f e c t i v e e l a s t i c constant given by
Recent c a l c u l a t i o n s , based on t h e nonlocal e l a s t i c p r o p e r t i e s o f t h e f l u x
l i n e l a t t i c e , showed t h a t t h e displacement may be l a r g e r by a f a c t o r o f
up t o 100 depending on t h e f l u x densi t y B , the r e l a t i o n between S(0) and
fm,
however, remaining 1 i n e a ~ - ~ ~ .
A d i f f e r e n t approach which may be more appropriate f o r the
h i g h d e f e c t d e n s i t i e s was made by
concept o f " f l u x bundles"
56,
case
of
K o r n f e l d and K r ~ n r n Ü l l e rusing
~~
the
and f u r t h e r elaborated by Schmucker
KronrnÜl~er~"@
f o~r p i n n i n g by d e n s i t y f l u c t u a t i o n s o f p o i n t
and
defectsand
by d i s l o c a t i o n s .
2.3. Surface Pinning
I n c o n t r a s t t o these p i n n i n g mechanisms i n the i n t e r i o r o f the material,
t h e e f f e c t s o f the surface are n o t y e t so w e l l established.At verysmooth
surfaces p a r a l l e l t o the v o r t i c e s , there e x i s t s a b a r r i e r
against e n t r y
and e x i t o f v o r t i c e s r e s u l t i n g from t h e d i s t o r t i o n o f the
vortices
ne-
cessary t o obey t h e boundary c o n d i t i o n o f zero normal c u r r e n t . This d i s t o r t i o n can be i n t e r p r e t e d as a r i s i n g from "image v o r t i c e s " o u t s i d e
the
specimen, and the b a r r i e r as being due t o an a t t r a c t i v e i n t e r a c t i o n b e t ween t h e r e a l and the image v o r t i c e ~ ~ 'Roughening
~ ~ ~ .
o f the surface w i l l
decrease t h i s b a r r i e r .
Experimentally, however, i t was
frequently
ob-
served (see Section 5 ) t h a t surface p i n n i n g i ncreased when
the
~ ~ ' ~
a1~so. geometric ir r e g u l a r i t i e s
was r o ~ ~ h e n e d Thus
the surface,
l i k e asperities o r s l i p lines,
centers
of
f o r example, must be considered
surface
pinning
.
Another e f f e c t o f the surface i s the reduction o f the coupl i n g o f the
f l u x 1ines t o the FLL which can be described as a s o f t e n i n g o f the FLL
i n a surface layer. Extending Brandtls o a l c u l a t i o n s o f the e l a s t i c constants2',
t o the case o f a plane surface separating a semispace
with
a
r e a l f l u x l i n e l a t t i c e from another w i t h an image l a t t i ~ e ~i t~ i ,s possib l e t o estimate t h a t C66 i s t h e e l a s t i c constant w i t h the strongest
de-
crease i n a surface l a y e r o f 10 t o 20 l a t t i c e constants (Appendix A). As
t h e e f f e c t i v e e l a s t i c constant Ceff i n Eq.(2.2)
C66
, pinning
i s mainly
determined by
centers l i k e d i s l o c a t i o n s o r p r e c i p i t a t e s w i l l bemuch more
e f f e c t i v e i n t h i s surface l a y e r than i n t h e b u l k o f the m a t e r i a l 6 @ .
There i s no theory y e t
f o r t h e s t a t i s t i c sumrnation o f these elementary
surface and near- surface i n t e r a c t i o n s . Because o f the sof t e n i n g
FLL i n t h e surface l a y e r , however, i t i s expected t h a t the naive
of
the
suma-
t i o n o f the elementary surface forces should g i v e a r a t h e r good v a l w f o r
the observable mean surface p i n n i n g f o r c e pS.
3. THE CRITICAL STATE
irreversible
The phenomenological m d e l of the c r i t i c a 1 s t a t e describes
e f f e c t s i n superconductors u s i n g macroscopic concepts 1i k e t h e " f l u x dens i t y gradient" and the "mean volume p i n n i n g force" , w i t h o u t
considering
the d e t a i 1s o f the underl y i n g mechanisms. The r e l a t i o n between microscop i c and macroscopic d e s c r i p t i o n o f p i n n i n g e f f e c t s can be i l l u s t r a t e d by
interac-
the example o f a sand h i l l : although the elementary f r i c t i o n a l
t i o n between s i n g l e sand g r a i n s may be r a t h e r complicated, t h e knowledge
o f one macroscopic q u a n t i t y , the maximum p o s s i b l e i n c l i n a t i o n o f the s l o pe ( " c r i t i c a 1 slope"),
o f a sand h i l l .
i s s u f f i c i e n t t o p r e d i c t macroscopic p r o p e r t i e s
I n a s i m i l a r way, the cooperation o f the elementary pin-
n i n g i n t e r a c t i o n s gives r i s e t o the e x i s t e n c e o f a c e r t a i n " c r i r i c a l f l u x
densi t y gradient",
the niaximum g r a d i e n t which can be mai n t a i ned by a c e r -
t a i n d i s t r i b u t i o n o f p i n n i n g centers.
For a q u a n t i t a t i v e e l a b o r a t i o n o f
the m d e l , the e l a s t i c p r o p e r t i e s o f the f l u x l i n e l a t t i c e are e s s e n t i a l .
The l o c a l e q u i l i b r i u m c o n d i t i o n f o r an e l a s t i c continuum i n the
+
presence
o f a volume f o r c e pv can be w r i t t e n as
div
or,
-t
u + 2,
=
O
,
i n components,
where a i s t h e
(second o r d e r ) e l a s t i c s t r e s s
tensor which,
i n linear
e l a s t i c i t y theory, i s r e l a t e d t o the s t r a i n tensor E by Hooke's law. For
a t r i a n g u l a r f l u x 1i n e l a t t i c e ,
t h e tensor C o f the e l a s t i c cmstants has
t h r e e i ndependent components (e .g.,
Cll,C44
and Cs6 i n V o i g t ' s n o t a t i o d
which have been c a l c u l a t e d by severa1 authors (Refs .27-31,
34)
.
I n magnetization experiments, a two-dimensional i s o t r o p i c compression normal t o the v o r t i c e s i s the most important e l a s t i c deformation, the " bulk
m ~ d u l u s 'CL
~ b e i n g g i v e n by
The index O i s t o denote l o c a l equi 1i brium,
(aB/aH),
the r e v e r s i b l e inductions vs. f i e l d curve.
For t h i s type o f deformation,
being the slope
of
t h e components (1 1) and (22) o f the s t r e s s and s t r a i n tensors are.equal,
and a1 1 the others are zero.
The t r a c e o f the s t r a i n tensor E ( t h e
l a t i v e s i z e change o f an area S normal t o the v o r t i c e s )
the d i f f e r e n c e
fs
re-
related
to
AB o f the f l u x densi t y B from i t s equi 1i b r i u m value Bo by
Thus Hooke's Iaw y i e l d s , f o r the nonzero components o f the stress, the express i o n
I f now AB and thus the deformation v a r i e s i n a d i r e c t i o n normal
v o r t i c e s , Eq. (3.1)
-+
to
the
y i e l d s ' t h e necessary volume f o r c e pv which m s t be pro-
vided by the p i n n i n g centers t o keep the system i n e q u i l i b r i u m :
(aB/a~);'
where the symbol grad,
x-y plane norma
Friedel e t
.
AB
grad,
= B,.(BB/~H);'
. grad,
B
stands f o r the two-dimensional g r a d i e n t
t o the v o r t i c e s .
,
(3.5)
in
the
This e q u a t i o n w a s f i r s t derived
by
us i ng thermodynami c arguments , and t h e r e f o r e the e q r e s -
s i o n on the r i g h t h a n d s i d e i s sometimes c a l l e d F r i e d e l force.
~ q (3.5)
.
i s a s p e c i a l form, f o r i s o t r o p i c compression v a r y i n g normal l y t o
the v o r t i ces, o f the more general e q u a t i o n 6 6
-+
,p
,
-t
-+
= B x curl H
which may be i n t e r p r e t e d as f o l l o w s .
,
A current density
( 3 -6)
-+
= curl H
acts
237
on the system o f v o r t i c e s ( o f mean f l u x d e n s i t y
Thus, Eq. (3.6)
8)
w i t h the "Lorentz f o r -
i s the condi t i o n t h a t , i n equi 1 ibrium, the sum o f 1-orentz
force and mean volume p i n n i n g f o r c e i s zero.
These considerations g i v e the q u a n t i t a t i v e basis f o r
the
far
reaching
equivalence between the magnetic h y s t e r e s i s and the c r i t i c a l c u r r e n t
a type-l I superconductor.
of
However, whereas i n m g n e t i z a t i o n experi ments
a r e a l f l u x densi t y g r a d i e n t i s r e a l i z e d (Eq.3.5),
the deformation o f the
FLL i n c r i t i c a 1 c u r r e n t measurements i s much more complicated ( i n
gene-
6
r a l t h e f l u x l i n e s are curved ' which demands the use o f t h e more geneEq. (3.6)).
I f t h e f l u x d e n s i t y B v a r i e s continuously w i t h i n the specimen, Eq.
y i e l d s the necessary volume p i n n i n g f o r c e t o m a i n t a i n t h i s f l u x
(3.5)
density
g r a d i e n t which i s e q u i v a l e n t t o a b u l k c u r r e n t d e n s i t y . I f , on the o t h e r
hand, the 1 i m i t i n g f l u x d e n s i t y BS a t the specimen surface i s not i n equil i b r i u m wi t h the appl i e d f i e l d Ha, there i s a discontinuous jump ABS
=
-
B,(H ) o f the f l u x d e n s i t y ( e q u i v a l e n t t o a surface c u r r e n t p e r l e n a
gth o f the specimen) which can o n l s be maintained by a surface p i n n i n g
Bs
. By
s
-+
force p
-
i n t e g r a t i n g Eq.(3.5),
*
one o b t a i n s
For a given d i s t r i b u t i o n o f p i n n i n g centers, there i s a c e r t a i n
value o f the volume and surface p i n n i n g forces, pvmand psm,
maximum
which
determined by the densi t y and t y p e o f the defects, and which i n
w i l l be a l o c a l f u n c t i o n o f the f l u x d e n s i t y and temperature. I t
are
general
should
not, however, depend e x p l i c i t l y on f u r t h e r v a r i a b l e s such as the magnetic
history,
the s i g n o f t h e gradient,
the d i s t a n c e from t h e surface,
the
f l u x d e n s i t y i n neighbouring p o i n t s , e t c . I n S e c t i o n 5, we s h a l l see how
f a r these assumptions c o u l d be conf i rmed experimental l y .
A consequence o f the existence o f a maximum volume and surface p i nn i n g
forces i s the critica2 state. I t i s d e f i n e d as t h a t s t a t e i n
which
the
f l u x d e n s i t y gradient, grad,B,
and the f l u x d e n s i t y jump a t the surface,
C
values
hBS, take t h e i r maximum p o s s i b l e values ( a and a s ) . These
,,
determined by pvm and p
together wi t h Eqs. (3.5)
and
(3.8).
are
impor-
The
tance o f the c r i t i c a l s t a t e , a concept introduced by ~ e a n ' ~ i,s based on
the f a c t t h a t i n m s t experiments grad,B
themselves always t o a and
AB:.
and BSa d j u s t a n d maintain
Thus, the measurement o f these
quanti
-
t i e s gives d i r e c t l y t h e maximum volume and surface p i n n i n g forces.
Let us consider, e.g.,
an isothermal magnetization process o f a l o n g cy-
li n d r i c a l sample wi t h o u t surface pinning, b u t wi t h b u l k p i n n i n g centers,
i n a parallel field.
When the a p p l i e d f i e l d i s increased above Ecl,
l i n e s w i l l be nucleated a t the surface o f the sample.
The
flux
situation i s
unstable, w i t h consequent movement o f the l i n e s i n t o t h e i n t e r i o r , as long
as the f l u x density g r a d i e n t i s g r e a t e r than a. Upon reaching the c r i t i c a l gradient, however, the v o r t i c e s wi Il s t o p moving and
w i l l become s t a b l e .
the
cause a movement o f the v o r t i c e s u n t i l a new c r i t i c a l s t a t e i s
shed.
s i tuation
A f u r t h e r increase o f the a p p l i e d f i e l d again w i l l
establi-
Decreasing t h e magnetic f i e l d causes the f l u x d e n s i t y g r a d i e n t t o
a d j u s t i t s e l f again t o i t s c r i t i c a l value, t h i s time w i t h opposite sign.
Thus i n t h e c r i t i c a 1 s t a t e
where the upper and lower signs correspond
t o an i n c r e a s i n g and a
de-
creasing f i e l d , r e s p e c t i v e l y .
I n the absence o f surface pinning, the f l u x d e n s i t y BS a t the surface i s
i n equi l i b r i u m w i t h the appl i e d f i e l d Ha; w i t h surface pinning, B i n the
s
c r i t i c a 1 s t a t e takes the value
w i t h the same s i g n convention as f o r Eq. (3.9).
Thus the f l u x &nsity pro-
f i l e i s completely determined by these two equations. The l o c a l f l u x &ns i t y i s lower than the e q u i l i b r i u m value B,(H,)
a t a11 p o i n t s i n the i n -
t e r i o r o f the specimen i n a n increasing f i e l d , and higher i n a decreasing
f i e l d , thus leading t o a h y s t e r e t i c 5(na) curve.
As the c r i t i c a 1 s t a t e i s n o t a s t a t e o f thermdynarnic
cannot be completely s t a b l e .
equilibriurn,it
~ n d e r s 0 1 - 1 was
' ~ t h e f i r s t t o propose a t h e r -
mal l y a c t i v a t e d "f l u x creep" i n t h e c r i t i c a l s t a t e toward
thermdynami c
e q u i l i b r i u m (B=Bo). Later, t h i s e f f e c t was experimental l y observed, e.g.
i n one o f the few q u a n t i t a t i v e measurements by Antesberger and ~iimaier6B
The observed creep rates, however, a r e so low (a t y p i c a l r e l a t i v e change
o f the f l u x d e n s i t y g r a d i e n t i s o f the o r d e r o f
per hour, Refs.9 and
69) t h a t the s t a t i c c r i t i c a 1 s t a t e m d e l i s s u f f i c i e n t f o r m s t p r a c t i c a l purposes.
This f l u x creep should n o t be confused wi t h " f l u x
flow",
the movement o f v o r t i c e s caused by o v e r c r i t i c a l f l u x d e n s i t y gradients o r
overcri t i c a l currents.
The c r i t i c a l s t a t e m d e l , as described so f a r , cannot be complete i n anot h e r sense,
t o ~ :f o r geometric reasons, a f l u x densi t y g r a d i e n t normal t o
the v o r t i c e s can o n l y be created w i t h o u t macroscopic l a t t i c e
curvature
by d i s t r i b u t i n g d i s l o c a t i o n s i n the FLL3'. A simple geometric r e l a t i o n
between the d e n s i t y o f f l u x l i n e d i s l o c a t i o n s and the f l u x d e n s i t y
gra-
d i e n t was deduced and experimental l y proved by Essmann and ~ r a u b l e ~3' 6' .
The c r i t i c a l s t a t e may be i n f l u e n c e d by the presence o f these d i s l o c a t i ons, e i t h e r by the v i o l a t i o n o f l o c a l equi 1 i b r i u m i n t h e i r neighbourhood
.
o r by t h e i r i n f l u e n c e on the c r i t i c a l shear s t r e s s o f the F L L ~ ' ~ 'Recent l y , ~ c h m u c k e r 3 9 ' 4 ' t r e a t e d q u a n t i t a t í v e l y the e f f e c t o f f l u x l i n e d i s l o c a t i o n s on the s t a t i c s (Eq.3.5)
and dynamics o f a pinned FLL.
4. MEASUREMENT OF FLUX PROFILES
The o n l y d i r e c t method o f measuring elementary p i n n i n g forces fm i s p r o vided by neutron d i f f r & t i o n 7 '
s i n c e the w i d t h o f the so c a l l e d
rocking
curves i s d i r e c t l y r e l a t e d t o the mean bending o f the v o r t i c e s .
I n gene-
r a l , however, the d e t e r i n i n a t i o n o f p i n n i n g forces i n m g n e t i z e d
mens i s based on measurements o f f l u x p r o f i l e s which, by Eqs.
(3.8),
(3.5)
are r e l a t e d t o the m a n volume and surface p i nning forces
speciand
p v and
Ps.
The h y s t e r e t i c
B(H)
and rnagnet i z a t i o n curves r e f l e c t o n l y mean propert i e s
over the whole specimen cross s e c t i o n ( t h e same i s v a l i d f o r the
mecha-
n i c a l measurements,
~ef.72).
S.
This i n t e g r a t e d i n f o r m a t i o n can o n l y be
a n a l i z e d q u a n t i t a t i v e l y i n terms o f p i n n i n g forces f o r
specimens
very small dimensions i n t h e d i i e c t i o n o f the g r a d i e n t 6 8 ' 7 3 ,
with
and
without
surface pinning, so t h a t the f l u x d e n s i t y g r a d i e n t can be considered const a n t across the sample i n a good approximation.
4.1. Minor Hysteresis Loops
The method o f "minor h y s t e r e s i s loops" o f f e r s the p o s s i b i 1i t y o f measuring
separately volume and surface p i n n i n g forces as a f u n c t i o n o f
f l u x d e n s i t y i n b u l k c y l i n d r i c a l sarnples.
t h o r s f o r d i f f e r e n t measurement techniques.
the
local
I t was developed by severa1 auI n the so-cal l e d d.c.
ques, the a p p l i e d f i e l d i s v a r i e d l i n e a r l y i n time, and the
techni-
corresponding
~ ~d i ~
f f e~r e~n t i a l s u s c e p t i b i l i t y
v a r i a t i o n o f the ~ ~ n e t i z a t i oor nthe
i s measured. The same i n f o r m a t i o n i s obtained from a.C.
a small .a.c.
f i e l d i s superimposed on a l a r g e d.c.
techniques,
60'76
where
f i e l d . The v o l t a g e s i g -
na1 induced i n a pick- up c o i l can be a n a l i z e d h a r m o n i ~ a l l ~ ~d~i r *e ~
c t ~l y,
from i t s w a v e f ~ r r n ~ ~o r' ~by
~ ,i n t e g r a t i o n u s i n g a l o c k - i n ampl i f i e r s l .
A11
these methods o f minor h y s t e r e s i s ~ l o o p sare based on the generalized
con-
cept o f c r i t i c a 1 s t a t e described i n the preceding Section. As an
the technique o f d i f f e r e n t i a l s u s c e p t i b i 1i t y measurement
example,
wi 1 1 be described
i n more d e t a i 1 s i n c e t h i s technique gives a d i r e c t graph o f the f l u x
den-
s i t y p r o f i l e . The experimental arrangement c o n s i s t s o f a pick- up c o i l wound
c l o s e l y on a l o n g c y l i n d r i c a l specimen, and a compensation c o i 1 w i t l the same product (turns.area), b u t a t a c e r t a i n distance from the specimen. The
two c o i l s are adjusted t o g i v e a t o t a l v o l t a g e s i g n a l , u, which i s proport i o n a l t o the time v a r i a t i o n o f the mean magnetization
I f the a p p l i e d f i e l d H
a
v a r i e s l i n e a r l y i n time, t h i s voltage i s proportio-
na1 t o the d i f f e r e n t i a l s u s c e p t i b i l i t y
X,
Fig.4 shows schematically a h y s t e r e t i c magnetization curve o f a t y p e - l l supercondutor.
The appl i e d f i e l d i s a t f i r s t monotonously increased
t o the
a/&.
value H , and then decreased w i t h a constant sweep r a t e
The mean
o
magnetization f o l l o w s the b o l d curve connecting the two branches of thehyst e r e t i c magnetization curve.
The r e s u l t a n t induced voltage s i g n a l
o f the
two c o i l s i s shown i n Fig.5 as a f u n c t i o n o f the f i e l d decrease M.The i n i t i a 1 slope o f the minor h y s t e r e s i s loop i s (-11, equat t o t h e slope i n the
p e r f e c t diamagnetic s t a t e . This value can thus be used t o ca i b r a t e the
s u s c e p t i b i 1i t y s c a l e o f Fig.5.
The c r i t i c a 1 s t a t e model (Eqs.3.9
and
3 .10) determines u n i q u e l y
densi t y p r o f i l e B+(r) i n the specimen a f t e r i n c r e a s i n g the
the
appl i e d
flux
field
monotonously from O t o H. ( F i g . 6 , s o l i d curve). When the a p p l i e d f i e l d
now decreased, a t f i r s t t h i s p r o f i l e remains unchanged as l o n g as
B,(H,-M)
1
i s l e s s than the c r i t i c a 1 surface d i s c o n t i n u i t y
IB+(R)
is
-
AB:. The corres-
ponding h o r i z o n t a l p a r t o f the s u s c e p t i b i l i t y curve i n Fig.5
extends from
M = O t o Mo which i s r e l a t e d t o AB; by
(Appendix 8 ) . A f u r t h e r decrease o f the appl i e d f i e l d then causes v o r t i c e s
t o leave the specimen,
and again a c r i t i c a 1 s t a t e wi11 a d j u s t i t s e l f (B-(r),
d o t t e d curve o f ~ i g . 6 ) . As l o n g as the f i e l d decrease M i s n o t too large,
i.e.
B-(r)
the i n d u c t i o n d i s c o n t i . n u i t y can be considered constant,
the
i s e x a c t l y symmetric t o B + ( r ) . The rnaxirnum depth r up t o
profile
which
the
f l u x densi t y has changed i s determined by the c o n d i t i o n B+(R-x) = B-(R-x),
the i n d u c t i o n a t t h i s depth b e i ng
B+(R-X) = B, (H,)
AS
shown i n Appendix B,
-
0.5 x ( a ~ / a H ) ,
.
M, f o r AH JI AH,,
A t h e area o f the specimen's cross s e c t i o n )
and
(4.5)
(4.4)
t h e s u s c e p t i b i l i t y o f Fig.5 i s given by
when the f r o n t o f the p r o f i l e change i s a t depth x
Equations (4.4)
.
( P i s the periphery,and
.
are two l i n e a r r e l a t i o n s between
x and x
on the
Fig.5
- Differential
s u s c e p t i b i l i t y as a function o f the f i e l d
decrease
M i n the rninor hysteresis loop.
-
~ig.6
Flux densi t y p r o f i l e s ~ + ( rand
) ~ - ( r i)n the specimen during a
rninor hysteresis loop (schernatic)
.
one hand, and 'B(R-x)
arid L!H on the o t h e r hand. Thus the s u s c e p t i b i 1 i t y c u r -
ves x(M) are immediately l i n e a r representations o f the p r o f i l e B,(x)-B(H)
o o
near the surface,. turned f o r 90°, as i n d i c a t e d by the d o t t e d coordinate system o f Fig.5.
Despite t h i s important advantage f o r the a n a l y s i s o f the measured curves,
a.c.
methods a r e f r e q u e n t l y p r e f e r r e d because o f the i ncreased r e s o l u t i o n
which, e.g.
i n t h e " d i r e c t waveform analysis" o f R o l l i n s e t aZ.",
r e than an o r d e r o f magnitude h i g h e r (0.2um)
i s mo-
than i n the d i f f e r e n t i a l sus-
c e p t i b i 1i t y measurements (+- 5um). Considering t h e l a t t i c e constant o f the
FLL (0.1
-
0.2
u m i n niobium) and the f a r - r e a c h i n g mutua 1
interaction
of
i t might be doubted whether t h i s h i g h e r r e s o l u t i o n
t h e v o r t i c e s , however,
r e a l l y provides more r e l e v a n t i n f o r m a t i o n and not j u s t i n c i d e n t a l m i croscopi c d e t a i 1s.
4.2. Field Profiles on Cylinder Faces and in Slits
-+
As the normal component o f the magnetic i n d u c t i o n B i s c o n t i n u o u s a t a s u r face,
the f l u x p r o f i l e - o u t s i d e but very near a plane surface i n t e r s e c t i n g
normally the v o r t i c e s
-
i s i d e n t i c a l t o the p r o f i l e i n t h e i n t e r i o r . Three
p r i n c i p a l l y d i f f e r e n t methods have been developed f o r the o b s e r v a t i o n o'f
this field profile.
Based on e a r l i e r works w i t h a moving H a l l p r o b e 8 2 ' 8 3 , Weber
and
Riegler
measured simul taneously t h e f i e l d i n a nurnber o f very small
Hall
probes
s4
arranged a l o n g a diameter o f the sam p le . By m i n i a t u r i z a t i o n o f the p r o bes, a r e s o l u t i o n o f b e t t e r than 0.5mm was o b t a i n e d 8 5 ' 8 6 . To decrease the
e f f e c t o f t h e f i e l d d i s t o c t i o n I n the small gap between sample
face
and
probe, and wi t h i n the probe thickness, a s l i t geometry i s g e n e r a l l y used.
The o t h e r two methods can o n l y be a p p l i e d t o an end surface o f a specimen.
I n the technique o f Essmann and ~ r i i u b l e ~the
~ , p o i n t s where the surface i s
i n t e r s e c t e d by f l u x 1ines a r e decorated by very smal 1 ferromagnetic
ticles,
par-
the whole arrangement then being i n v e s t i g a t e d , by a r e p l i c a tech-
nique, i n an e l e c t r o n microscope. This method allows o f a d i r e c t
counting
o f the v o r t e x d e n s i t i e s and shows, furthermore, a l o t o f d e t a i l s l i k e d i s l o c a t i o n s i n the FLL.
However, the technique i s h i g h l y s o p h i s t i c a t e d and
time consuming, so i t s a p p l i c a t i o n j u s t t o determine
f l u x density gradi-
ents i n general does n o t seem t o be j u s t i f i e d .
A compromise between the complicated h i g h - r e s o l u t i o n and the r e l a t i v e simp l e l o w - r e s o l u t i o n method may be p o s s i b l y provided by the magneto-optical
doma i n
m e t h ~ d ~o"r i~g i~n a l l y r e s t r i c t e d t o observations o f the coarser
s t r u c t u r e o f type- l superconductors i n the i ntermediate s t a t e
gO
, but
re-
c e n t l y a l so appl ied, wi t h promisi ng r e s u l t s , t o t y p e - l l superconductorsg~.
A t h i n f i l m o f a m a t e r i a l w i t h h i g h Faraday r o t a t i o n i s evaporated
specimen surface, and the f l u x d i s t r i b u t i o n i s observed
on
a
in situ by an op-
t i c a l p o l a r i z a t i o n microscope. Because o f the use o f v i s i b l e l i g h t , i t i s
n o t p o s s i b l e t o resolve i n d i v i d u a l v o r t i c e s . However, s i n c e d i f f e r e n c e s i n
the mean f l u x d e n s i t y cause d i f f e r e n t angles o f r o t a t i o n o f the p o l a r i z a t i o n plane, f l u x densi t y gradients can be detected. This method seems
be e s p e c i a l l y a p p r o p r i a t e t o observe the general geometry
to
o f f l u x entry
and r a p i d f l u x movementsg2.
Although these methods are powerful t o o l s t o get much
f l u x d e n s i t y p r o f i les,
information
about
there remains some u n c e r t a i n t y w i t h respect t o t h e
edges o f the observed surface,
Thus they are probabl y r e s t r i c t e d
to
the
determination o f the f l u x d i s t r i b u t i o n i n the b u l k o f the specimens, below
a c e r t a i n surface sheath.
5. EXPERIMENTAL RESULTS
5.1. Flux Density Profiles
The p r o f i les, determined by one o f the methods described i n t h e
4.1 o r 4.2,
Sections
general l y e x h i b i t the f o l l o w i n g common c h a r a c t e r i s t i c s (Fig.7):
the f l u x d e n s i t y g r a d i e n t i n a. surface l a y e r o f a few pm i s extremely high.
This -i; o n l y observable by the described a.C.
methods. The o t h e r
techni-
ques determine t h i s s h o r t range drop o f the f l u x d e n s i t y as a d i s c o n t i n u -
i t y ABE a t the surface. A f t e r a t r a n s i t i o n region o f up t o 200p1, the f l u x
d e n s i t y g r a d i e n t becomes constant, o r , f o r h i g h gradients, s l o w l y v a r y i n g
wi t h the mean f 1ux densi t y .
I n terms o f the generalized c r i t i c a 1 s t a t e model as descríbed i n Section3,
the f l u x d e n s i t y g r a d i e n t ct i n the i n t e r i o r o f the specimen i s r e l a t e d t o
Fig.7
- Typicai
f l u x d e n s i t y p r o f i l e near the surface i n increasing f i e l d :
d e v i a t i o n o f the l o c a l f l u x d e n s i t y B from the e q u i l i b r i u m value B,,(H)
as
a f u n c t i o n o f the distance x from t h e specimen's surface (deformed niobiurn
s i n g l e c r y s t a l , Bo = 180 mT, T = 4.2~, Ref. 9 3 ) .
x line
o
O
Fig.8
246
-
/
/ o
o
lattice
I
O
o
Flux l i n e l a t t i c e and image l a t t i c e n e a r ' t h e surface.
o
the mean b u l k p i n n i n g f o r c e , pv, by eq.(3.5),
nuity,
w h i l e the surface d i s c o n t i -
ABz , i s caused by a surface p i n n i n g f o r c e p s (Eq .3.8). The e x i s -
tence o f a t r a n s i t i o n r e g i o n w i t h a curved f l u x p r o f i l e up t o a
distance
o f sometimes 0.2mm, however, cannot be e x p l a i n e d by t h i s model i f c y l i n d r i c a l symmetry i s assumed. Although i t was possible,
i n a s p e c i a l case
,
t o r e l a t e t h i s '8near-surface" e f f e c t t o oxides i n a surface l a y e r o f n i o g
bium ',
t h i s cannot be t h e o n l y reason because i n o t h e r experiments i t was
observed t h a t i t v a r i e d s t r o n g l y w i t h the surfaces roughness even f o r the
.
same o x i d a t i o n ~ t a t e s ~ l ' ~ ~
5.2. Volume Pinning Force
There i s a great nunber o f p u b l i c a t i o n s d e s c r i b i n g measurements
of
p i n n i n g by d i f f e r e n t defects i n the b u l k o f specimns. Somtimes,
p o s s i b l e t o r e l a t e the measured volume p i n n i n g forces
flux
i t was
quanti t a t i v e l y
the t h e o r e t i c a l l y c a l c u l a t e d microscopic i n t e r a c t i o n , mainly when
to
preci-
p i t a t e s a r e the p i n n i n g centers ( ~ e f s . 6 8 , 95-99). A q u a n t i t a t i v e i n v e s t i g a t i o n o f the i n f l u e n c e o f d i s l o c a t i o n s , however,
is
much
more d i f f i -
~ u l t ' ~ ~ This
~ ' ~ i 's . due t o the f a c t t h a t the d i s l o c a t i o n d i s t r i b u t i o n i n
deformed s i n g l e c r y s t a l s , where these measurements are made ( ~ e f s .60, 75,
102-104),
i s f a r from b e i n g homogeneous, and f u r t h e r m r e i s h i g h l y aniso-
t r o p i c , whereas the t h e o r e t i c a l c a l c u l a t i o n s are mainly r e s t r i c t e d t o the
case o f a s t a t i s t i c a l d i s t r i b u t i o n o f d i s l o c a t i o n s p a r a l l e l t o the v o r t i ces
.
Q u a l i t a t i v e l y , i t can be s a i d t h a t the p i n n i n g f o r c e o f i n d i v i d u a l d i s l o c a t í o n s i s r a t h e r weak. A q u a n t i t a t i v e d e s c r i p t i o n o f the e f f e c t s o f
an
inhomogeneous d i s l o c a t i o n d i s t r i b u t i o n , however, becomes very complicated
because o f the f a c t t h a t i n these cases besides the long-range stress f i e l d
o f d i s l o c a t i o n groups, p i l e - u p s , and networks, a v a r i a t i o n o f the e l e c t r o n
mean f r e e path i n regions o f h i g h d i s l o c a t i o n
densi t y may g i v e r i s e t o l o -
c a l v a r i a t i o n s o f the Ginzburg-Landau parameter (A-K p i nning)
. Such a com-
b i n a t i o n o f e l a s t i c and A-K i n t e r a c t i o n s i s a l s o responçible f o r the h i g h
c r i t i c a 1 c u r r e n t s o f the t e c h n i c a l superconductor NbTi. I t i s i n t e r p r e t e d
~ ~ ~ ~ ~ ~ .
as a r i s i n g from p r e c i p i t a t e s nucleated along d i s l o c a t i ~ n s ~ Possib l y , a s i m i l a r e f f e c t may be taken advantage o f t o increase
current o f A- 15 s ~ ~ e r c o n d u c t o r s ' ~ ~ .
the c r i t i c a l
For the a p p l i c a t i o n o f superconducting magnets i n f u t u r e f u s i o n reactors,
the influente o f r a d i a t i o n damage on the c r i t i c a l c u r r e n t i s e s s e n t i a l . l t
i s expected t h a t the defects produced by i r r a d i a t i o n ( i n t e r s t i t i a 1 and vacancy dislocations,loops,
voids, e t c ) a r e e f f e c t i v e p i n n i n g centers.
In
pure metals and s i m p l a a l l o y s , t h i s was r e a l l y ~ b s e r v e d ' ~ ;i n systems l i ke Nb,Sn o r Nb,Ge,
however, the r e s u l t i n g decrease o f long-range o r d e r s ,
and the corresponding decrease o f the c r i t i c a l t e m p e r a t ~ r e ' ~ ~ 'are
"~
of
much g r e a t e r i n f 1uence.
The "scal i n g laws"
first
introduced by F i e t z and ~ e b b ' " ,
and
discus-
sed e x t e n s i v e l y by ~ r a m e r " ~ , can be used t o analyse the u n d e r l y i n g i n t e r a c t i o n mechanism which gives r i s e t o an observed volume
These s c a l i n g laws are based on t h e f a c t t h a t the f i e l d
pinning f o r c e .
and
temperature
dependence o f the volume f o r c e f r e q u e n t l y can be expressed as
where the constants C and n and the f u n c t i o n f can be compared w i t h
ex-
pressions c h a r a c t e r i s t i c o f each p i nning mechanism. The exponent n, whi ch
describes the temperature dependence, g e n e r a l l y l i e s between 1 and 3, and
the f i e l d dependence can f r e q u e n t l y be approximated by an expression 1 i k e
w i t h b =B/Bc2,
O < h 5 1, and l < k
52.
5.3. Surface Forces
Although the c r i t i c a 1 surface d i s c o n t i n u i t y L B ~o r, the e q u i v a l e n t surface c u r r e n t , was observed i n a number o f f l u x p i n n i n g experiments,
n o t general l y r e a l i z e d t h a t t h i s corresponds t o a p i n n i n g f o r c e .
it
was
Further
systematic i n v e s t i gations, besides the few e x i s t i n g ones, seem t o be very
important, consi d e r i n g t h a t , on the one hand, the "surfacel'
FLL extends down t o a depth o f the o r d e r o f some
um
region o f the
(10 t o 20 l a t t i c e cons-
tants, see Appendix A), and t h a t , on the o t h e r hand, the f i l a m e n t s i n modern t e c h n i c a l composi t e wi res have diameters o f 5
-
10pm.
Most o f the e a r l i e r papers discuss the e f f e c t o f the s u r f a c e i n terms
of
an i n t r i n s i c surface c u r r e n t r e l a t e d t o the surface s u p e r c o n d u c t i v i t y b e t weenHc2andH
( ~ e f s . l 1 3 , 1 1 5 ) , o r t o image
I f these were
c3
the o n l y causes, roughening o f the surface should decrease the e f f e c t . However, the opposi t e was observed much more f requently, i .e.,
p i nni ng by rougheni ng o f the surface5'
'62.
increase
of
The surface roughness was p r o -
duced by s c r a t c h i n g o r grinding, by the s l i p l i n e s o c c u r r i n g
deformation o f s i n g l e c r y s t a l s , o r by chemical e t c h i n g .
in
plastic
I n the f i r s t t y -
pe o f measurements, i t might be d i f f i c u l t t o d i s t i n g u i s h the e f f e c t o f roughness f rom t h a t o f the d i s l o c a t i o n s produced simul taneousl y, b u t the other
two experiments seem t o be conclusive.
surface
Das Gupta and ~ r a m e r " ~observed another e f f e c t o f the surface:
p i n n i n g v a r i e d i n the same way as the b u l k p i n n i n g condi'tions were
red, even a t the same p o l i s h e d surface.
alte-
They concluded t h a t c r y s t a l
f e c t s ( d i s l o c a t i o n s i n t h e i r case) near the surface are much more
de-
effec-
t i v e p i n n i n g centers than the same species o f d e f e c t i n the b u l k . As
al-
ready mentioned i n Section 2, t h i s i s probably due t o the s o f t e n i n g o f the
e l a s t i c constant Cs6 o f the FLL near the surface (Appendix A).
A11 k i n d s o f surface p i n n i n g may be reduced considerably by p l a t i n g
the'
specimen w i t h a magnetic metal a r another supercondutor.
and
Campbell"'
~vetts"
i n v e s t i g a t e d especial l y the e f f e c t o f a d i f f u s e d t h a l l i u m l a -
y e r on the surface o f specimens o f a lead- thal l i u m a l l o y . They were able
t o suppress completely surface p i n n i n g o f unpolished as w e l l as o f
shed surfaces. The e x p l a n a t i o n i s based, on the one hand, on the
polialtered
boundary condi t ions reduci ng the e f f e c t o f the Bean-Li v i ngston b a r r i e r
57
as w e l l as o f the l a t t i c e s o f t e n i n g and, on the o t h e r hand, the d i f f u s i o n
process reduces a1so the surface
roughness
.
5.4. Field History Effects
The c r i t i c a l s t a t e model p r e d i c t s t h a t the c r i t i c a 1 f l u x densi t y g r a d i e n t
f o r a g i v e n d e f e c t d i s t r i b u t i o n i s a unique f u n c t i o n o f the l o c a l fluxdens i t y and o f temperature. The absolute value o f the c r i t i c a 1 gradientshould
thus be the same on the i n c r e a s i n g and on the decreasing branch o f an isothermal magnetization curve, and the minor h y s t e r e s i s loops should be com-
p l e t e l y symmetrical. Experiments have shown, however, t h a t both o f
requi rements are f r e q u e n t l y v i o l a t e d (Refs.76,
these
80, 1191, e s p e c i a l l y i n ap-
p l i e d f i e l d s H < 0.5 Hcp, b u t r e c e n t l y a l s o observed i n f i e l d s up t o
0.9
Hc2 ( ~ e f s . 9 3 , 120). General l y , i t i s found t h a t the c r i t i c a 1 f l u x densi t y
g r a d i e n t i s lower along the branch o f decreasing f i e l d .
No
correlation
seems t o e x i s t between t h s f i e l d h y s t o r y e f f e c t and the absolute
o f the c r i t i c a l g r a d i e n t .
c o n t r a d i c t each o t h e r .
v a l ue
The experimental r e s u l t s o f d i f f e r e n t
authors
I n the f o l l o w i n g Section, some p o s s i b l e causes
of
t h i s e f f e c t are discussed
A second r e s u l t n o t c o n s i s t e n t wi t h the c r i t i c a l s t a t e model i s an
metry o f the minor h y s t e r e s i s loops, sometimes observed i n d.c.
asym-
measure-
ments. Apparently the sharp change o f the f l u x densi t y g r a d i e n t (Fig.6) a t
r
=
R-x i s rounded o f f . Eckert and ~ a n d s t e i nconclude
~~
that f l u x varia-
t i o n s must occur even deeper than x i n s i d e the sample. I f t h i s
the case,
it
is
really
i s c e r t a i n l y due t o e f f e c t s o f nonlocal e l a s t i c i t y . For
a
complete understanding, a l s o r e l a x a t i o n e f f e c t s have t o be taken i n t o account. De
irn na'^'
observes t h i s asynunetry o n l y i f the f i e l d i s maintained
constant f o r some seconds a f t e r the f i r s t semi-cycle, before compl e t i n g
the minor loop ( t r a p e z o i d a l pulses). l f both semi -cycles f o l low each o t h e r
immediately ( t r i a n g u l a r pulses), the loops e x h i b i t a near y p e r f e c t
metry. These measurements were nade w i t h a sweep r a t e o f
sym-
he a p p l i e d f i e l d
o f 4mTIs.
When the sweep r a t e s are much higher, as they are general1
rements, r e l a x a t i o n e f f e c t s due t o the viscous damping o f the o s c i 1 l a t i n g
~~
however, t h a t t h i s e f f e c t
v o r t i c e s may occur. ~ o d m e r 'observed,
in f lu-
ences the shape o f the h y s t e r e s i s loops o n l y f o r frequencies o f about 60Hz
and higher, which corresponds t o sweep r a t e s o f the o r d e r o f a t l e a s t 100
mT/s
.
6. DISCUSSION
As o u t l i ned by ~ c h m u c k e r ' ~ ,the magnetization processes i n a
cyl indri cal
type-I l superconductor are o n l y p o s s i b l e by p l a s t i c deformation
of
the
f l u x l i n e l a t t i c e . Here, the r e v e r s i b l e p a r t o f the minor hysteresis loops
may be i n t e r p r e t e d as the e l a s t i c deforrnation o f a surface l a y e r o f
the
FLL preceding t h e . p l a s t i c flow, w i t h the f i e l d decrease Mo/2 correspond i n g t o the c r i t i c a 1 shear s t r e s s o f t h a t surface l a y e r . There
are
some
important d i f f e r e n c e s , however, between the e l a s t o - p l a s t i c deformation o f
a m a t e r i a l c r y s t a l and a f l u x l i n e c r y s t a l .
I n deformation experiments o f m a t e r i a l c r y s t a l s , the macroscopic
elastic
s t r e s s i s u n i f o r m throughout the specirnen. When the c r i t i c a l shear s t r e s s
i n the most favorable g l i d e system i s reached, p l a s t i c deformation begins
i n the e n t i r e volume.
I n t h e case o f a FLL, i n an i r r e v e r s i b l e superconductor, p i n n i n g
centers
prevent the e l a s t i c s t r e s s i n i t i a l l y from p e n e t r a t i n g f a r t h e r than i n t o a
t h i n surface l a y e r .
Thus, the surface p l a y s a dominant r o l e i n the defor-
mation o f t h e FLL. This leads t o another important d i f f e r e n c e .
The
flow
s t r e s s i n a m a t e r i a l c r y s t a l i s mainly determined by a number o f b u l k prop e r t i e s : i t i s the necessary s t r e s s t o a c t i v a t e d i s l o c a t i o n s sources o r t o
move d i s l o c a t i o n s over obstacles (e.9. p r e c i p i t a t e s o r the s t r e s s f i e l d of
other dislocations).
Although t h i s type o f f l o w s t r e s s a l s o e x i s t s i n t h e
FLL ( ~ e.39),
f
surface e f f e c t s probably p l a y here a preponderant r o l e . This
i s due t o the f a c t t h a t , i n the case o f the FLL, the e l a s t o - p l a s t i c
con-
ti nuum i t s e l f has t o be created o r destroyed a t the surface, simul taneously
w i t h the p l a s t i c deformation.
Thus, the c r i t i c a 1 shear s t r e s s ( t h e
pos-
s i b l e f i e l d decrease M o w i t h o u t h f l u x change) i s m a i n l y d e t e r m i n e d by
surface forces.
The experiments show t h a t there are a t l e a s t three sources of s u r f a c e p i n n i n g forces:
a. The Bean- Livingston b a r r i e r 5 ' a r i s i n g from image forces i s o n l y
rele-
vant a t very s w o t h surfaces o f samples wi t h weak b u l k p i nni ng, the appl i
ed f i e l d being e x a c t l y p a r a l l e l t o the surface. Otherwise,it
-
i s masked by
the much stronger c o n t r i b u t i o n s h . o r c.
b. Because o f the s o f t e n i n g o f the e l a s t i c shear constant C
66
,pinningcen-
t e r s 1i ke p r e c i p i t a t e s o r d i s l o c a t i o n s are much more e f f e c t i v e
near
the
surface than i n the b u l k (Section 2.3 and Appendix A ) .
c . There i s a d i r e c t i n t e r a c t i o n o f the v o r t i c e s w i t h the a s p e r i t i e s o f a
rough surface.
Only q u a l i t a t i v e suggestions for the o r i g i n o f t h i s
l a t t e r i n t e r a c t i o n exist
a t the mment. One c o n t r i b u t i o n should a r i s e from the l e n g t h v a r i a t i o n o f
the p a r t o f a v o r t e x w i t h i n a surface a s p e r i t y . The extreme case o f
mechanism, v o r t i c e s c r o s s i n g p e r p e n d i c u l a r l y a surface
this
we11- d e f i n e d
of
se'^'.
roughness, was i n v e s t i gated experimental 1y by Morri son and
A second c o n t r i b u t i o n t o the observed p i n n i n g o f a rough surface
may
be
due t o the n e c e s s a r i l y numerous i n i t i a l i n t e r s e c t i o n s o f a f l u x l i n e w i t h
the surface asperi t i e s . A t each i n t e r s e c t i o n ,
t o r t e d 1 2 ? which increases i t s self- energy.
the v o r t e x i s s t r o n g l y d i s -
I f the v o r t e x
it
n o t normal
t o the i n t e r s e c t e d surface, t h i s energy i s f u r t h e r increased by a
curva-
t u r e o f the 1i ne.
The depth o f the l a y e r where these mechanisms are
2vm, i n many cases o n l y about 0.5vm.
e f f e c t i v e i s l e s s than
Thus, they are no doubt
responsible
f o r the d i s c o n t i n u i t y aBs o f the f l u x d e n s i t y i n the surface, b u t they are
n o t a b l e t o e x p l a i n the observed enhanced f l u x d e n s i t y g r a d i e n t i n a d e p t h
o f up t o 200pm ( ~ i g . 7 , t r a n s i t i o n r e g i o n ) . To understand t h i s observation,
we proposed some ideasS2 which are based on the f 1 ux spot model
of
Hart
and swartz5'.
The c r i t i c a 1 s t a t e as described thus f a r i s a two-dimensional
suming s t r a i g h t f l u x l i n e s i n an i n f i n i t e p a r a l l e l c y l i n d e r .
rnodel,
as-
In reality,
however, the f l u x l i n e w i l l not p e n e t r a t e i n t o the c y l i n d e r a t once over
i t s e n t i r e length. I n i t i a l l y ,
i t w i l l be created over a s h o r t length o n l y
a t such a p o i n t o f the siirface where the n u c l e a t i o n energy i s occasional l y
lowered (e.g.
near the end faces o r a t o t h e r geometric o r
m g e n e i t i e s ) . During the f u r t h e r f l u x p e n e t r a t i o n ,
t h i s f l u x l i n e have t o move l o n g i t u d i n a l l y
( " f l u x spots")
.
chemical inho-
the p o i n t s o f e x i t o f
along t h e c y l i n d e r s u r f a c e
Even when the c e n t e r s e c t i o n o f a 1 ine i s a1 ready
b u l k o f the specimen (e.g.
i n the
200um d e e p ) , one o r both end s e c t i o n s o f
same l i n e are s t i l l i n the surface l a y e r ,
where
the
they are s u b j e c t t o the
h i g h surface forces. Because o f the 1 ine tension o f the v o r t i c e s , the deeper penetrated p a r t s o f the l i n e are coupled e l a s t i c a l l y
sections,
thus s t i 1 1 f e e l ing, although i n d i r e c t l y ,
t o these
end
the s u r f a c e f o r c e s .
This mechanism w i 1 1 be even more pronouced i f the surface i s not e x a c t l y
para1 l e l t o the a p p l i e d f i e l d .
l n samples wi t h a s t r o n g a n i s o t r o p y o f the macroscopic p i n n i n g forces (e.
g.,
p l a s t i c a l l y d e f o r m d s i n g l e c r y s t a l s ) , t h e r e i s another mchanism lea-
d i n g t o an apparent deep reaching enhanced f l u x d e n s i t y g r a d i e n t . The i n duced voltage i n the pick- up c o i l i s an i n t e g r a t e d s i g n a l over a11 azimut h a l d i r e c t i o n s . The a n a l y s i s o f the curves by Eqs.(4.4)
a n d ( 4 . 5 ) thus
y i e l d s m a n values o f the e v e n t u a l l y a n i s i t r o p i c f l u x d e n s i t y
gradients.
I f the anisotropy i s however so s t r o n g t h a t the f l u x changes
i n some d i -
r e c t i o n s have penetrated i n t o the b u l k region whi l s t , i n o t h e r d i r e c t i o n s ,
they have n o t y e t overcome the surface layer,
the
s u s c e p t i b i l i t y method
y i e l d s an averaged value between surface and b u l k p r o p e r t i e s w i t h o u t much
significance,
s i m u l a t i n g an enhanced g r a d i e n t i n a l a y e r much t h i c k e r than
i t i s i n reality.
The i n f l u e n c e o f the magnetic f i e l d h i s t o r y , the f a c t t h a t
the
absolute
value o f the f l u x d e n s i t y g r a d i e n t i s d i f f e r e n t i n i n c r e a s i n g and decreasing field,
i s h a r d l y understood y e t . One o f the p r o p e r t i e s which mightbe
d i f f e r e n t on the two branches o f the m g n e t i z a t i o n curves i s the
and d i s t r i b u t i o n o f d i s l o c a t i o n s i n the FLL (Ref.119).
If
densi t y
t h e r e a r e no
Frank-Read s o ~ r c e s 'i ~
n ~the b u l k o f the FLL, a11 d i s l o c a t i o n s have t o be
created a t the surface.
I n an i n c r e a s i n g f i e l d ,
they w i l l
o r i g i n a t e and
penetrate i n t o the b u l k together w i t h the v o r t i c e s . i n a -decreasing f i e l d ,
however, the f l u x l i n e l a t t i c e a r i s e s a t f i r s t homogeneously i n the whole
cross s e c t i o n as soon as the f i e l d reaches Hcp.
The d i s l o c a t i o n d e n s i t y
o f t h i s i n i t i a l h i g h - f i e l d l a t t i c e i s probably r a t h e r low. When the f i e l d
the necessary d i s l o c a t i o n s t o bui l d up a f l u x densi t y
i s nu4 decreased,
g r a d i e n t have t o be created a t the surface and penetrate deep i n t o the
b u l k opposite t o the d i r e c t i o n o f f l u x mvement. This w i l l i n general r e s u l t i n another d i s l o c a t i o n d e n s i t y and d i s t r i b u t i o n r a t h e r than i n an increas i n g f i e l d .
At f i r s t sigkt,
t h i s mechanism should g i v e
r i s e t o the s t r o n g e s t f i e l d
h i s t o r y e f f e c t a t f i e l d s j u s t below HcZ, where the d i f f e r e n c e i n the d i s l o c a t i o n d e n s i t y between i n c r e a s i n g and decreasing f i e l d i s g r e a t e s t ,
c o n t r a d i c t i o n t o a1 1 observations
.
At these h i gh f i e l d s , however, the shear
modulus o f the f l u x l i n e l a t t i c e i s so sma1128y24 t h a t i t behaves
l i k e a " l i q u i d l ' than l i k e a "solid",
in
more
w i t h o u t the n e c e s s i t y o f d i s l o c a t i -
ons f o r a p l a s t i c shear.
Another mchanism whích may c o n t r í b u t e t o the f i e l d h i s t o r y e f f e c t i s ba-
sed on t h e s u r f a c e b a r r i e r o f a rough surface.
s t r o n g e r f o r leaving,
I f t h i s b a r r i e r i s very much
than f o r e n t e r i n g , v o r t i c e s , i t may become p o s s i b l e
t h a t i n decreasing f i e l d some s e c t o r s o f a cross s e c t i o n a r e pinned
p l e t e l y by the surface.
com-
I n minor h y s t e r e s i s loops, these s e c t o r s w i l l n o t
c o n t r i b u t e t o t h e t o t a l f l u x change which t h e r e f o r e i s l e s s than expected
from t h e g r a d i e n t . The averaging measurement thus sirnulates a lower
flux
d e n s i t y g r a d i e n t i n decreasing f i e l d .
rninor
S i m i l a r mechanisms may c o n t r i b u t e t o the observed asymmetry o f the
h y s t e r e s i s loops. Besides t h i s , the n o n l o c a l i t y o f the e l a s t i c i t y
f l u x l i n e l a t t i c e w i l l p l a y an important r o l e here. The F r i e d e l
o f the
f o r c e on
den-
an element o f the FLL i s then determined n o t o n l y by the l o c a l f l u x
s i t y gradient, as described by Eq. (3.51, b u t a l s o by the gradients i n t h e
v i c i n i t y , up t o a d i s t a n c e o f severa1 l a t t i c e c ~ n s t a n t s ~I n~ . the model
c a l c u l a t i o n s o f Section 4 and Appendix 9, i t was assumed t h a t the
criti-
c a l s t a t e i s always r e a l i z e d by a constant f l u x d e n s i t y g r a d i e n t . By
nonlocal e l a s t i c i t y o f the f l u x l i n e l a t t i c e , t h i s cannot
t r u e i n minor h y s t e r e s i s loops near r=R-x
be
the
completely
( ~ i g . 6 1 , where the f l u x densi t y
g r a d i e n t suddenly woul d change i t s sign. Detai l e d calculat i ~ n s ' ~ ~ s h tohwa t ,
d u r i n g the f o r m a t i o n o f the f l u x p r o f i l e i n minor h y s t e r e s i s loops (Fig.6),
a generalized F r i e d e l f o r c e a c t s i n t h e d i r e c t i o n o f the sample surface
even a t a radius s l i g h t l y less than (R-x). This gives r i s e t o a b l u n t i n g
o f the sharp edge i n the f l u x d e n s i t y p r o f i le, a t r=R-x,
as observed
by
Eckert and ~ a n d tse i n 7 6 .
I n minor h y s t e r e s i s loops,
r e l a x a t i o n processes f requently cannot be ne-
glected. A t l e a s t two r e l a x a t i o n times have been observed. The f i r s t i s of
the o r d e r o f 1Oms; t h i s i s probably due t o viscous damping o f
the v o r t i -
ces, and o n l y becomes important f o r a.c. measurements with h i g h e r frequencies'".
The second r e l a x a t i o n time i s o f the o r d e r o f 1s;
it
describes
t h e f l u x creep o r " s e t t l i n g down" o f the f l u x p r o f i l e immediately a f t e r
i t was f o r c e d t o change.
This r e l a x a t i o n time i s c o n s i s t e n t w i t h the r e -
s u l t s o f d i r e c t f l u x creep measurements i n h o l l o w c y l i n d e r 6 * o r by a SQUID
technique6'.
APPENDIX A: SOFTENING OF THE FLUX LINE LATTICE NEAR A SURFACE
The p a i r i n t e r a c t i o n p o t e n t i a l between two p a r a l l e l London f l u x l i n e s
at
a distance r i s given by
U(r) = 2($,/4a
where K,(x)
)
K o(r/X)
i s the m d i f i e d Bessel f u n c t i o n , and
(A.1)
s
X
the p e n e t r a t i o n depth.
C a l l i n g J the s e l f energy o f a f l u x l i n e , the t o t a l energy o f an a r b i t r a r y arrangement o f N f l u x 1 ines can be w r i t t e n as2'
as long as a11 mutual distances are l a r g e compared w i t h core
dirnensions.
,
b u l k m d u l u s CL i s given by
F o l l o w i n g ~ r a n d t ~ ' the
w i t h the s t r a i n s
= = EYY
E
w i t h the shear angle a =
E
and the shear constant C66 by
=E,
+
E
Y"'
The two constants can be c a l c u l a t e d by
deforming the l a t t i c e homgeneously and c a l c u l a t i n g the corresponding
va-
r i a t i o n s AF o f the t o t a l energy (A.2).
E q s . ( ~ . 3 ) and (A.4)
are o n l y u s e f u l i f CL and Cs6 a r e constant w i t h i n the
volume V. To use them a l s o f o r the c a l c u l a t i o n o f p o s s i b l y v a r y i n g
cons-
t a n t s , we choose f o r the volume one l a t t i c e c e l l and s u b s t i t u t e the double
sum i n A F by a s i n g l e sum over the v a r i a t i o n s i n the p a i r p o t e n t i a l s ofone
f l u x l i n e . Takjng account o f the l a t t i c e s y m t r i e s t h i s leads f i n a l l y
the e ~ ~ r e s s i o n s ~ ~
to
Fig.9
- Softening of
plane surface.
the e l a s t i c constants CL and C,,
of t h e FLL
near
a
Considering a f l u x l i n e a t a d i s t a n c e x from a p a r a l l e l plane surface,cuta11
s i d e o f which t h e r e i s vacuum w i t h a l a t t i c e o f image l i n e s (Fig.81,
c o n t r i b u t i o n s t o the sums i n Eqs.(A.5)
and (A.6) coming
from f l u x l i n e s
deeper than 2z, w i t h i n the sample, a r e c a n c e l l e d by t h e c o n t r i b u t i o n s o f
the image l i n e s . Numerical summation becomes thus very simple and
yields
the dependence o f the e l a s t i c constants shown i n Fig.9a and b: Both const a n t s decrease considerably near the surface, e s p e c i a l l y the
shear cons-
t a n t C66, the s o f t e n i n g o f which already begins i n a depth o f 10 t o 12
X
(d.51.1m i n the case o f ~ b ) .The n a i v e a p p l i c a t i o n o f E ~ s . ( A . ~and
)
(A.61,
f o r a r e g u l a r FLL up t o the surface, would even g i v e negative shear const a n t s very near the surface.
I n r e a l i t y t h i s means t h a t i n t h i s region the
v o r t i c e s form a " f l u x l i n e l i q u i d " r a t h e r than a f l u x l i n e l a t t i c e .
APPENDIX B: DIFFERENTIAL SUSCEPTIBILITY I N MINOR HYSTERESIS
LOOPS
The f l u x d e n s i t y p r o f i l e , ~+(r),a f t e r i n c r e a s i n g the a p p l i e d f i e l d rnonotonously from O t o H
can be c a l c u l a t e d from Eqs. (3.9) and (3.10):
Decreasing now the a p p l i e d f i e l d , t h i s p r o f i
Mo, where Mo i s determined again by Eq.
sign,
(3
i 1 1 n o t change u n t i l M =
,
now w i t h
the
opposi t e
i.e.
which y i e l d s , f o r
AB:, ttie c r i t i c a 1 f l u x d e n s i t y d i s c o n t i n u i t y in t h e s u r -
face :
For
m>&!,,
f l u x l i n e s leave the sample, and the new c r i t i c a 1 s t a t e i s g i -
ven by the p r o f i l e B - ( r ) :
B- ( r ) =
B (H -AU)
o o
+ AB: + f R a . h r
~ + (,
r )f o r
r
r5R-x
,
f o r R - X ~ N R,
.
The f l u x dens i t y v a r i e s down t o t h e depth s, g i v e n by t h e c o n d i t i o n B-(RX)
= B ( R - x ) , and thus r e l a t e d t o t h e f i e l d decrease M by
+
R
so t h a t t h e f l u x d e n s i t y , a t R - x , becomes
The t o t a l decrease o f t h e magnetic f l u x i n t h e sample i s
which can be approxirnated by
i f x<<R, where P i s t h e p e r i p h e r y o f t h e c r o s s s e c t i o n A. W i t h t h e
tions
=
A ~ and
A
Ha = Ii - A i f , t h e d i f f e r e n t i a l s u s c e p t i b i 1 i t y
becomes
which cornbined wi t h ( B . $ ) ,
(8.51, and ( ~ . 8 ) ,takes the form
x
rela-
=d?/dHa
The 1 i n e a r i t y o f Eq. (B.lO)
i s a d i r e c t consequence o f the condi t i o n
x<<R.
For a c i r c u l a r cross section, however, i t i s p o s s i b l e t o g e n e r a l i z e
this
equation i n o r d e r t o make i t v a l i d f o r the whole cross s e c t i o n :
I thank my colleagues o f the low-temperature group o f UNICAMP f o r many
h e l p f u l discussions.
P i n a t t i , O.F.
able contributions.
Dr.
We are e s p e c i a l l y
grateful
t o Professor D .
G.
de Lima, A . S. B r i t o and M. S. T o r i k a c h v i l i f o r t h e i r v a l u My p a r t i c u l a r g r a t i t u d e i s due t o D r . U. Essmann and
A. Bodmer, S t u t t g a r t , f o r t h e i r c a r e f u l reading o f the manuscript and
f o r many important suggestions, as w e l l as t o D r . B. M. Kale f o r
correc-
t i n g the worst language e r r o r s .
P a r t o f the experiments described i n t h i s a r t i c l e were supported by FAPESP.
BIBLIOGRAPHY
a. General textbooks on s u p e r c o n d u c t i v i t y
. E.A.
Superconductivity (chapman and Hal 1, London, 1969) .
2 . P. G . de Gennes, Superconductivity of MetaZs and AZZoys (w.A. Ben jarni n,
1
Lynton,
New York, 1966)
.
3. R.D. Parks, ed., Szrperconductivity ( ~ a r c e lDekker, New York, 1969).
4. S. Sai nt-James, G . Sarma and E. J. 'Thomas , Type - 11 Superconductivity
(pergamn Press, Oxford,
1969).
5. A.C. Rose-lnnes and E.H.
(~erganionPress, Oxford,
Rhoderick,
Introduction t o Szperconductivity
1969).
b. Books and review a r t i c l e s about s e l e c t e d t o p i c s
6. H. Brechna, Superconducting Magnet Systems (Springer-Verlag,New Y<ork,
Heidelberg, Berl in,
1973).
7. B.B. Schwartz and S . Foner,
Large-scaZe AppZication of Superconducti-
v i t y , Physics Today 3 0 , 34 (1977).
'
8. A.M.
Carnpbell and J.E.
E v e t t s , Critica2 Currents i n
Superconductors
( T a y l o r and F r a n c i s Monographs on Physics, London 1972; r e p r i n t e d
from
Adv. Phys. 21, 199 (1972)).
U 1 1maie r, IrreversibZe Properties of Qpe-11 Superconductors (Spri n-
9. H.
g e r T r a c t s i n Modern Physics No.76,
New York,
Springer- Verlag, B e r l i n , H e i d e l b e r g ,
1975).
. , fioceedings
o f the Internationa2 üiscussion Meeting on FZux Ijinning i n Superconductors (Sonnen b e r g, Wes t Ge r10. H. F r e y h a r d t and P. Iiaasen, eds
many
,
1975).
11. P.H.
M e l v i l l e , A.C.
Loss rmd ReZated Effects i n Type-11 Superconduc-
tom, Adv.Phys. 21, 647 (1972).
12. J.D.
Schadler, The Effect of MetazZurgicaZ Varia-
L i v i n g s t o n and H.W.
btes on Superconducting Properties, Progr. i n Mat. Sci
. 12,
183 (1964)
.
c. O r i g i n a l research papers
13. J.E.
Kunzler, E. Buehler, F.S.L.
Hsua and J.H.
Wernick, Phys. Rev. L e t t .
6 , 89 (1961).
14. Y. Kyotani, Cryogenics 15, 372 (1975).
15. E.B.
Forsyth, Cryogenics 17, 3 (1977).
16. C.P.
Bean, Phys. Rev. L e t t . 8, 250 (1962).
17. V.L.
Ginzburg and L.D.
18. B.B.
Goodman,
Landau, Zh. Eksperim. i Teor. F i z . 20,1064(1950).
19. A.A.
Abrikosov, Zh. Eksperim. i Teor. F i z . 33, 1442 (1957).
IBM J. Res. Dev. 6, 63 (1962).
20. D. C r i b i e r , B. J a c r o t , L. Madhov Rao and B. Farnoux, Phys. L e t t . 9, 106
(1964)
.
21. H. ~ r h b l eand U. Essmann, Phys. S t a t . Sol. 18, 813 (1966).
22. U. Essmann and H. Tr;.'uble,
Phys. L e t t . 24A, 526 (1967).
23. J. Schelten, H. G l l m a i e r and G. Lippmann, Z. Physik 253, 219 (1972).
24. E.H.
Brandt, J. Low 'Temp. Phys. 26, 709 (1977).
25. E.H.
Brandt, J. Low Temp. Phys. 26, 735 (1977).
26. V.G.
Kogan, J. Low Temp. Phys. 26, 953 (1977).
27. R. Labusch, Phys. S t a t . Sol. 19, 715 (1967).
28. R. Labusch, Phys. S t a t . S o l . 32, 439 (1969).
29. E.H.
Brandt, Phys. S t a t . S o l . 35, 1027 (1969).
30. E.H. Brandt, Phys. S t a t . S o l . 36, 381 (1969).
31. G.
Zerweck, Phys. S t a t . S o l . (b) 78, K 15 (1976).
32. E.H.
33. R. Schmucker and E.H.
34. E.H.
35. R.
1, 57 (1976).
Brandt, Comm. on Phys.
Brandt,
Labusch, Phys. L e t t . 22,
9
(b) 77, 551 (1976).
(1966).
36. H. ~ r a u b l eand U. Essmann, J. Appl
Good and E.J.
37. J.A.
(b) 79, 479 (1977).
Brandt, Phys. S t a t . S o l .
Phys. S t a t . Sol.
. Phys.
Kramer, P h i l . Mag. 24,
39, 4052 (1968).
339 (1971).
38. U. Essmann and R. Schmucker, Phys. S t a t . Sol.
(b) 6 4 , 605 (1974).
39. R. Schmucker, Phi 1. Mag. 35, 431 (1977).
40. R. Schmucker, Phi 1. Mag. 35, 453 (1977).
41. R. Schmucker, Phys. S t a t . Sol.
42. E. Krsner,
(b) 80,
89 (1977).
KontinuwnstheozG der Versetzungen und
(Springer-Verlag B e r l in, ~ g t t i n ~ e nHei
, ldelberg,
43. E.J.
Kramer and C.L.
Eigenspannungen
1958).
Bauer, Phi 1. Mag. 15, 1189 (1967).
44. H. Kronmgller and R. Schmucker, Phys. S t a t . Sol. (b) 57, 667 (1973).
45. R. Schmucker and H. ~ r o n m i l l e r , Phys. S t a t . S o l . (b) 61, 181 (1974).
46. W.W.
Webb, Phys. Rev. L e t t . 11, 191 (1963).
47. A. Seeger and H. ~ r o n & l l e r , Phys. S t a t . Sol.
(b) 27, 371 (1968).
48. H. K r o n m t l l e r and A. Seeger, Phys. S t a t . Sol. (b) 34, 781 (1969).
49. E. Schnei der,
Dissertation (uni ver s i t y o f S t u t t g a r t , 1976) .
50. E. Schneider and H. K r o n m ~ l l e r , Phys. S t a t . Sol.
51. H. T e i c h l e r , Phys. S t a t . Sol.
(b)74, 261 (1976).
(b) 69, 501 (1975).
5 2 . K. Yamafuji and F. I r i e , Phys. L e t t . 25A, 387 (1967).
53. F. I r i e , K. Yamafuji,
J. Phys. Soc. Jap. 23, 255 (1967).
54. R. Labusch, Cryst. L a t t . Def. I,1 (1969).
55. G . K o r n f e l d and H. ~ r o n m z l l e r ,Phys. S t a t . Sol.
56. P. W.
(b) 44, 647 (1971).
Anderson, Phys. Rev. L e t t . 9, 309 (1962).
57. C.P.
Bean, J.D.
L i v i n g s t o n , Phys. Rev. L e t t . 12,
58. J.R.
Clem, R.P.
Huebener and D.E.
16 (1964).
Gallus, J. Low Temp. Phys. 12,
449
(1973).
59. H. R. H a r t and P. S. Swartz, Phys. Rev. 156, 403 (1967).
60. G . Zerweck, P h i l . Mag. 27,
61. A. S. B r i t o ,
62. A.S.
197 (1973).
Tese de Mestrado m tat te U n i v e r s i t y o f Campinas, 1977).
B r i t o and G . Zerweck, t o be published.
63. J. Lowell, J. Phys. C2, 372 (1969).
64. E.
J. Kramer and A. Das Gupta, P h i l . Mag. 26,
65. J. F r i e d e l , P.G.
(1963).
769 (1972).
de Gennes and J. Matricon, Appl. Phys. L e t t .
2, 119
66. J . E. E v e t t s and A. M. Campbell, Proc. of t h e Tenth I n t e m . Conf. Low
Temp. Phys., V o l . I IB, p.33
67. D.M.
( ~ o s c o w , 1966).
Kroeger and J. Schelten, J . Low. Temp. Phys. 25, 369 (1976).
68. G. Antesberger and H. U l l m a i e r , P h i l . Mag. 29, 1101 (1974).
69. A. Bodmer, H. Gessinger and W. Ludwig, Ref. 10, p. 176.
70. U. Essmann and H. ~ r a u b l e ,Phys. S t a t . S o l . 32, 337 (1969).
71. J. S c h e l t e n and G.
72. E.L.
Lippmann, Phi 1. Mag. 33, 475 (1976).
A n d r o n i k a s h v i l i , S.M.
Ashimov and J.S.
Tsakadze, Phys. S t a t . S o l .
(b) 56, 79 (1973).
73. H. U l l m a i e r , K. Papastaikoudis, S. Takacs and W. S c h i l l i n g , Phys.Stat.
Sol. 41, 671 (1970).
74. H. F r e y h a r d t and P. Haasen,
75.
H. F r e y h a r d t , 2. M e t a l l k . 60,
2. M e t a l l k . 58, 856 (1967).
409 (1969).'
76. D. E c k e r t and A. Handstein, Phys. S t a t . S o l . (a) 37, 171 (1976).
77. C.P.
Bean, Rev. Mod. Phys. 36, 31 (1964).
78. D.M.
Kroeger, C.C.
Koch and W.A.
Coghan, J. Appl. Phys. 44, 2391 (19731
79. H. U i l m a i e r , Phys. S t a t . S o l . 17, 631 (1966).
e r W. Gey, J. Appl. Phys. 45, 5392 (1974).
80. R. W. R o l l i n s , H. ~ i ~ f and
81. A.M.
Campbell, J. Phys. C2, 1492 (1969).
82. H.E. C l i n e , R.M.
83. H. V o i g t ,
Rose and J. W u l f f , J. Appl. Phys. 37, 1 (1968).
2. Physik 213, 119 (1968).
84. H. W. Weber and R. R i e g l e r , S o l . S t . Comm. 12, 121 (1973).
85. H.W.
86.
Weber, G.P. Westphal and I . Adaktylos, Cryogenics 1 6 , 39 (1976).
1 . Adaktylos,
E. Schachinger and Y.W.
Weber, J. Low Temp. Phys.
26,
533 (1977).
87. W. de Sorbo, Cryogenics 4, 257 (1964).
88. H. K i r c h n e r , Phys. S t a t . S o l . (a) 4, 531 (1971).
89. H. K i r c h n e r , Rev. S c i . I n s t r . 44, 379 (1973).
90. A. K i e n d l a.nd H. K i r c h n e r , J. Low. Temp. Phys. 24, 349 (1974).
91. H.U.
Habermaier and H. ~ r o n m ü l l e r , Appl. Phys. 12, 297 (1977).
92. R.B.
H a r r i s o n , J.P.
Pendrys and L.S.
Wright, J . Low Temp. Phys.
18,
113 (1975).
.
93. O.F.
de Lima, Tese de Mestrado ( S t a t e U n i v e r s i t y o f Campinas,
94. A. Das Gupta, W. Gey, J. H a l b r i t t e r , H. ~ l ~ f and
e r J.A.
Appl
. Phys. 47,
J.
2146 (1976).
95. A.Y. Campbell, J.E.
96. R.1.
1977).
Yasaitis,
Coote, J.E.
E v e t t s and D. Dew Hughes, P h i l . Mag. 28, 313(1968).
E v e t t s and A.M.
Campbell, Can. J. Phys. 50, 421 (1972).
97. G. Antesberger and H. Ullmaier,9 Phys. Rev. L e t t . 3 5 ,
98. R. R i e g l e r and H.W.
99. H.C.
100. G.J.
59 (1975).
Weber, J. Low. Temp. Phys. 15, 431 (1974).
F r e y h a r d t , P h i l . Mag. 23,
Van Gurp and D.J.
369 (1971).
Van O o i j e n , J . Phys. C27,
101. D. Dew Hughes, and M.J.
3 (1966).
W i tcomb, Phi 1. Mag. 26, 73 (1972).
102. J.A.
Good and E.J.
Kramer, P h i l . Mag. 22, 329 (1970).
103. H.C.
F r e y h a r d t , P h i l . Mag. 23, 345 (1971).
104. A. Bodmer, Dissertation ( ~ n i v e r s i ot ~f S t u t t g a r t , 1976).
105.
1 . P f e i f f e r and H. Hi llmann, Acta Met. 16, 1429 (1968).
106. U. Zwicker, R. ~ : h b e r ~and W. H e l l e r , Z . M e t a l l k . 62, 836 (1970).
107. U. Essmann, H. Haag and G. Zerweck, s u b m i t t e d t o Comm. on Phys.
108. A.R.
Cox, S . Moehlecke, R.H.
Sweedler, D.E.
Jones, L.R.
Newkirk
and
F.
A. V a l e n c i a , J . Low. Temp. Phys. 24, 645 (1976).
109. A.R.
Schweitzer and G. W. Webb, Phys. Rev. L e t t . 3 3 , 168
Sweedler, D. G.
(1974).
110. M.
11 1 . W.A.
~ a h n l eand H. ~ r o n A l l e r , Comm. on Phys. 1 , 91 (1976).
F i e t z and W.W.
Webb, Phys. Rev. 178,
112. E.J.
Kramer,
113. R.W.
R o l l i n s and J. S i l c o x , Phys. Rev. 255,
J. A p p l . Phys. 44,
114. J.G.
Park, Adv. Phys. 18,
115. D. Saint-James and P.G.
116. A. Das Gupta and E.J.
1360 (1973).
404 (1967).
103 (1969).
de Gennes, Phys. L e t t . 7, 306 (1963).
Kramer, P h i l . Mag. 26,
117. J.E.
E v e t t s , Phys. Rev. B 2, 95 (1970).
118. A.M.
Campbell, P h i l . Mag. 32, 1191 (1975).
119. L.M.
Schafe,
P.L.
657 (1969).
Rossi t e r and W.A.
779 (1972).
Rachinger, Phys. S t a t . S o l .
785 (1976).
120. O.F.
de Lima and G. Zerweck, t o be p u b l i s h e d .
121. D.D.
M o r r i s o n and R.M.
Rose,J.Appl.
Phys. 42, 2322 (1971).
122. J . P e a r l , J. Appi. Phys. 37, 4139 (1966).
123. F.C.
Frank and W.T.
Read, Phys. Rev. 79, 722 (1950).
(b) 74,