LASER-INDUCED BREAKDOWN SPECTROSCOPY OF ROCK POWDERS PERFORMED AT VARIABLE ANGLES OF ABLATION AND COLLECTION K. H. Lepore , E. A. Breves , M. D. Dyar , S. C. Bender , and R. L. Tokar , Mount Holyoke College, Planetary Science Institute 2 1 2 Results and discussion Relative importance of ablation and collection angles - Changes in the ablation angle are the predominant cause of observed spectral variability. - Depending on geochemical composition, some samples are more susceptible to differences in collection geometry than others (Fig. 6, Fig. 4). - The effects of variable collection angle in the VV configuration are diminished because smaller plasmas form at large ablation angles and are collected efficiently despite poor collection alignment (Fig. 2). - Smaller plasmas are less dense and less likely to suffer from self-absorption [5]. 400000 400000 600000 350000 350000 500000 400000 300000 200000 2 DH4911 0 40 45 50 55 400000 300000 200000 60 65 70 75 0° 13° 5.35 7° 20° 5.31 VF 27° 40° 4.77 47° 60° 3.65 Collection angle Variable Ablation/ Fixed Collection Atomic emission Continuum emission -13° 13° 5.22 0° 13° 5.35 FV Fixed Ablation/ Variable Collection -13° 0° 5.22 -13° 13° 5.22 20 -10 150000 W1 SRM688 GBW07313 200000 AGV2 GBW07104 150000 GBW07110 VF Atomic Emission -60 -50 -40 -30 -20 -10 -60 0 350000 350000 300000 200000 GBW07113 -50 -40 -30 -20 -10 0 Ablation Angle (o) 600000 400000 JA1 50000 Ablation Angle (o) 500000 60 DH4911 100000 VF Continuum Emission 50000 0 40 250000 400000 80 -13° 20° 5.22 -13° 40° 5.22 -13° 60° 5.22 Figure 2. Geometric configurations and estimated ablation beam energy densities used for variable angle LIBS measurements. 0 º:60 º Intensity Ratio -13° 0° 5.22 Ablation angle Ablation: Collection: Energy Density (GW cm2): 0 GBW07105 400000 300000 250000 200000 150000 100000 FV Total Emission 0 dacite SiO2 (wt.%) -20° 13° 5.03 200000 0 JA1 Standard surface -40° 13° 4.10 250000 DH4911 GBW07105 300000 SRM688 250000 W1 GBW07313 200000 AGV2 10 20 30 40 50 60 0 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 470 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 470 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 470 FV Atomic Emission 20 30 40 50 0 60 Collection Angle (o) VV 570 10 670 770 VF GBW07313 -13° -20° -40° -60° 3 2 1 0 470 520 570 4 620 670 720 GBW07313 3 770 13° 20° 40° 60° 2 1 0 470 520 570 620 4 670 720 SRM688 770 -13° -20° -40° -60° 3 2 1 0 470 520 570 620 4 670 720 770 SRM688 3 13° 20° 40° 60° 2 1 10 20 30 40 Figure 6. Ratios of continua intensities in the VNIR from 0o to 60o. JA1 GBW07113 50000 50000 4 GBW07104 150000 100000 FV Continuum Emission Collection Angle (o) Variable Ablation/ Variable Collection Ablation: -60° Collection: 13° Energy Density (GW cm2): 2.68 -20 -20 300000 700000 AGV2 andesite -20° -7° 5.03 300000 100000 VF Total Emission -30 Summed Intensity 500000 -40 -40 o 350000 -50 GBW07113 -60 60 350000 VV -40° -27° 4.10 40 600000 GBW07113 Collection Geometries - LIBS spectra were acquired under Mars atmospheric conditions using a q-switched Nd:YAG laser at 1064 nm. - Fixed angle mounts and rotating collection optics were coordinated to achieve three configurations (Fig. 2). Ablation: -60° Collection: -47° Energy Density (GW cm2): 2.68 20 JA1 o Ablation Angle (o) W1 basalt 0 400000 100000 GBW07110 GBW07104 basaltic andesite -20 GBW07110 50 60 Collection Angle (o) Dependency on standard composition - Standards that exhibit the least amount of variability in signal with changing ablation or collection angle (DH4911, SRM688, GBW07105, and W1) contain the largest Fe2O3T and MgO and lowest SiO2 abundances. - Standards that exhibit the greatest variability have the highest total alkalinity (GBW07313, AGV2, GBW07110, JA1,and GBW07113) (Fig. 4). 0 470 520 570 620 670 720 Wavelength (nm) 770 As the collection angle increases, the self-absorption of minor elements and those with many emission lines (Fe and Mg) may decrease. Therefore, spectra of more geochemically diverse standards are less susceptible to changes in collection angle (Fig. 4, Fig. 6). 5.0 4.5 4.0 RMSE picrobasalt -40 GBW07104 GBW07110 4 SRM688 -60 AGV2 3.5 VV 0° 13° 20° 40° 60° 3.0 2.5 2.0 1.5 1.0 4.5 0.5 4.0 0.0 3.5 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 TiO2 FV 0° 13° 20° 40° 60° 3.0 2.5 2.0 1.8 570 670 770 FV 570 DH4911 GBW07105 SRM688 W1 GBW07313 AGV2 GBW07104 GBW07110 JA1 GBW07113 670 Wavelength (nm) 770 VV 1.7 DH4911 GBW07105 SRM688 W1 GBW07313 USAGV2 GBW07104 GBW07110 JA1 1.6 1.5 1.4 1.3 1.2 1.1 1.0 -60 -40 -20 0 20 40 Ablation Angle (o) 1.8 60 VF 1.7 Figure 4. Ratio of spectral intensity at 0 ablation/collection to 60o at each pixel in a portion of the VIS/near-IR spectrum for continuum emission. 1.5 1.4 1.3 1.1 -60 -50 -40 -30 -20 -10 Ablation Angle (o) 1.8 0 FV 1.7 DH4911 GBW07105 SRM688 W1 GBW07313 USAGV2 GBW07104 GBW07110 JA1 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0 10 20 30 40 50 Collection Angle (o) 4.0 3.5 3.0 0.5 VF 0.0 0° -13° -20° -40° -60° 2.5 2.0 1.5 1.0 0.5 0.0 DH4911 GBW07105 SRM688 W1 GBW07313 USAGV2 GBW07104 GBW07110 JA1 1.6 1.0 1.0 4.5 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 1.2 o Plasma dynamics and changes in collection and ablation angles - The intensity ratio of Mg(II) to Mg(I) is used as a proxy for plasma temperature. - The minimum energy threshold required to produce emitting species was achieved, even at reduced energy densities (Fig. 5, Fig. 2). 1.5 RMSE 6 60 Mg (II) / Mg (I) GBW07105 basaltic trachytrachy- andesite basalt 40 Mg (II) / Mg (I) tephrite/ basanite GBW07313 o Mg (II) / Mg (I) 8 20 Summed Intensity trachyandesite phonotephryte 0 400000 0º:60ºIntensity Ratio Na2O + K2O (wt.%) 10 -20 GBW07313 150000 700000 -60 tephryphonolite foidite -40 SRM688 200000 50000 0 rhyolite W1 50000 0º:60ºIntensity Ratio 12 trachyte/ trachydacite 150000 250000 0 Summed Intensity phonolite 200000 GBW07105 100000 100000 Summed Intensity Figure 1. Standard compositions plotted as wt. % SiO2 vs. total alkalis. 14 250000 DH4911 300000 100000 Summed Intensity Summed Intensity Standards analyzed include eight igneous rocks, one forsteritic olivine (DH4911), and one marine sediment (GBW07313) (Fig. 1). 300000 100000 -60 Experimental setup Summed Intensity 700000 Summed Intensity Summed Intensity LIBS has become a popular tool in geochemists’ toolkits Continua and atomic emission intensities increase for all standards as ablafor terrestrial and planetary exploration [1]. Quantitative tion and collection angles approach normal to the standard surface (Fig. 3). analysis of LIBS spectra is plagued by variabilities in colFigure 3. Sum of intensities at all spectrometer pixels for total, continuum, and atomic emission. lected spectra that cannot be attributed to differences in elemental composition [2,3]. These are likely exacerbated during field work, when the angles of ablation and collection are constantly changing [4]. In this study, multiple sampling geometries are used to 1) quantify spectral variVV Continuum Emission VV Atomic Emission VV Total Emission ability due to changes in LIBS configurations, and 2) isolate Ablation Angle ( ) Ablation Angle ( ) Ablation Angle ( ) the variability in LIBS spectra due to changes in laser ablation angle from those due to changes in the collection angle. VV/VF 2 VV/FV 1,2 VV/VF Introduction 1 VV/FV 1 60 Figure 5. Mg(II)/Mg(I) ratio of each standard measured in all three configurations. TiO2 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 TiO2 Figure 7. RMSE of elemental analyses of the variable ablation/collection angle data from this presentation, predicted using spectra collected under identical Mars conditions but with a normal collection angle and a 13o angle of ablation. Implications Elemental compositions of our data predicted using a larger but conventionally-collected calibration suite show that accuracy generally suffers when the ablation and collection angles are high, even when spectra are normalized to total counts for each detector (Fig. 7). Optimal quantitative analysis of LIBS spectra must include some knowledge of the angle of ablation and collection so the approximate increase in uncertainty introduced by a departure from normal angles can be accurately reported. Acknowledgments: This work was supported by NSF grants CHE-1306133 and CHE-1307179 and NASA grants NNX14AG56G, NNX12AK84G, and NNX15AC82G. References: [1] Wiens R. C. et al. (2013) Space Sci. Revs., 170, 167-227. [2] Clegg S. M. et al. (2009). Spectrochim. Acta, Part B, 64, 79-88. [3] Anzano J. M.et al. (2006). Analytica Chimica Acta, 575, 230-235. [4] Multari R. A. et al. (1996) Appl. Spectrosc., 50, 1483-1499. [5] Shabanov V. (2008) Applied Optics, 47, 1745-1756.
© Copyright 2026 Paperzz