JAERI-Data/Code
96-029
JAERI-Data/Code--96-O29
JP9610233
JP9610233
NEUTRON TRANSMISSION BENCHMARK PROBLEMS FOR
IRON AND CONCRETE SHIELDS IN LOW, INTERMEDIATE AND
HIGH ENERGY PROTON ACCELERATOR FACILITIES
September 1 9 9 6
Yoshihiro NAKANE, Katsumi HAYASHI*1, Yukio SAKAMOTO,
Nobuaki YOSHIZAWA*2, Noriaki NAKAO*3, Syuichi BAN*4,
Hideo HIRAYAMA*4, Yoshitomo UWAMINO*5, Kazuo SHIN*6
and Takashi NAKAMURA*7
Japan Atomic Energy Research Institute
(• )M'Kt>m'HffimwmWM
(T319-11
T 3 1 9 - 1 1 ^"WtlHflP
This report is issued irregularly.
Inquiries about availability of the reports should be addressed to Research Information
Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute,
Tokai-mura, Naka-gun, Ibaraki-ken. 319-H, Japan.
© Japan Atomic Energy Research Institute, 1996
JAERI-Data/Code 96-029
Neutron Transmission Benchmark Problems for Iron and Concrete Shields
in Low, Intermediate and High Energy Proton Accelerator Facilities
Yoshihiro NAKANE, Katsumi HAYASHI*1, Yukio SAKAMOTO, Nobuaki YOSHIZAWA*2,
Noriaki NAKAO*3, Syuichi BAN'\ Hideo HIRAYAMA'4, Yoshitomo UWAMINO*5,
Kazuo SHIN'6 and Takashi NAKAMURA*7
Department of Reactor Engineering
Tokai Research Establishment
Japan Atomic Energy Research Institute
Tokai-mura, Naka-gun, Ibaraki-ken
(Received August 21, 1996)
Benchmark problems were prepared for evaluating the calculation codes and the nuclear
data for accelerator shielding design by the Accelerator Shielding Working Group of the
Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of
quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and
concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop
i r r a d i a t e d by 500 MeV protons at KEK, reaction r a t e d i s t r i b u t i o n s inside a thick
concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes
inside an iron beam stop i r r a d i a t e d by 24 GeV protons at CERN are compiled in this
document. Calculational configurations and neutron reaction cross section data up to
500 MeV are provided.
Keywords: Accelerator,
Benchmark Problems, Transmission,
Concrete
*1
*2
*3
*4
*5
*6
*7
Hitachi Engineering Co. Ltd.
Mitsubishi Research Institute, INC.
University of Tokyo
National Laboratory for High Energy Physics
The Institute of Physical and Chemical Research
Kyoto University
Tohoku University
i
Shielding, Neutron,
Iron,
JAERI-Data/Code 96-029
> ^ U - hii
> L B L jc
:
CE
L fco
2 - 4
*i
*2 (WH
*4
*5
*6
JH
^ Kn
JAERI-Data/Code
96-029
Contents
Preface
1
1. Transmission of Quasi-Monoenergetic Neutrons Generated by 43 MeV and 68 MeV
Protons Through Iron and Concrete Shields
2
2. Neutron Fluxes in and around Iron Beam Stop Irradiated by 500 MeV Protons
38
3. Reaction Rate Distributions inside Thick Concrete Shield Irradiated
by 6.2 GeV Protons
59
4. Neutron and Hadron Fluxes inside Iron Beam Dump Irradiated by 24 GeV Protons ••• 68
Postscript
80
Acknowledgements
80
fc
1
1. 43MeV, 68MeVH : F(Cj;O^^L/c¥^fe4 ] tt^0^^c;3>^'J-hii«i*iiii
]
:
2
2. 500MeV^^M*t^Stt^^t"-AXh7^rt^R^illia-C©4 tt ?m5>^
38
3. 6.2GeVH^J^W*^^-5»^3>^U-hiliR(*rtSp-e©S*e^^^
4. 24GeVI©?MW££ttSfcfc*-Ay>:/'rt^041tt?*;ROf^ Ka >^5>^
59
68
'& IB
80
m m
so
JAERI-Data/Code
96-029
Preface
From the view point of shielding calculations for low, intermediate and high energy accelerators,
experimental benchmark data are useful to evaluate calculation codes and the nuclear data used in the
codes. Annotated references on neutron and photon productions from thick targets, shielding experiments and calculations of high energy particle transport have hitherto been collected1'2'. From these
experiments, fifteen experiments for electron accelerators and ten experiments for proton accelerators
have been selected and compiled31 for accelerator shielding benchmark calculations. The Accelerator
Shielding Working Group of the Research Committee on Reactor Physics in JAERI have selected4'-3'
six kinds of benchmark problems on thick target neutron yields by protons, alphas and electrons, and
shielding data of neutrons and photons generated by low and intermediate energy protons. Analyses
of the benchmark experiments carried out6' by the Accelerator Shielding Working Group were
presented and discussed at the Second Specialists' Meeting on Shielding Aspects of Accelerators,
Targets and Irradiation Facilities, SATIF-2. In this meeting, it was decided that newly selected neutron
transmission benchmark problems should be compiled for intercomparison of calculation codes for
accelerator shielding.
Four benchmark problems: transmission of quasi-monoenergetic neutrons
generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI,
neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate
distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and
hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN have therefore been
prepared by the Working Group.
In the present report, information including calculational
configurations and reaction cross sections up to 500 MeV is compiled for benchmark analysis.
References
1. Nakamura T. et al. : "Annotated References on Neutron and Photon Production from Thick Targets
Bombarded by Charged Particles", Atomic Data and Nuclear Data Tables, 32, 471-501 (1985).
2. Hirayama H. et al. : "Annotated References of Shielding Experiment and Calculation of High
Energy Particles", KEK report 90-18 (1990).
3. Hirayama H. et al. : "Accelerator Shielding Benchmark Problems", KEK report 92-17 (1993).
4. Hayashi H. et al. : "Accelerator Shielding Benchmark Analysis and future Items to be Solved",
Proceedings of "First Specialists' Meeting on Shielding Aspects of Accelerators, Targets and
Irradiation Facilities", OECD DOCUMENTS, OECD/NEA (1995).
5. Nakashima H. et al. : "Benchmark problems for intermediate and high energy accelerator
shielding", JAERI-Data/Code 94-012 (1994).
6. Nakashima H. et al. : "Accelerator Shielding Benchmark Experiment Analyses", to be published
as Proceedings of "Second Specialists' Meeting on Shielding Aspects of Accelerators, Targets and
Irradiation Facilities", OECD DOCUMENTS, OECD/NEA in 1996.
-
1 -
JAERI-Data/Code
96-029
1. Transmission of Quasi-Monoenergetic Neutrons Generated by 43 MeV and 68 MeV Protons
Through Iron and Concrete Shields
(Summary)
1) Accelerator (Organization)
TIARA AVF Cyclotron (JAERI/Takasaki)
2) Projectile (Energy)
Proton (43 and 68 MeV)
3) Target (Thickness)
99.9 % Enriched 7Li (3.6/5.2 mm for 43/68 MeV)
4) Shielding Material
Iron and Concrete
5) Geometry
Rectangular Slabs
6) Instruments
BC501A Liquid Scintillation Detector, Bonner Sphere
Spectrometer,
7) Measured Quantities
238
U and 232Th Fission Counters
: Neutron Energy Spectra, Reaction Rates of Bonner Sphere
Spectrometer,
238
U and 232Th Fission Rates
1.1 Experimental Arrangement
Figure 1.1 shows a cross sectional view of the TIARA facility with the experimental arrangement.
Quasi-monoenergetic source neutrons were generated by 43- and 68-MeV protons bombarding 3.6 mm
thick and 5.2 mm thick 7Li targets, respectively. The protons penetrating the target with a 2-MeV
energy loss were bent down toward the beam dump by a clearing magnet. The neutrons produced in
the forward angle reached the experimental room through a 10.9 cm diameter and 225 cm long iron
collimator embedded in the concrete wall. The intensity of source neutrons was monitored with a
proton beam Faraday cup and two fission counters placed near the 7Li-target and the collimator. An
iron test shield of 10 to 130 cm thickness was assembled1'2> with 10 cm thick iron slabs of 120 cm x
120 cm rectangular surface on a movable stand. A concrete test shield of 25 to 200 cm thickness was
also assembled3* with 120 x 120 x 25 cm slabs on the movable stand. An additional iron collimator
shown in Fig. 1.2 was used for measurements of thinner test shields in order to depress the neutron
leakage through the collimator wall and rotary shutter shown in Fig. 1.1. The additional collimator
of 40 to 80 cm thickness was assembled with 120 x 120 x 10 cm slabs with a 10.9 cm diameter
cylindrical hole on the movable stand. Thicknesses of the test shields and the additional collimator,
peak flux of source neutrons per proton beam charge (uC) are given in Table 1.1. Atom densities of
the iron and concrete test shields and the additional collimator are given in Table 1.2.
1.2 Methods of Measurement and Instrument
To measure the neutron energy spectra, a 12.7 cm diameter x 12.7 cm long BC501A liquid
scintillation detector was placed behind the test shields. The pulse height distributions of the detector
were converted to neutron energy spectra by the FERDOU unfolding code4' and a measured response
matrix".
-
2
-
JAERI-Data/Code
96-029
A Bonner sphere spectrometer with four polyethylene moderators, shown in Fig. 1.3, was placed
behind the test shields for measurements of energy dependent neutrons. The central part is a 5.08 cm
diameter spherical proportional counter filled with 10 atm (at 22 °C) 3He gas. Reaction rates above
Y-discrimination level were measured for five different moderator thicknesses. These five reaction rates
were unfolded with the SAND-2 code6' and the response functions given by Uwamino et al7). The
response functions are shown in Fig. 1.4, and their values are given in Table 1.3.
To measure fission rates, 238U and 232Th fission counters (Centronic FC480/1000) with a 10.1 cm
long x 3.81 cm diameter (active) were also placed behind the test shields. Absolute efficiencies of 238U
and
232
Th fission counters were (1.05 ± 0.04) x 103 and (9.86 ± 0.34) x 102 barn/cm2/counts,
respectively, which were measured with a 252Cf neutron source.
1.3 Neutron Sources
Absolute fluxes of source neutrons in the monoenergetic peak, shown in Table 1.1, have been
calibrated for proton beam charge (jiC) with a proton-recoil-counter-telescope(PRT) set at the position
of 5.54 m from the Li target. The spectra of quasi-monoenergetic source neutrons were measured by
the time of flight (TOF) method with the BC501A liquid scintillation detector. The detector was
placed about 14 m away from the target. Measured source neutron energy spectra are shown in Fig.
1.5 and their normalized ones given in Tables 1.4 and 1.5.
1.4 Measured Results
Transmitted neutron energy spectra behind the iron test shields measured with the BC501A
scintillation detector are shown in Figs. 1.6-1.14 and their values are given in Tables 1.6-1.14. Figures
1.6 and 1.11 show the spectra on the beam axis behind the iron test shields. Figures 1.7-1.10 and Figs.
1.12-1.14 show the spectra at the off beam positions. The error bars in the figures consist of errors
of spectrum unfolding and counting statistics. Other errors in the source neutron flux are estimated
to be less than 6.6%. Transmitted neutron energy spectra behind the concrete test shields measured
with the BC501A scintillation detector are shown in Figs. 1.15-1.20, and their values are given in
Tables 1.15-1.20.
The reaction rates of the Bonner sphere spectrometer behind the iron and concrete test shields are
shown in Fig. 1.21 and Fig. 1.22, and their values are given in Tables 1.21-1.22 and Tables 1.23-1.24,
respectively. Neutron spectra behind the iron and concrete test shields obtained from the reaction rates
using the SAND-2 unfolding code and the response functions are shown in Figs. 1.23-1.24 and Figs.
1.25-1.26, and their values are given in Tables 1.25-1.26 and Tables 1.27-1.28, respectively. The
experimental errors of the Bonner sphere spectrometer could not be estimated by the SAND-2
unfolding code.
The fission rates measured behind the iron and concrete test shields using fission counters are
shown in Figs. 1.27-1.28 and 1.29-1.30, and their values are given in Tables 1.29-1.30 and Tables 1.31
-
3
-
JAERI-Data/Code
96-029
-1.32, respectively. The uncertainties of the measured data shown in the figures include the counting
statistics of the fission counters and neutron fluence monitors.
1.5 Model for Calculation
a. Source Condition
We propose to use the measured source neutron energy spectra by 43- and 68-MeV p-Li
reactions given in Tables 1.4 and 1.5. The 43- and 68-MeV p-Li neutron beams impinge on the
shielding assembly at its center. A neutron beam spreading is 5.94 x 10"4 sr as shown in Fig.
1.31.
b. Calculation Geometry
We propose to use a three-dimensional(X,Y,Z) calculation model for the experimental
arrangement shown in Fig. 1.31. However, it can be expressed with a two-dimensional(R-Z)
model.
c. Material Descriptions
Atom densities of the test shields and the additional collimator are given in Table 1.2.
1.6 Fission cross sections
To calculate the fission rate, We propose to use fission cross sections of 238U and 232Th in JENDL38) in the neutron energy up to 20 MeV, and those measured by Lisowski et al.9> in the energy region
between 20 and 400 MeV. The cross sections are shown in Fig. 1.32 and the group cross section data
are given in Table 1.33.
1.7 Normalization Between Calculation and Measurement
Calculated values of the transmitted spectra and count rates are requested to be normalized by
proton beam charge (|JC). Total source neutrons per proton beam charge can be calculated with the
peak flux given in Table 1.1 and the energy spectrum given in Tables 1.4 and 1.5.
References
1. Nakashima H., Nakao N., Tanaka Sh., Nakamura T., Shin K., Tanaka Su., Meigo S., Nakane Y.,
Takada H., Sakamoto Y. and Baba M. : JAERi-Data/Code 96-005, "Experiments on Iron Shield
Transmission of Quasi-monoenergetic Neutrons Generated by 43- and 68-MeV Protons via the
7Li(p,n) Reaction" (1996).
2. Nakashima H., Nakao N., Tanaka Sh., Nakamura T., Shin K., Tanaka Su., Takada H., Meigo S.,
Nakane Y., Sakamoto Y. and Baba M. : "Transmission through Shields of Quasi-Monoenergetic
_
4
-
JAERI-Data/Code
96-029
Neutrons Generated by 43- and 68-MeV Protons. Part-II
Iron Shielding Experiment and
Analysis for Investigating Calculation Methods and Cross Section Data", to be published to Nucl.
Sci. Eng. (Jan, 1997).
3. Nakao N., Nakashima H., Nakamura T., Tanaka Sh., Tanaka Su., Shin K., Baba M., Sakamoto Y.
and Nakane Y. : "Transmission through Shields of Quasi-Monoenergetic Neutrons Generated by
43- and 68-MeV Protons.
Part-I
Concrete Shielding Experiment and Calculation for
Practical Application", to be published to Nucl. Sci. Eng. (Jan, 1997).
4. Shin K., Uwamino Y. and Hyodo T.: "Propagation of Errors from Response Functions to Unfolded
Spectrum," Nucl. Technol., 53, 78 (1981).
5. Nakao N., Nakamura T., Baba M., Uwamino Y., Nakanishi N., Nakashima H. and Tanaka S. :
"Measurements of Response Function of Organic Liquid Scintillator for Neutron Energy Range up
to 135 MeV", Nucl. Instrum. Methods, A362, 454 (1995).
6. McElroy W. N., Berg S., Crokett T. and Hawkins R. G. : "A Computer Automated Iterative
Methods for Neutron Flux Spectra Determination by Foil Activation", AFWL-TR-67-41, Air Force
Weapons Laboratory, Kirtland Air Force Base, vol. 1-4 (1967).
7. Uwamino Y., Nakamura T. and Hara A.: "Two Type of Multi-Moderator Neutron Spectrometers:
Gamma-Ray Insensitive Type and High-Efficiency Type", Nucl. Instrum. Methods in Phys. Res.,
A239, 299 (1985).
8. Shibata K. et al.: "Japanese Evaluated Nuclear Data Library, Version-3 -JENDL-3-", JAERI 1319
(1990).
9. Lisowski P. W. et al.: "Fission Cross Sections in the Intermediate Energy Region", Proc. Spec.
Meet, on Neutron Cross Section Standards for the Energy Region above 20 MeV, Uppsala, Sweden,
21-23 May, 1991, p.177-186 (1991).
-
5
-
(a) TOP VIEW
neutron
beam
shielding wall (concrete)
iron collimator
/ (iron ball and iron sand fillers)
7
I
Li target
monitor 2
• beam
dump
(iron)
faraday cup •
test shield
V
10.9 cm</>
r ,
detector
movable stand
>
tn
(b) SIDE VIEW
additional
iron collimator
70
L
• test shield
detector
30
176
beam axis
~20cni
401cm
rotary shutter py
(iron)
ethylene
TO.TJcm diam.
monitor
<s
220
120
units in cm
Fig.1.1 Cross sectional view of the TIARA facility with the experimental
arrangement
r Monitorl: 2 3 2 U-Fission Counter -j
Monitor2:
Th-Fission Counter
Fig. 1.2 Top view and side view of the experimental arrangement for the
iron and concrete shield with additional iron collimator
n
a
n
polyethylen moderator
4> 51mm
3
30mm thick
polyethylen
90mm thick
polyethylen
15 mm thick
polyethylen
>
a
70
He proportion;
counter
50mm thick
polyethylen
Fig. 1.3 Bonner sphere spectrometer
Thermal neutron detector 5.08-cm-diam. spherical proportional counter with 0.0508-cm-thickness
stainless steel wall made by LND inc. filled with 10 atm (at 22 °C ) He gas
Polyethylene moderator : density 0.928g/cm 3
O
Table 1.1
Dimensions of the test shields the additional collimator, the
peak flux of source neutrons and the detector positions
Ep *
(MeV)
Test
Shield
[cm]
Additional
Collimator
(cm)
Iron Test Shield
43
0
10
20
40
70
100
0
10
20
40
68
0
20
40
70
100
130
0
20
40
I
oo
Table 1.2
Peak flux of
Detector position (cm)
source neutron
(distance from beam axis)
(n sr
fi C
) BC501A Bonner"
F.C, c
0
0
0
0
0
0
80
70
60
40
3. 1 5 x 1 0 '
3. 1 5 x 1 0 '
3. 15x10*
3. 1 5 x 1 0 '
3. 1 5 x 1 0 '
3. 1 5 x 1 0 '
3.45x10'
3.45x10'
3.45x10'
3.45x10'
0
0
0
0
0
20.40
20,40
20,40
20.40
0
0
0
-
0.20
0.20
0.20
0. 20
0.20
_
_
-
0
0
0
0
0
0
80
60
40
4.00x10'
4.00x10'
4.00x10'
4.00x10'
4.00x10'
4.00x10'
4.77x10'
4.77x10'
4.77x10'
-
-
0
0
0
0
0
20,40
20.40
20.40
0
0
0
_
-
0.20
0.20
0.20
0, 20
0, 20
20
0
0
0
0
40
40
3. 1 5 x 1 0 '
3. 1 5 x 1 0 '
3. 15x10*
3. 1 5 x 1 0 '
3.45x10'
3.45x10'
_
_
0
0
0. 20, 40
0. 20. 40
0
0
0
0
0
0
0
0
0
80
80
4.00x10*
4.00x10'
4.00x10'
4.00x10'
4.00x10'
4.77x10'
4.77x10'
0
0
0
0, 20. 40
0, 20. 40
_
Material
67
25
50
100
150
200
25
50
0
0
_
-
-
. 212 _ _
U and
The
BC501A,
,.
0. 20
0. 20
0.20
0.20
_
-
.
Th fission counters
Bonner
sphere
spectrometer,
measurements behind the test shields.
fission
counters
were
7.87
Concrete
2.31
Atom Density .
(10 c m " ' )
1 ron
8.487
Hydrogen
1.498
Oxygen
4.188
Sod iun
0. 123
Magnesiun
0.062
Aluminum
0.312
Si 1i con
1. 110
Potassiun
0.038
Calcium
0.430
1 ron
0. 141
a
0.20
0.20
0.20
Proton energy
291, ,
Iron
Atom
n
Bonner sphere spectrometer
c
Density
(g en )
tn
50
I
Concrete Test Shield
43
25
50
100
150
25
50
Atom densities of the test shields and the iron collimator
used
for
JAERI-Data/Code
96-029
R3
P—>
S3 S «
IlfsiS
Z E H ca^H<-4
I l l l
— — ——
— CM CM CO
•
I l l l
I l l l
LU UJ LU LU
E
u
in
r« «ij a* CM
IO O» CM C3
COCMtO-
CM CM CM CM
I l l l
S
LLJ U J LU U>
o
o
c
i o r— ro co
I l l l
1
I
1 11
l
l
l
r— ^ co co
in en
-<o-«*
— —o o
C3 O O O
OOOO
r— CM CO CO
in o m to
en ^3 to "^
o** ^- ^- CM
eo to ro o
^r- CM r«- co
cnoiMoo
— CM CO **•
i i i i
1 1 11
LU LU UJ UJ
i n •**- ^*- t o
LU LU L U U J
I
1 I -+- -+• -r- •+- •+•
LO LO — CM
toco — —
OOOO
O O ——
U j UJ UJ UJ
CM LO C l LO
— ———
— — CM CO
mr-
CO CO CO CO
CO CM CM CM
CJ CM OJ Csj
CM CM CM CM
CM
E
u
Ln
LULU UJ U l
CM CO C7> tO
— o^-to
—
r^ r^ oo co
oi — —' —
_
CM CM CO LO
OO — CM CO
•«• t o eo •—
a> r— oo —
— CM ro in
CO CO CM CM
CM CM CM CM
CM CM CM CM
CM CM CM —
I l l l
©> eo co o
LU LU U J LLJ
ro CM CM CM
•
_
:
_
:
_
•
UJ LU UJ LU
m OOOO
OOOO
00
OOOO
OOOO
OOOO
OOOO
I l l l
— f- OO
omom
•+• •+• - t - •+•
LU L U L U LU
^ ooo
O «© CSI € 3
LU LU LULU
Cf O O O
ouimm
(
1
1
— o*>-*r-*
I O C7>— "—
— C3OO
1 -f- -»-•+•
I l l l
LU UJ UJ UJ
in ^" in eo
DO r— * - i n
CM ^ - CO LO
LULUUJLU
co in in in
t n r— CM r—
-
UJ UJ UJ UJ
in o o o*
CO O r*» ^>
9 -
S2 2
*— o
-+- •+-
^
ill
• *
-t- -fLUi
LU U
oo co to to
O LO LO LO
O^-T; U
r— co
«S
^ - — ^ - t7>
<o ^ es —
_
LULU LULU
^— CM U*> T"~
UJ LUUJ LU
o ^ co o
EG
^j> • •
CMfOfO«*-
&•.
Ui LU UJ LU
1
C7* —
-d- a
o»co
CM CM CO LO
* . _ CM ro
— — ——
i£> ^*- CSI —
C3 CM
- t - •+LU LU
oocM-^-r—
O C7> C7> ^
OOOO
O CM CM
o o
C5 O — •—
H- -t- -h •+•
LU UJ UJ UJ
LU LU UJ LU
— ———
O
B
B
t O CM
— ooo
CM ^ - CO •—
CM ~ -
i_> iL> ^T" ****
co co CM ro
m -*r •**- m
CM ro •«* i n
— *-*——
•
o
£•3
1 I 1I
LU 111 LU LU
o CM CM — —
e
•3 o
3 i3
LJJ LJJ
eo co co ^~
to ^* en to
o o o cs
5o
re
—
oj
U t«
LU L U LU LJJ
456E413E836E
276E
o
C L,
LJJ U J L U L U
LJJ U J LU L U
loujcsrCM CO t O CO
— CM r— c o
V)
o
o o
UJLULULU
r— in o
"— CM OO t O
ro r— r** i n
420E239E010E001E-
O
— — ——
mcM
OOOO
-+- H- -f- -1-
565E702E809E957E-
I
TO
O O O ) - -
UJUIUJUJ
I / ) CF> CM OO
H",
— — — CO
O O O C3
-H -t- - h •+-
648EIIOE280E425E-
g
*o t o r - r—
1 i l l l
\i i U J LU u j
^f tO *O C7>
^|- (O — CM
CO-0-LO.O
in ro CM CM
OOOO
LO r*— — C7>
miON
500E603E210E83IE-
8.
1 11
LJJ LU LU LU
LU UJ LU UU
778E
425E
208E
275E
C
LULULULU
OOO*-
LULUUJLU
Loro**
.812E. 193E-
edo> — —
OOOO
O O OO
-t- H- - t - •+•
LU LU LU LU
143E
797E
r—r-i—eo
or— f—to
-oo-
LU UJ LU LU
c»J r o P~" oo
r o • * CM Ln
CO • * LO i o
099E4327E+
945E4672E+
u
en
c
o
OOOO
LULU LULU
941 E-f
298E+I
856E+
486E4-
s
141E189E905E-1
440E-
00
•— OJ CM
1
11
1
co • * in to
I l l l
tor^
1 I
L U L U LU U J
UJ UJ
.
.
c
"' "^ o
-
CBS
3.
3.
3.
3.
4.
6E+1
7E+1
8E+1
9E+1
OE+1
1. 03E-2
6. 19E-3
7. 08E-3
1.28E-1
3. 88E-1
7. 33E-4
7. 80E-4
8. 18E-4
3. 41E-3
5. 81E-3
2. 19E-3
2. 39E-3
2. 3tE-3
2. 58E-3
2. 15E-3
4.
4.
4.
4.
4.
IE+1
2E+1
3E+1
4E+1
5E+1
3. 88E-1
8. 59E-2
3. 74E-3
3. 87E-4
7. 53E-5
4. 73E-3
2. 65E-3
5. 46E-4
1. 73E-4
7. 53E-5
2. OE+1 4. 82E-2
2. IE+1 4. 83E-2
2. 2E+I 4. 70E-2
2. 3E+1 4. 76E-2
2. 4E+1 4. 53E-2
2. 5E+I 4. 20E-2 2. 26E-3 4. 6E+I I. 47E-4 1. 04E-4
' Read as 7. 0x10°
Neutron spectrum below 7 MeV is assumed to be constant
1. 5E+1 3. 08E-2
1. 6E+1 2. 89E-2
1. 7E+1 2. 78E-2
1. 8E+1 3. 14E-2
1. 9E+1 3. 10E-2
2. OE+1 3. 33E-2
2. IE+1 3. 30E-2
2. 2E+1 3. 34E-2
2. 3E+1 3. 34E-2
2. 4E+1 3. 79E-2
2. 5E+I 3. 76E-2
2. 6E+I 3. 70E-2
2. 7E+1 3. 47E-2
2. 8E+1 3. 74E-2
2. 9E+I 4. 02E-2
3. OE+1 3. 83E-2
3. IE+1 3. 79E-2
3. 2E+1 3. 82E-2
3. 3E+1 3. 80E-2
3. 4E+1 3. 85E-2
3. 5E+1 3. 89E-2
3. 6E+1 3. 73E-2
3. 7E+1 3. 58E-2
3. 8E+1 3. 68E-2
3. 9E+1 3.
4. OE+1 3.
4. IE+13.
4. 2E+1 3.
4. 3E+1 3.
36E-2
48E-2
45E-2
44E-2
01E-2
1 . 53E-3
1 . 55E-3
1 .55E-3
1.59E-3 4. 4E+1 3. 29E-2
1 . 52E-3 4. 5E+1 3. 06E-2
.51E-3 4. 6E+1 3. 14E-2
. 73E-3 4. 7E+1 3. 05E-2
. 63E-3 4. 8E+1 3. 07E-2
. 78E-3
.71E-3
.69E-3
.84E-3
.91E-3
. 97E-3
. 98E-3
. 93E-3
. 77E-3
'J. 01E-3
.94E-3
. 95E-3
. 89E-3
. 92E-3
'I 09E-3
.74E-3
. 77E-3
. 79E-3
. 75E-3
. 93E-3
I. 2IE-3
.75E-3
. 88E-3
. 78E-3
4. 9E+1 2.
5. OE+1 2.
5. IE+1 2.
5. 2E+1 2.
5. 3E+1 2.
97E-2
71E-Z
97E-2
56E-2
67E-2
•
1
i
68MeV p- 7 Li
1
Error
9IE-03
4IE-03
35E-03
31E-03
71E-03
43MeV p-7Li
^1.5xlO9
1
•*
27E-03
56E-03
57E-03
18E-03
63E-03
20E-03
50E-03
56E-03
44E-03
46E-03
5. 4E+1 2. 30E-2 « 97E-04
5. 5E+1 2. 14E-2
29E-03
5. 6E+1 2. 05E-2
02E-03
5. 7E+1 I.6IE-2
OIE-03
5. 8E+1 1. 22E-2
33E-03
5. 9E+I 1.46E-2
44E-03
6. OE+1 7. 50E-3 _ OIE-03
6. IE+1 9. 05E-3
09E-03
6. 2E+I 7. 72E-3 \ 15E-04
6. 3E+1 3. 40E-2 2. 04E-03
6. 4E+I 2. 28E-1 5. 18E-03
6. 5E+I 3. 61E-1 S. 41E-03
6. 6E+I 2. 59E-1 5. 32E-03
6. 7E+I 7. 43E-2 2. 81E-03
6. 8E+I 9. 98E-3 1. OIE-03
6. 9E+1 1. 25E-3 2. 5IE-04
7. OE+1 6. 29E-4 2. 35E-04
7. IE+1 1. 87E-4 1. 32E-04
7. 2E+1 9. 09E-5 3. 09E-05
" Read as 7.0x10°
Neutron spectrum below 7 MeV is assumed to be constant
-
I
2. 92E-3
2. 81E-3
1. 76E-3
I. 82E-3
2. 32E-3
7. OE+0 2. 45E-2
8. OE+0 2. 43E-2
9. OE+0 2. 43E-2
1. OE+1 2. 56E-2
1. IE+1 2. 38E-2
1. 2E+1 2. 29E-2
1. 3E+1 2. 85E-2
1. 4E+1 2. 60E-2
Flux
i
t-.
in
2
lxlO 9 -
c
m
1
5. 34E-2
5. 31E-2
4. 63E-2
5. 19E-2
4. 94E-2
7. OE+0 - 2. 45E-2"
Energy
(MeV)
i
1
.5E+I
.6E+1
. 7E+1
.8E+!
. 9E+I
Error
•
1
4. 54E-2
4. 48E-2
4. 37E-2
4. 68E-2
4. 71E-2
7. OE+0 4. 60E-2
8. OE+0 4. 38E-2
9. OE+0 4. 41E-2
03E-2 .83E-3
29E-2 II. 18E-3
27E-2 . 53E-3
58E-2 . 72E-3
99E-2 . 70E-3
64E-2 . 74E-3
09E-2 . 12E-3
10E-2 1. 54E-3
25E-2 1. 17E-3
24E-2 1. 15E-3
Flux
i
1
. OE+1
. JE+1
. 2E+1
. 3E+I
.4E+I
2. 6E+1 4.
2. 7E+I 4.
2. 42E-3 2. 8E+I 3.
2. 39E-3 2. 9E+1 3.
2. 49E-3 3. OE+1 2.
2. 36E-3 3. IE+1 2.
2. 32E-3 3. 2E+1 2.
2. 1IE-3 3. 3E+1 2.
2. 28E-3 3. 4E+1 1.
2. 85E-3 3. 5E+1 1.
Energy
(MeV)
•
I
Error
i
I
Flux
•
.
Energy
(MeV)
•
z,xiu
6
1
<7. 0E+0*4. 6 0 E - 2 '
Error
Energy spectrum of 68-MeV p - 7 Li
source neutrons
The flux at peak region (61.0-69.0
MeV) is normalized to unity. The
absolute
peak
flux
for
each
experiment can be obtained from
Tattle 1.1.
I
5xlO8
1
Flux
Table 1.5
-
1
Energy
(MeV)
Energy spectrum of 43-MeV p - Li
source neutrons
The flux at peak region (37.5-43.0
MeV) is normalized to unity. The
absolute
peak
flux
for
each
experiment can be obtained from
Table 1.1.
1
Table 1.4
••••»-*v v
n
|
.. . .V
20
40
60
Neutron Energy (MeV)
Fig. 1.5
I
80
Source neutron spectra generated via
the
Li(p,n) reaction by 4 3 - and
68-MeVprofons
The Spectra were measured by the
time-oi-flight
methods
with
the
BC50A
scintillation
counter
and
absolutely
normalized
by
the
measurements using the recoil-proton
counter telescope.
JAERI-Data/Code
96-029
CO
[Me
ness
axi
>
"a E
• — cs
S
?
<i>
•"^ - O
to
3 aj
w
utroi
.2-S
l—i
•* o
o Z
beh
:tect
.ss
ill
u]
lOPKO
e><ooui<o
07<7»CM<0<0
ifWOf^O
CVICMNCVICM C^CJCVICMCO Mnmnn n n n r o n tnrpcoenco
CSICMCMC
tt i
I
II t I I II
i l l i I
i I
I (
( I
I
I f
f l
l i
i ll
l
i
tt ( I I l
( I I I II
i i ii ii
LULULULULU LULULULULU
LULULULULU LULULULUUi
U LU LU
L
L LU LULUUJLUUJ
ULUUJLUUJ LULULULULU
UJLIJ UJLULUUJUJ ill l LU LU
LU ill LU LU
LLJUJU
C en
— S
OS
5 —cnES — S~CMC->
mooco-i-er, -a-u->ir>Ln-a(OLOLOLOLO
»»-«><ncMe7>
4=C
o— o — ^
uio'ft-ji-^ i-:r-'ir>—"—
cncg__
—CM—
cjocsootn o<o«oin*r
C
-X
LJJUUUJUiUJ
— — ior—— C O O N U I -
- n a i o m
LOLOLOLOLO
ooLor—Ln—
en—t
Lricriouio eni-^odooio ood-^ooLO ——'cntocj j p i - ' r n c > o u i o i u
nnroc-JC-J —
»-co in^rro—
— C M C M — — CM — C M C M — —
CM—OC3O OOOOO
L> B .
mcvi — o n m o r - n t o
I
I I I I
I I I I I
I I I I I
I I f I I
I I I I
UJL
OLT>lDOOr— OIT>0*CMLO
-coCM CM CM t O
•gf
f
nnr»-<-
o»Lor—CMLO
M—^rr— •»«oc»jenco co —r—ncM
coej>t~r—LO r—COCMIOLO
"-0000
2
H,
S
*
LUUJLUUJ UJLULUUJUJ LULULULULU
m i M N O — — — i o n CMmcMCMLn
S S C M S o»-«-o.inr- i c o n f i n
"oxncM LOLOCACOO in— to coo
OLOI—*OO
ClO
cntntn-*
*mcncMCJ
LULULULUUJ
co»»r-r-c»
oom—LOCO
—CMCM — o
LULULULULU
—cMr~Locn
o - o « m
aocoiom
LULULULULU
c o r — coco
— CM.*<OCO
»CMO>LO—
LULUU-ILULU LULULULULU
cMenr—in-* '"'USSi^
cocnoo<oco J ° S ? K S S
B I O W » N oinininoi
ar-<o>no>
CMCMCMCMCM CMCMCMCOCO coencMCMCM CMCMCMCMCM
U
_mV-'—'
—'LO—'io'i~" cooo'co'cncn oioitri—'•—' ——"modi-"
—-j-«r>io r— ooiorCO
-a
c
O
3
E
E
„
cocn-«iooo i n o i m i o -
«o-«Kor-cM om««t~
cncnoiloio en—tOLnin
f,,^.^.^
^r«rrncoco cncocococo r o r o m r o M enromenen mroenmen mrocntnrn fJ^^^^JJ
JuJLULU
UJUJLULULU LULULULULU uJuJLULULU LULULULUUJ LUUJLULULU LULULUIXILU LULULULULU
S S S m Scnmr-r- LOCO
• * — m m o « ion«ooo r-iotofto — "">J^2 ° ° S S 2 S
«-*-ir»iocn r*- —intoco tor— ^ro»— h—^oo<o*o co«™"—CMIT> eocncMcn-* —cocn^rLn
SSfC— - u i r - S o SusSJSS Sr-S>—* wnoiion ocouauo* woir-um -oraiom
w
nininn
»
W —C M »
^ *
1
—comoo—
—"COCMCM COVCM'—<d or-CcdcSo uJcWedcn «oLr!oji—'CM t—'ujr-'en^
CJ
CO
CJ 0 )
z
U>CMUCO—
<diow>inu> •*cjcncM"rM" —'—"——en
^ ^- ^
•+*
^ ^
VcM'oitncM cvicNCMroro
^ ^ * ^ ^H- ^H ^T*
* ^ ^ ^ ^ ^ * ^ ^™
LULULUUJLU
(£>^rrocM«-
UJUJLULULU
ocncoi—to
v<««<r
*tr4mt*im rirnnnn
^ ^^ "" ^* ^ ^ ^
UJLUUJLUUJ
Ln-*cocM»—
^ ^ ^ ^ ^T^ ^f
LULULULUUJ
oocoh-to
11 -
CM^-*— ~
. - ^ - —»——
—— — — - ^ -
^ r ' ~T^ T^ T ^ T^ T ^
LULUUJUJLU
UI^-COCM—
en CM'CM" CM'CM' CM CM" CM'CM'CM'
-
rOCMCMCMCM
» r
r
i
i
~
i
•
LUUJLUUJLU LULUUJLUUJ
oc7>cor-«o Lo^rencM—
CM'—'———
^CT»P*-r—1/>
— C>0 0 > 0 O
r
•
•
•
LU LU UJ LU LU LU
cioooo ca
— — — — — — a>eof— <o
.. -a
JAERI-Data/Code
96-029
si
o
o
e
o
£._
••• x
w
TX
o
_o
<=>Z
OI
- i _ CO
\o
a.
I
il
'•si
2
So
O
I , ,; , .
§2
i: a
Z-a
u ] x
T3
u
CM roininooo) ~-i
cc
82
It
=1
-a i
— r-_^f ^ e d
—
^><our>*—<to CMUT>O—>-«_>
___- — —
——
CM «>—•«**_> meiNOO «—
— CM
OOOOO
-f.-f--f--4--tLU LJJ LU LU LU
ca^eMr—o>
-*Lnr— •— oo
__^_»_eMCM
OOOOO OOOOO
-*--j--l--h-*- -t"-f--*--h-tLULUUUUJLU LULULULULU
h^ipuiaar*- o a i n * - _ i
t o c M i r t i o ^ - CMI—en — o
n ^ ^ ^ ^ ^ r ^tneotnen
^ ^ j ^_»____J»J
OOOOO
-*--t--f--*-"t~
LULU _ _ _ _ _ _
—•^intntn
oooc_>*_>oo
TOCMCMCMCM
— — ———
tn toi/>cMc*jcM mcMo^r*-!"—' o u ) ^ * " O
m^Mooh-
mrocnoo ^-ror^-^^- ^^^•«_>^^*o • * - ^ * o ^ > ^
^
_ * ^ — — od oo«_»o»r-^^- en —eMr^^m ^ . « n —CM — CMCM*-—
-r»VWoi
^
«_>oodVod CM*_>CM^OO <nr^cM_rjoo f^ioen—f— CT>
^-CM^^
— ^
" ~ **>
(O CMCM —
——
«
_ — — — OO
,,_
i i i -*--*O LLJ-UUUUJUJ
r^->u>in^
c *D«_>»_>^-—
3 «^r— CMCM^o
cm
=
o
•—
CMM —
OOOOO
-4- - * - - * - - * - -fLUUUUUUJLU
osconino
<o — o c n u ?
^~a>tow
U-LLJUJLULU
or—_3tr>r—
— L o r - i c c o -«rcMiocj»r—
^ o » ^ - r — — eM^o>CT»t_»
—— — —
~-*-OOO
I I -*--+--(UJLJJUUUJ-U
*-CMcotoro
*_>o» — OOCM
^ ^ ^ c ? ^
LULUUU-JUJ LULULLJLLJLU UJLULU-JLLI
< o _ > N O — * c M r * - r o ^ - ^ <©f—-oooo
m o o h - h - _->o^rir»^j- —a»CT>oo_r>
<n— ^ • O ' — e M c o r o m m COCMCMCMCM
LULU LULULU LUUJ LULULU
r—oo^oo*— C 3 o * ^ » - e M
c M O o r — ro _2°,2_22
CM CM — ^ ^ ooooo
OOOOO
O
- H •+-•+* •+• H" •+•
UJ LULU LULU U J
o»o»*_>or— oo
earn—*_>— i n
corner LOCO CM
— — — — — —
u
o
LULULUUJ-i u_
^^*_2™_^! «
ZtZtS
^X !]2
c_ic_>c_>—c_» *_>
OO
E
u
CM
Vi
—. ea
LUUJ
LULULLJUJLU
UJ l i t UJ LULU
UJLJULLJLULU
Z
_)
- 12 -
_ _ _ _ _ _ LULU
__—
— — O O O C3
LULUUJLUUJ
UJ LULU LULU LU
"O
TO
U
3
JAERI-Data/Code
96-029
1
85
8
^
1
„„
/
-f -
•
c
o
f
>
hicl
-
CJ
f
I
\
x\
\
• o
a
neut
g
—-a
t
'x
to
;
o
I
-t-
.
.
c
o
i
j
1 . . . .. . .
.
E
f "
O <"
"S
go
r
-
1
i
20cm
+
beam
to
1
w
.S3
X X
-^
CO
Of
-4-
40cm
1-1
J4
i . . . ..
.
8 -°e•gl
_|_
i. .
1/3
I...L . . . .
e v. u
o o a
IS
o
J= O.-c
CO
60
-a
tg
£•
.
^ ^ _ ^ - ^ -
«»_^^c>
*
.
.
^ ^ ^ O O
. .
.
.
.
OOOOO
.
OOOOO
.
OOOOO
.
.
.
OO^OO
.
.
.
.
.
O^C3C>
Hf i ^ if • |i i ii 11 LULU LULU LU LU LULU LULU ' " I I ' I ^ " " " l LULU LU LULU LU LULU LULU LU LULU LULU LULU LULU
1
3
Otvp)!/)^
« doVr^m
^3 ' " ' " 1 * 1 ' ' " ' ^
t*"~ toC"J^^oo o>r~"oor*" *o CJ LOC^DJ ^3 ^3^i" o o o i o co^^^sr4" u"> OO^SCNJ •^r—• r*-*—*ofo
o*4*Bootc*> IOCMOOOLO erjc*^^c*ju*> « * ^ t o ^ ^ * - a > o u > N i n —^t-tOLoro CM*^C«JOO
1^1* *f'' '"nil
( ' ' ! ' ! " 'HJ<lf
iiiiiifiinii
1' ' H l M i " " ' l l l
(xf LULU LULU I ' M ' " ' " ^ i t "
LULU
1?
u
Lelh
fcjn
PMIM'I""11
•*
•so
oU
Z
LU LULU LULU LU LULU LULU H ' I I " * ' I I M ' t LULUUJlJJLU
LU LULU LULU
LU LLJ LU LLJ LLJ
O
LJJLULUUJ
encnr^f^LO PO—— ^ - — cnin^coto cooo^oor— co*o-*-to— minr^ioco CMQO^U^
_ < ^ ^ n o t t o n o ootOLO^TM o*r—Loro«— ^oo*oir>
E
0
s
•"3"
en
R3
_ _ * - ^ . _
_ _ _ _ _ ____«.
ooooo
T3
n
_|_^__j_ + 4_ -4--t-.4-.+._t_ _|.^- -f- -f. _(- -f--(—f_^--fV
c
ILULU LU LULU LU LLJ LULULULLILU LU LU ULJ UJ LU LU LJJLLJ LJJLU LULULULUUJ LULUUJLJJLU LU LULU LULU
3
rnoitnroeo
POP^POPOCO csieviesicsicsr c-Jc«JCM*c>jesi ^-'^_'—^^-* « _ ' ^ - — . _ — cnoor—tOLn
00
IS
- 13 -
JAERI-Data/Code
1
1
J . ..
"
.+•'•
T
JLLrti"
•
-"ai•j
r-
-*~
i
E
^.
"fl
"V
c
o
th
f
h
c
o
LJr-
(7
.22
• ^
c
•J
r-
.S3
E
E
cd
l
C5
o
ts
"a
.
.
1
i .
i—l
J _
UID
"* 'i
• ,
1.. .
!
M.
2«
SLgi
o
o
]
U
0
•« s
!
O
o
""0
•a ™
:
"1
i..
IS 1
S t
u
_
l
.
b.
"-T3
S5 T
ro
1
^
p
C O
[ UOJ
CJ
"O
[N
g o
'erg)
Iron
fI
thi
96-029
C3 1 - U
o O c
^ 4 J
I
tab
E
<D
-0
CJ
cd
I
«J»CM — m m pocoror-<o CSCMCJ^TOO Lf>«oeoco<o CMenoo — o
:«? •Sg? PO'LOOJLOCO
CMCMCM — —
^
O O n
^ ^ .
O it^u^ujLUUJ
e
u } C g ^ c > c n
C5 tor— r— meo
u ror—— u>u>
«r-oior-
o>r-«ocMcM n n o i o c n *HOW>CM
O'CM'OOCTIO oicotdmcd ir><dcM'—LO co<do>co'i—' cnioo»«*o» o t d o ' c o i o •*—enLO
CMP1VO—CM CM——
— CM CM CM—
— —
—
CMIO
—OOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOO
UJIJJLUUJLU
(D4ocn«—co
u3<^cnt0O
roo>co——
mUJUJUJLU
^tnmwcn
oo>co^r—
CM— — — —
LULULUUJLU
<J?«PCM—••«•
**cocM«sr—
CMCM—oen
LULULUUIUJ UIUJUJUJUJ
"*enco<oc3 • * • - — r — C M
cocnoor— uaco^'eaeM
0
0
— CMCMOUICM
UJUJUJUJUJ
IXXOLOCO^POOOCMCM
CM^»-»»-»ITO
LULULUUI
co—om
r—i/>«oio
co«»c»r—
—r-ocMCM vnnow CM<OPOCMCT> -oiinoiin LO —ncMr- CMCM—NO r— •w<o-w
in cdu>r<^^co •»*—<du»cM CMOcnedui coror-^oJW • • o t d — u i —'cor-^cou» CM^Loodr-^Lfj c o — t d *
"S ^^^ „"!_! II
m ujujujujuj
cor-o>c3<o
ioo*-ui<r^-coLocM^u
^ CMI-'—'CM'CM
E
So
uJUJUJUJUJ
cMr—»r—o
u^eorocM^1
o v o - o
CM—'«j>Loro
LULULUUJLU
cnor— cor—
r——CM—o
o^rior—f—
-*^rW-*-*
IIII
UJUJLUUJUJ
CMC3<O^CM
iccocoi©^"
ISIOIOIOIS
•»»•*•*•*
UJUJUJUJUJ
r— l o v e o m
CM«— <OCMCM
innomio
•••*riro
II
UJUJUJUJUJ
IOCQCMCMO
**CT>CT>—*<•
••CM — — o
cococococo
II
LJJLJJUJUJUJ
r—^rcMr—CO
CO«OCO^LO
cncncncor—
CJCMCMCMCM"
LUUJLULU
o—es—
Lor—c»i—
r-ooo>cM
CM'CM'CMCM
I O O V O «
CM«OOOLOO tor— «-cr>co r— isincim oo*or—co CM —o-»eo »o>-COLO OLOCOCO
LULULULULU
tnooir-r— CMCACMO
— CM^>—o
ujujujujuj
CMOCOCO—
—rorocoen
a^-^v>^
COCOCMCMCM CMCMtMCMCM CMCMCOCOCO COCMCMCMCM CMCMCMCMIM
UJuJuJuJuj
cor-coooo
LO—LO*»
r-oo—CM
LULU LULU 1X1
<e-*-*-*«o
—co—v^r
«-r—ooo
UJUJUJUJUJ UJUJUJUJUJ LUUJUJLUUJ LULULUUJ
-moiioo mLOtocMco «"'!'--«y'rr S S S S
—**oo<o couscacrxo <r>coo —en N O O I U I
o*tor-eo —r—Ln—«o a>CMi—cMr— LOLO*>—
— cvjr*-?—— ir> —idr^od cdederioicrJ c7»er>—— •-- —aJedi*-«d viviiiiiri** COCOCMCM— • - — — O>
ZCQ
U
LXJL^JLULULLJ LLJLULULULU UJUJLUUJUJ UJLUUJUJUJ UJ LU UJ UJ UJ LUUJUJLULU LUUJUJLULU U J U J U J I H I M
^IroCM—o cncort-wLn S c n S — o cr>oor-iOLO -*COCM — O meor-iom wnw-o ooooo
V ^ * W ^ i - ^ pocorococo cococococo CMCMCMCMCM CMCMCMCMCM — — — — — — — — • — — oeor— <OLO
-
14 -
Ia
.a "S
JAERI-Data/Code
96-029
>
05
if
CO
O
•5 1
e
•a
o
rf
•S P
.8.8
S.c2
00 O -g
I
mo u ]
)ri
o
a.
T—I
ab
1^-
—csnoeor— — o i / » e o — ^ c
"8
ta ^ O O O O
OOOOO
OOOOO
OOOO
© LULULULULU LULULULULU UU LULU LULU UJLU
esico—N
— t^pi
CM — — —
o o o — —— —
I
LXJUJUJLUUJ 11 M l M " 1ILU
^*(O«>^-
I I I I I I I I I
UJLULU LULU LULU LULU
CSJCSI—
oo ooooo ooooo
_1__P- _(_4_^-H--t- 4 - - f - - ( » - H - j LULU LUU-IUULUUJ UJUJLULUIXl
LLILlJUJLUUJ UJLUUJUJ UJ I ' I
oooo
-I—»- -t- - I LUUJUJUJ
oooeoooo
35
«
UJLU If ' 1 ' I " ' LU LULU LULU UJ LULU LULU LU UJLUUJUJ UJUJLULUUlJ LUUJUJUJLU
io
^.^<oro7M Lnc*JC*Jix>co - * i ^ r ^ o ^ > csir^-incnoo ^ - r f S r ^ ^
LULULULJJ
Sl^Yl^
6^
a<
ss
Zffl
^
^
^
^
^
^ ^
^ ^
^
^ ^ ^ i ^ »^ » ^ ^ ^
^
^ ^
^
J
«
I
*
*
1
•
•
•
^
^
^u
T—" IOU1 ^ " POCSJ ™— ^3 ^3^3 O O C
cococococo
rocorococo
CVJC*IC>JP»JC*J
- 15 -
=
-91
vcn—i e»*o—"•——••—•—•—*—*—•• — —*F-
ro rococo coco coco coco Goco-fr>'»4*»-fr>-fr>-fr>-fr'Gn en en en en en en en en en —4 i
"nm rnmrnrTimf^immrTirTi rnrTirnrTirTirnmrTiprirTi rrirrirTifTirnrTimrnrnrTi mmmrrirnmrTimrTirTi i
cT
A c j i o ^ c o o o o o o i o a a o m o o o i r o ^ — J ^ u i oo—icoococnco—4-fr.co (Otnuioooo^cjuiuio
r^rnmmrTirTi^imrTim rnrTirTirrimrTirTirTir^pn rTirnrnrnrnrnrnrnrnm rTirH^nrnrnrnrnrTirnrTi
•+• •+• -4- -f- -4- •+• -4- -f- •+• -+• -4--4r-t--*--*--*--4--*--•--4- -K -+- -+- •+--*- -t- -•- -<- -#- -•- •+• •+• 4 - 4 - 4 - 4 - 4 - 4 - 4 - -4-
r-orororohoro,rs»rororo rorororococoi*jcococo GO GO GO GO GO GO GO GO GO GO GOCOCOCOGOCOCOCOGOGO
3
o-^ ocncocn—•—JO^JCOCD O» en C© *OOO en en en en—J OO~»J—•jcncncnu>i4»j>»4fe cocncnroootocncotn
at cnoscjiGncjicJiuicjiGncn a ^ p o - - - ; - - - -
n
r*r*r*r*r*r*tororor°
ii!
LOroro--ro--.roco-—
m rTirnmrnrnmrTirTirTirTi ^rcmi^^ifrirTirTimrTirTi rTirnmmrTirTirTirTimm rnrnrnrnrrirnrnrTirnrTi rnrnfnrnmmfTKTifTi
+• 4 - 4 . - f J . X X X X J . J . _i_-*--i--+- -4- -4- -4--4- •+• •+• -f--I-4-4-4- 4 - 4 - 4- 4-4- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4-4-4--4-4-4--4--+-4_* —._*_*—_*_-_-.—k—.— -^.—k—^rohorororororo rorororororororororo rorororororororororo rorororo rococo GO GO
3-t:
CO CH
CD
^ 0 -"J
0 0
Q A ^J^ CI) ^^J ^^J U^ff v^v ^^T ^J1 ^Ji ^J\r i^^ v^w ^^^ OO DO C^9I^O Q Q ^ ^ ^^^ *^^7^^4 t^#7*^ff wO ^^* 4^B^^1 ^^J ^ y ^ | u r i i ^ i |^^ V ^ B ^ J I 4lBf^^^^^^ ^^*4 ^"^ iv^^^^^V^v W^ 4^^ ^^^ m ^ ^ ^~
m r n m m m r n m m m m mrnrnmrnmmrnpnm rnrTtmpnmrnmrnpnm mrnmrnrnrnmmrrirn mrnpnrnmrnmmmrn g
-t--4--t.-4-+-4- + + - t - + -(- •*- -*••*• •+• •*• + •+• -*• •*• -t- +• + + -!- -*-•*-•*--*••*•
-I--4- -4- -I—»--»--+- -«--+- -•- -»--4--»--«-H—I—I—l--«--t-
CO
o
—J^—roroco
coo—*cooao*oco<-4 -J—»—» >K>o*otoroo U K C K O O I U U I U O O O - * oo>00<^—1 coo—-uao*
GO—j^ooui'"foooroto jfcOi—i -fr.—j-^cscoho en-^ootoroto—*ioo> -j—j«3Caoo*0€Z>cn«de3
mm^nmrTirTirTimr^.^ mrTirn nrTirTirTirTirflrn mrtimrHnn^H^ni^^Hrn rnmm^H^n^riP^rnmrTi
1 1 1 1 1 I 1 1 1 1 1 11
1 1 I I 1 1 1 I I 1 1 1 1 I 1 1 i I f I 1 1 1 1 f I
» » o o
oo
<oww--'WO>
roro^-^wd
r^mmmmm
1 1 i 1 I 1
uico—J*--jcoococncn —
—»ro.fr.en—J-jenco i-o—*o*.—*
^ ^n ^n rn rn rn
1 I 1 1 1
o GO GO GO GO GO
to
fifrcoea
rrirnmmr^fTinifTimHi m r ^ ^ n r T i r n m f n r i m ^
nfimi^^^nrir
i^^^n
1 1 1 1 1 1 1 I I 1 1 1 I I I I I I I I I I 1 I I I I 1 1 1 t 1 1 1 I
GO Go GO GO GO GO GO GO GO GO GO GO GO GO GO GO GO Co GOFSJ rorororotofororororo rororoGoGor
Go-fr>4»GohoroGOGoGoGo rsSrorsSrocorororG
frroror9ro
cocococo—tnto—4a>o -^encntoooo—itocooo r o c o o w o r o o o r J - ^
Neutron Flux [n cm 2 lethargy"1 (i.C
c.3
CD
1!
n
o
W
JAERI-Data/Code
1
96-029
I . . . .
•
hick Iro
-c
/
^
E
o
o
c
.o
—v-
aS
in
~^~
.-
a
—5—
c
S3
o
3
X
O.
|
axi
eut
o
'
•
Co
5N
•
Of]
C
*i
E
—^ o
E
•
u
o
•o
oo
1 .
.
.
.
1 . . . .
1
ssl
o
o
IP
]
UID U
CO
0)
6
o i;
ooooo oooooooooo ooooooooo
ODOOOOOOOO OOO0OOO0OC3 OC
if
I I I
H I
H
i H I
yii
jL
U
L
U
L
U
L
U
11
I I 1
I I 1
I I I
II i
1 1 1
1 1 1
II i
1 1 1
I I 1
1 11
I [ J
LJLULULU
ninini |,l II j [II HI 't ' i" ' I ' l l " H' "1 1ii i|i iiiiiiin 'U.)' iiiiiin
tflfl<lt'W'
• •
- C M C M
s^
v9"}
^ 7 CO CO CO CO CO CO CO C O ^
or-«NO>0)M<ncoo co^
•n I
.4 4
. 93
.8 3
o>r-c D >-eoo> t j»«ocM
•
ro co co co co ro co co co
—
-
,
co
— -
-
LU UJ UJ UJ UJ UJ UJ UJ UJ UJ LUUJ UJ UJUJUJUJ UJUJUJ
JUJUJ UJ
UJ UJ
UJ UJ
U UJ UJ UJ UJ UJ UJUJ LLJ LLJLULLJ UJ U-J UJ LLJUJLLJ " I " Mt f',^ " ' " 1 HI
e
£o
o
cjDC
3r—t—eocococof—c
mcoeoco^-csicstcMCMcsi
A
1
oco co rococo co Coco CM co ro coco rOCMCMCMCMC^-
-H-4--»--*--t--»--t--»--K-»- -*--t--»--4--4--4--»--4-Hh-4ii ii i it i ll i in tii I I i I I i in MI i LU LU LLJ UJ LU LU LU LU LJULU
-4--f-M--t--4-Hh _(_ _f.-t--f- -H-H -4--*--4--t--f--4--t--4UJLULULULUUJLULU LULU LULU LLJ LU LU LU UJ LU UJ LU
r-u>tO(OtocoinmiAin
roro eo co ro ro co co CM c*i
-
17 -
-+-H--t--»-H—KH—1—I--K
LLJ LLJ LLJ LLJ L U L U LLJ L U L U UJ
u
JAERI-Data/Code
I
'
'
'
1
96-029
i
a re
i
jjO
20cm thick Iron
=fc
.f
i\
\
§1
\
V
beam axis
\
B.
i
4-
i
i
o
• S 22"
.23
ns
t!
o
3
_ o
-. i '
20cm
r-*
o
e
\
"t.
Li neuIrons
-
!
\
c
o
li
•
•
I
00
1
,
.
i
!
o
o
i-H
|
i—I
,_uio u ] J
^>C3^<—ooococMooin ^-oiincoco^-coocoin to eo coco coco in t o o v
otoo»ioiooKnm<oco O O > « < D V * - in^-oi
p od^niricMcococD*^-co co CM CM CM CM CM CM co coco cococococococococo^ inininio^-CM-.—CMCOCO C O — C M COCO** in
—
O
—
E
y
^
gl
O - - - - O O O O T - ^^.^.^_^-^-^_^-^^^ V M _ V _ ^ ^ _ ^ - , — _
^^-^.__OOOOC=> O O O O O O O O O
_I-.A-.4--*--+--*.-4--4--*--+- -i_-u-i-a--4--|--i--|--f--f. -i--i--*--*--*--*-+-+--t--+- ^-•4--t--+*-+--f>-+--4--*--|- -+--*••+--+--•--*--»--•--•LULU LULU LULU LULU LULU LULU LUUJ LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LU LULU LULU LULU LULU
r— CM co co car— o cor*- co i - « - n u ) a o i n o > m cor— ^•^cococor— CMr— csir—o—O>COCMCSCOC7» c M t n o > c » o < 0 o m i n
comc^o^-cnincMcocn o>co—co^-mr-ooo**- CMCMCM—ooincMoom*- oo^-^r-CM^-ooPO*—co o«-«o>t-CMcor— m
r— ^cooococ/i^-C7>C7>c3 *— CM co co co co co coco ^ - ^ ^ ^ * * co coco CM CM CM ^ - ^ — o c » e o c o o > L n ~ cr»r— * n ^ - c o ^ - i n m - —
•—'3
CMCMCMOJCMCMCMCMCMCM
-t--l--t--*--t--4--t--«-H--fLULU LULU LULU LULU LULU
(oomaitovNVcotD
h-co<*)«o(n<or-vr-CM
ma)0>coromT-«-N«
CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM C M C M — ^ - - — * — • — * — ' — ' — * ~
•+--4--+--t-H--*--*--*--*--4- H--t*-f*-+--f--+--+-H-H--*- •+--•--+--•--•--•--•-•+*•+••+• "+"
LU LULU LULU LULU LU LUUJ LULU LULU LULLJLJJUJ LULU LULUUJLULUUJLUUJUJLU LULU LULU LULU LULU LI
enirt^ coco CM oof— coco ©»^^o»tot*-CM«»coo toco^uicoooo»tococM o»o»o>*— CM CT*^^-*COOCMOCOCOCO*-O»CO COIOCO^I*-COO»^'C7>'* o o n o o i N « c o * - m o cooooocommas*«y»m<o<ocoinininin^>v - w ^ - ^ - ^ coco CM CM—-^- oooocMoocooitocMcn I O N O O > « « O N * ^
__-CM-——
*<
§1
C
^ • W ^ ^ C O C M C O C O C O COCOCOC
-4--+- -t- -4--•--•--»- -t--f- - f - - * - - f - H
LU LULU LULU LULU LULU LULULULJ
—C
OCOCOPOCO COCOCOCOI OCOCOCOCOCO CO CO COCO CO CO CM CM CMCM CM CM CM CM CM CM CM CM CM CM
—t—I—K -|—K •+- -+••+• -f- -4- •+• + -+--+--4- -+• -+• -+- -+- -*- H—»- -^- -*- - I J LULU LULU LULU LULU I JLU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU
E
enooinco—
X 3^ ^ •+-•+••+--•--H-*--+- -4-n--4--*--»-a--f.-+-H--•- -|- ^ - •+- *4- -4- *4- -f- -•- -f- •+• H--t--•--•--4--t--+•-+••+•-•- •+• •+• -*--*• •+• -•--»--•--•--+- -+LULU LUUJ LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU LUUJUJLUUJIJJLUUJIJJUJ LULU LULU LULU LULU LULU LU
o e o c o V C M O O O C O ^ C M csooco^'CocM^-cscnoo f— t o i n ^ f * 5 C M ^ - o c 7 > o o r « - c o m ^ c o c M ^ o c n a o r — c o m ^ c o c M v - o o o c^
2CQ
i^l co co <o co* co i n i n t n i n
in^W*a-W««:WWc
OCOCOCOPOPOCOCOCMCM CM CM CM CM CM CM CM CM—-*— • — * — — • — • — - — — * - O » O O
O
- 18 -
JAERI-Data/Code 96-029
••x
op
CMP i
a"
m
4 ^ 06
ZCQ^o
u ] xnjj
E
T3
K cvico co Wirier-^«-^h^iA WWWW^-^inirlcoco r^ rococo coco coco coco h-i--ooootoirtcn*a-to»*- co^^coco^mio^*—CM
i- oo«-^*oooooo oooooooooo oooooooooo oooooooooo oooooooooo
re
e- UJLLJLULUUJUJUJUJUJUJ LLJUJLLJ LULU LULU UJLUUJ LULU LULU LULU LULU LULU LULU LULU LULU LULU LULU UJLU LULU LULU LULU LULU
C (^ooo(*>^-r-to*-(*)in ^-caco^— oxocnootno * - o o < * ) ( o o o u i ( o ^ - r - omco^eocoioco-»— to » n N O N - o ) O i ^ N « i n
y ^ K m o ( M ( o e a c n i o K r— ocoor-IOCOCMCMCM *—t7»»no>cMint7*<*>r—OO eoiocMocnene7»c7>^^ moomcomcooo'j^'co
O o>^-co«— ( o e o u ) 0 « h > cr>c3car— I O ^ - C O C M ^ - O cnt—co^co^-c»»ooto^- CMOCOCOPO-— or— co«*- ro«MM<*)cnMCQ*«D
coco-^CMa>Wincococd cdh^cococdcocococotd u i i o i n i o i r t i n - v ^ r * * ^ W^TrjicorocncMeMCMCM cMCMCMCMCMeMCMCMcMCM
jn: a
«oioo»m'-eMCMCM^^- cnooicococnoocoenico •*oocM»-^-c7*r-<ocn^ co^-cscooo'*— o c o i n o i
h-inoKwoiftN^o
•Efl . . . . . . . . . .
•
. * ^ ^*^*^^lf^^jfrgv4g^^*<^i^^«^p ^ ^ U ) m i A U ) U ) U)CO V^V^ I^^CO CO CO CO t^^OO ^^COCOfiOCM IA ^OCM^^ ^ ^ ^ ^ ^rt ^^ CQ O^ ^ U ) O ) ^ O ) ^ ^ r n
o ^ + 5 5 ^ 5 ^ + H ^ ^ t^^TTjr^^^^ijr^jr ^ r ^ ^ ^ ^ j H ^ ^ ^ ^ ^ ^ j ^ ^ ^ ^ ^ ^ ^
c^^
LULU LU LULU UJLUUJ LULU
£ moeocomr-h-^h-o
O C»CMOCMCV}CMCMCMCOC3I
O «-<q-o)^>r^inocoo)^CN
^
C
O
C
M
LULULULUUJUJLUUJLUUJ
r— M m c m o N O v o r to<oin(nN(C(oocoo>
c»*— «7*CO^-CM*-*-OO>
C
M
C
M
C
LULU LULU LULU LULU LULU
^-—CQ-^-r-cor^*— coco
C7»COCMC7>I«CMC7»OO«30»
cor-mNoeouiroNO
M
C
M
*
—
LUUJLULU LU LU LULU LULU
iw^ooNM
*f-n«
or^i^-O'-^ 1 —o^-oo
oco(D*woa>cor-«s
-
-
•
-
—
LULU LULU LULU LULU LULU
meoco—cnoton-^>
to eo er» coo or— o»^r*ui^-cocoo^tncMCM^io
*—•—••• . • J - W - — ^ - . — * —
^»-toe7>or— lncoc»^-^M I D * ' - W V O » O M O ' - ^
_ _ _ C M « - ^
-^CMCO C M — —
^ - * - —
I
CM
Cn CM CM CM CM CM CMCMCMCMCMCMCMCMCMCM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM C M - ^ — — * ~ ^ ^ ^ ~ ^ ^ ^ ^ r ^ ^
^
LU
re o
•2"
—
m
CMCO CO CO CM CM CM CM CM CM CM CM CMCMCMCM—————— ^~~S.~~~~
i:O
OOI^CO ITS »OIO « t n i n i n i n C O C O * CO
t — w _ ^ — ^ - - r - * - _ . _ _ ^ . _ _ _ _ , _ . ^ _ _ . - , _ , _ » - . ^ _ ^ ^ - ^ - ^ - ^ - ^ ^ - ^ - , — . — ^ - — ^ — — » - ^ - * - ^ ^ ^ ^ - — * - » - o o es
-*--•--+--»--*--•--+••+--•--•- -<--•- ^^-^-»--»--»-^.-t- -•- -H •+- -•--•- -4- -«--*--•- -4- •+•-4--*--#--4--•-•+•-*--*--+• -•--*--*--+•-•--*--»--•--•--*- HLULULUUJLU LULU LULU LU LULULUUJLULU LU LUUJLU LLJLU UJLU LULU LULU LULU UJLU UJLU LULU UJLU LULU LULULUUJUJ LULU LU LULU LU
oooco^-CMoeoco^-cM o m t o ^ M c ^ — o o i e o t—com^TOCM*—oe7>oo f*-com^»'CoeM^-e3C7»«o h - i o w v c o o j ^ - o o o o
ZO3
19-
JAERI-Data/Code
96-029
_L
eE
ii
*3
u] xnjj
oo
E
o a.
rioi tdirioinin «»iu>ir>rnro
E
l I I I I
iiiiniil
I I I I I
I • II i • 1111 • II11
I I I II
riiocodw
I
I I I
—"odm^cJ
I I I I I
I I I I I
II
II
I I II
LJJLU LLJLXJLL.
•— coes**uDeoooro
I—i
1o
1
"O
e
esicsievjesiesi
UJUJUJUJLU
loentncsj—
tntsj^Lor"
iocoo>oo
is?
j j j j
LU LJJ LJJ UJ LU
oot7>u?coir>
csi —i«r-esi
oCTkf-m**
^ ^ ^ ^ ^5 5 ^ +T T T ^ T
LJJ UJ LJJ LLJ UJ LJJ L±J LU LLJ UJ UJUJLULULLJ
oir>csi^-co r-csjrrjcsjcn eoro-*i-ir>
MCTIOCMM menfnmro *t**-+mtn
mwnnn C*J—^r—oo r—^—O
ndoiadh-' eo'd^-'ot-' — r
H- •+• H- •+- -f-* UJUJUJLULLJ LULUUJ-JLU LULUUJLUUJ LU LULU LULU LULULULULU UJLUUUUJUJ LU LULU LULU LUUJLULUUJ
LULULU
^*r-LOLOtr> t c o o n m o ^ • • - c o ^ - r * - e o o c n o o o Lnu->ocsicr> ^*-f—i*-r— o o m ^ - o o — L O C O
^ _ > U > < O N o>cMrocsi~- r—— r-LO^- ( c x n v c n — c s i t o ^ - ^ - ^ rnur—«_>ir> caCOLOUR— tounLom**
countn
ni^
cor
UJLLUJUJUJ LULLJUJLULU UJWUJLULU UJ LULU LULU LU LULU LULU LU LULU LULU LU LULU LULU LU LULU LULU
^.POCVI—o o»eor-«JLO -*ncvi—cs C7»eor— torn •»cneM—o o>«or-<om ^-tncvi—CJ O O O O O
^ ^ r ^ - cocnrocoro citncn'toro eJeJeJeJcJ cicitvicJoi — — — — ' — _ _ _ _ _ cnodr-^touS
-
20 -
96-029
crel
and
JAERI-Data/Code
c
&>
w
o
"a
2Z
"3
O tn"
'?*3
— c«
5 cm
earn
a"
>P-,
£
0 0
.11 a
^-c»to»^-o» a»r—
I
g
LULULXJUJUJ LULLJIXILUUi
LU UJLU LUUJ LULLJLLJUJUJ LULU UJ i l l I X I
UJLULLJ LLJUJ LLJLLJ LULU LJJ
LLJLLJLU
cxsjr— — r o c^csico-^-co <«rcMoo<o«— LT>C*I-*^CJ en—(oai<r toro^tocsi C-JCO^CSJ^- O 9 > o
, ^ 4-roo><oio incMroir>«0 ininco—o» co->*csi — c> c r * ^ ^ ^ ^ c o i n — t o c o — o o o — ro^f^
2 CMfn^-**cJ oooeoo^ ^^+tco enrococ
C
J
C
J
i
OB
5
?
LULULUkULU LULUUJLUUJ LLILULULULU LULULULULU LUUJUJUJLU LU LU LJJ LLJ LU UJ LULU LULU LULULU
c n ^ m ^ U ) o o c j ^ a » i o < o ^ r u > oooooo^ca rco©
wn
N < O N O ( H i n ^ n o c o cotn^cao r-**—esica N W C J O M cna>evrtncM «3tooacwcD m o m
o
2S
io
L1JUJUJ LULLJLULUUJ LU LLJ IXI LU LU LULULULLILU LULULULULU
looa n i n o
rocM>—
« n l c u > N <ncsirocM
i— c r x n e o o n ^ * — n o
n—'—'
•»—oo^cr—
r——r—
o io-»
»
csnoooo—
—"—"—"c-j'cvT
coonoeo IOUIOCMOI
o»oro
o»«-w
>>— tM<o»f»*
— — o«7>eo r—
CM'CM'CS!—'—' ——'——•—•
LLJUJLULLILU
LULULULULLJ
o—r-r—r— » 2 » o o "~!CSS!I
roin—<oin
o ««
min— w
wininnw
oin<oin o
_•_•_•_-•—' — ' — — m m a W i
oooooo
S3
UJUJLULULU tllLULLJUJUJ LULU i l l LULU LULUlilUJLU LULULUlilLU UILLJLULLJLU UJLULULULU UJLULULULU UJ
-
21 -
35
JAERI-Data/Code
96-029
I1
|-O
IE
o c5
g.
oo
_"U of
II
t-H <
« O 1
mo u ] xn[;j
T—(
Ml
-a
3
OOOOO
OOOOO
OOOOO
OOOC3O
OO
ILLJUJUJUJ LULULULULU UJ LULU LULU LU LULU LULU LLJLUUJLUUJ LU LULU LULU LULU
o ' - o — LOOO
cor— o n t o •«ro*fir)h—co
f^u>u>inuS LOUSLOLOLO
^T^J^CTICTJ ododr^r^u>
^^000)00
•—CV4CMCSIC4
•5 a.
CaOOMO'-
CMCSICM*
LU LULU LULU LU LULU LULU UJ LULU LULU UJ LULU LULU LU LULU LULU LU LULU LULU LULULULULU LULULJJ
o — CJCSJLO«> — O N O ^ — — r— o i n p j o i n w * - n o > m ^ * OOLDOO—a> co*©^r
n o < o e o r t o ^*oroeM
>cn^o o
i-^—^r*^u>
LniriinuSuS
oeotor—co <otn*o^^J^Jcv! cococo»—en — aiaiaiea
cjcorocnc^
cncsiesicsicsi
LULU LULU IXl LULU LULU LU
— o>mo>N ^eM^inLo
a>c<iodLoo d « * V f ) d
CM CM CSI M CM OJ C J CM CNJ CM CMCNICJCMCM
p^ed-^c
CJCWCM — —
—r— L O r — ^ - C
—— — — « —
«—^^,——
LULULULULU LU LULU LULU LJJ LULU LULU LULULULULU LU LULU LULU LU LULU LULU
LOO^POC^J— OOCTXOCOLO ^ L o c s - ^ m r»-csicoesja> e o n ^ r - m r*-^mcsi*o
WOWM o>o»roLoco ^ * ^ —
fO
o
o otcoo r
-x
*nNww
LUUJLULUUJ LU LULU LULU LULULULULU LULULUUJLU UJUiLULULU LULULULULU LULULULULU UJ LULU LULU UJ
zca
-
22 -
X
3 B!
JAERI-Data/Code
96-029
• a -
(11 —
d variou!5 thickm
;tor on tl
tie beam
20
Neutron Energy [MeV
Si
o
£^>
U O
pi
00
r—'
f—(
- - * - i
5
i
t
I
I
I
I
*
i . i . i
i
i
. i
.i .I . . '
I . . !
' . ' . ' ! . . !
' . ' ! ' , ' '
, ' , , ' J
O'—CM C-tO4*—^—t
o
O
2^
i QOOOOOOOOO OOOCOOOOOOO OOOOO^O)r»o*oo
I I I I
I I I I I I I I I I
—
U-> CMOOCOOCO cMinoweo
CM CM CM C^ CM CM ^ - ^ - — —
I
i^SSSSSS BSSSSSSlSBaB BSSSBSS3SSS SSSSSSS^SS
' • MI n i ' M . I ' ' '
w
^ - — - ^ - ^ - ^ - ^ ^ - ^ - ^-^
Us
*—CM CM —
22
rjCOCMCMCMCMCMCMCMCM
CM CM CM CM CM CM CM CM CM CM CMCMCMCM
—•—*—-—•»-•-
CM
CMCMCMCM~~ — — * - » — • . — ^ - ^ - ^ - — , —
u J L U t L i L i i L i L i L i l j t L i UJUJUJUJUJLIJUJUJUJUJ LULULUUJUJUJUJUJUJUJ UJLUUJLUUJUJUJUJUJUJ LLJLUUJUJliJUJLlJlJJUJUJ
oo co en CM CM *w irj to en
coLntoco-^-irsouif—
o
SI
—v looinuaoo-inui oimoinoi—owm
00
o
—
iLUlL LLJLULULIJLUIIJIIJLIJLIJUJ UJUJUJUJUJUJUJliJUJUJ UJUJLULlJUJUJUJLiJLiJUJ UJ UJ UJ UJ UJ UJUJ UJ LU UJ I
^ C M ^ooco^-**)CM-^-^cnoo r— c o m ^ - n c M — o o i o o K t o i i i v r o M — o c n o a r-com^rcncM,— o o o
j ^ - —
-
23 -
, —^
-
^
-
^
-
-
-
*
—
_
.
^
c
r
,
o
o
JAERI-Data/Code
1
SH
U<-|
\—
U
,
I " '•
. . .
96-029
j.. .. 1 . .
. ,...
:#-
'
' —
i
'—J
c
• o
J
{
lick
U
I
i
J
I
\
\
s
\
a
•ons
3
E?
X
VJ
1
<U
C
CO
}
•
I
.22
*^
CO
•
|
E
_ o
; e
40c
-1—
20c
bea:
E
si a
3
z
O
ex
IS'S
— CO
N
*~
X
•fc
\
c
• o
i
:
s
•0 0
i
i . . . .. . .
.
i
i...
o
O
o
u ] xn[j
Q0
tax
•a
-~-CM — — ,
o
-*--+--f--f•4--*--»--*--»--»--t--*--h+LULULL. LULULULU LLJ LLJ LLJ n II i n i it i i n m n i n i II i II i IM 'I'nl" " ' " ' ' " HM" " ' '111
incncM COCM»—*—* — —— ••—
o •"
^ - C M C M C M C M C M C M C M C M C M CM CM CM CM CM CM CM CM CM CM
m
HI I I I I I I III
III
mm i
CM CM CM CM CM CM CM *— » - » -
LU LU LU LU LU LU LU LU LU LL>
' ^ * *
—
• • — • " — • " —
-
-
T—
•*—•*
t
O CSJCMCMCMCMCMCMCMCMCM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM ,—^-*—-.—-^-*-.— - - . . — —
|
£
f
LLJ LLJLLJLLJ LULU LLJ LLJ LULLj UJUJLULLJ LLJ LULU LULU LLJ LULUUJLU LULU LULU LULU LU LULU LULU UJ LULU LULU LU LJj LU LU LU LULU LULU UJ
^
^
^
^
3
^
^
CO
CO ^^^7CM 1^^ CO^3CD (^3^^?
<N I
_00
•gO
^ r - C l O O r ^ - t O C ^ O I O f O COCO O*>^-COCO^(0*~**V COCT>CMU100C3^3^ — m LA OllOWflO^^OVW NO^NOfOlOl—OCOCO O1
C^J^^^ ^^^ 1^^) ^^^ C^JC^J^^T^i^ C^) CM C^M CM COCO CO ^^F ^^F ^^? i^^ ^^^ ^^^ C^? C^3 C^3 ^^^ ^^^ ^^* ^^^ CO C^^^^^C^^CO C^JCO ^^F^^^ ^^^^^d ^^^ ^^9 ^^^ C^^ 1^^ ^^^^"^ ^—• CO ^ ^ CO
,
_ _ _ - , —
_ ^ . C M -^--^-
—CMCM—-
CM CO
! • ^ • ^ r ^ ^ ^ r ^ - c o c o c o c o coco coco coco coco coco coco coco coco coco coco coco coco coco coco CM CM CM CM CM CM CM CM CM CM CM CM CM
.32
! LULU LULU LULULULULUUJ LULU LULU LULU LULU LULU UJLU LU LU LU LULU LULULU LULU LULU LULU LULU UJLU LULU LULU LULU LULU LULU UJ
O
LULU LULU LULU LULU LULU LU LULU LULU LU LU LULULU LULULU LULU LULU LULULU LXJ LULU LULU LULU LULULU LULU LULU LULU LULU LULU LU
Zoa
r-^cococdcoco'hntninin ui^ i «r'*r^r'vW^r( v )< tf > coco coco coco coco CM CM CM CM CM CM CM CM CM CM *—•— ^ . ^ • * - t - » - i - . . ~ * - o ) o o f—
3
-
24 -
JAERI-Data/Code
96-029
^^
00
w
SE
c
o3
o w
o
t_i
in
zs
-Q
£— c
•ScS
« oa
o
CM
-a
4)
I
cu
as = ,
JUJUJUJLtJLiJLLJUJUJUJ
LLJLLJtiJLLILiJLIJLlJLLI L U L U
L U L U L U LU L U L U L U L U L U L U
LLJLULULULULULUlijtiJLij
toto<o<o<o<o<oco<o<o
h—ooCT»o»oointvn£»c»'—
11 M ' ' 1 ' " ' '
t L
M ' M*f "
lllJt1
-1
§2
5«
J3
O.
e
C
-*--*--•--*--••-•--*--*--•--*L U U J L U U J L U LULLJ L U L U L U
- • - - * - 4- -t--t--f- - t - - K - H LULUUJLULLJ LULU L U L U L U
C C C
- • - - • - - • - -f- -+•-*- -H - • - -f- -f- -t- -+• -f- - * - - • - -f- -•--•--•--+"
L U L U L U L U LU L U L U L U LU LU L U U J L U L U L U U J U J L U U U L U
-4- •+• -f- -+- -H -f- -+-UHLHJ J'' I1' MLIUJ!'
u
in
2
a2
"
J " J " " ' " • ' " iLLiii m
f n/
| t l\l
?*' HI /\l
tU M l I ' ! ILLJLLJ
L b i L L / L U U J t i J L U U J U J U J L U
U J L t J L l J U J U J U J U J U J t i J U J
1 • f"
" ' " ' " ' / H I
1
'
" '
f
t *fWn/ L U
^2
o
i-o
LULLJ LULULU LULU LULULU LULU LULU LULU LULU LULU LULULU LULU LULULU LULU UJLULULULULULULUUJUJ
<DCJ
Zoa
-
25 -
LLJLU LU LU UJ LU LU LU LU UJ LU
Table 1.21 Reaction rates behind iron measured by the Bonner sphere
spectrometer for 43-MeV p-Li neutrons
Reaction rate (n H <20cm thick
40cm thick
2. 320E+2
1.082E+3*
Bare
3. 094E+3
I.5cm+Cd
7. 708E+3
2. 134E+4
7. 542E+3
3cm
2. 280E+4
9. 210E+3
5cm
1. 788E+4
4. S65E+3
9cm
Read as 1.082 x 1 0 '
Counter
"' )
100cm thick
2. 290E+1
I.855E+2
3. 94IE+2
4. 716E+2
I.598E+2
103
Ep(MeV) 68
—*•
—•
10"
43
e
— 9 c m thick
°— 5 c m thick
3cm thick
1.5cm thick+Cd
bare
u
ioJ
Iron
m
o
I
Table 1.22 Reaction rates behind iron measured by the Bonner sphere
spectrometer for 68-MeV p-Li neutrons
Counter
Bare
t. 5cm+Cd
3cm
5cm
9c«i
n
8.
10z
Reaction rate (n U C'x )
20cm thick
40cm thick
100cm thick
7. 238E+I
9. 205E+2* 4. 948E+2
1.087E+4
7. 587E+3
6. 287E+2
I.858E+4
I.302E+3
3. 317E+4
2. 249E+4
5. 131E+4
I.343E+3
3. 847E+4
t. 344E+4
5. 402E+2
101
Read as 9. 205 x 10*
50
Fig. 1.21
100
Thickness [cm]
150
Reaction rates behind iron measured by the Bonner sphere
spectrometer for 4 3 - and 68-MeV p-Li neutrons
Table 1.23
Reaction rates behind concrete measured by the Bonner
sphere spectrometer for 43-MeV p-Li neutrons
Counter
Bare
t. 5cm
3cm
5cm
9 cm
Reaction rate (n ft C " ' )
100cm thick
25cm thick
50cm thick
6. 449E+1
5. 200E+3* 1.317E+3
1. 252E+3
4. 842E+1
5. 984E+3
1.594E+3
6. OITE+1
8. 937E+4
I.903E+3
1. 195E+4
6. 623E+1
1. I I I E + 4
I.620E+3
5. 27IE+I
150cm thick
2. 729E+0
2. 285E+0
2. 886E+0
3. 024E+0
2. 363E+0
rqr-
Ep(MeV) 68
—•
43
o—
10"
Read as 5. 200 x 10'
9cm thick
5cm thick
3cm thick
1.5cm thick+Cd
1.5cm thick
Bare
J
Concrete
CO
0=5
m
2
c
to
-a
Table 1.24
I 102
Reaction rates behind concrete measured by the Bonner
sphere spectrometer for 68-MeV p-Li neutrons
Counter
Bare
1.5cm
t. 5cmCd
3cm
5cm
9cm
CO
$
Reaction rate (n // C - ' )
50cm thick
100cm thick 150cm thick
2. 044E+3* 2. 739E+2
1. 833E+I
2. 164E+3
1.06IE+1
1.442E+2
3. 146E+2
3. 043E+3
2. 422E+I
3. 722E+3
3. 625E+2
2. 861E+1
3. 076E+2
2. 464E+I
3. 25IE+3
iO
10*
10u
Read as 2. 044 x 10'
Fig. 1.22
50
100
Thickness [cm]
150
200
Reaction rates behind concrete measured by the Bonner sphere
spectrometer for 43- and 68-MeV p-Li neutrons
Table 1.25
Neutron spectra behind iron measured by the Bonner sphere
spectrometer for 43-MeV p-Li neutrons
Energy
(MeV)
Neutron Flux
(n cm " Lethargy
20cm (hick 40cm thick
10'
U C"' )
100cm thick
9. 760E+I
2. 277E+1
2. 677E+I
t. 203E+I
1.088E+1
8. 940E-2
5. 349E-2
I.415E-2
5. 843E-3
5. 141E-3
1. 35E+I
I.00E+1
6. 70E+0
4. 49E+0
3. 01E+0
2. 02E+0
1.35E+0
9. 07E-I
6. 209E+0
4. 294E+0
5. 434E+0
1.629E+1
2. 354E+1
I.069E-2
7. 898E-3
1. 549E-2
u
7. 986E-2
I
4. 98E-1
2. 24E-I
3. 424E+2
4. 830E+2
7. 1I1E+2
8. 604E+2
4. 851E+2
5. 151E+1
8. 128E+1
1.965E+2
3. 787E+2
2. 073E+2
8. 65E-2
1.50E-2
3. 35E-3
4. 54E-4
2. 26E-5
2.
4.
2.
2.
1.
700E+2
618E+1
620E+1
930E+I
769E+1
t. 570E+2
1.798E+1
1. 238E+1
3. 361E+0
3. 892E+0
5. 04E-6
1. I2E-6
4. I4E-7
I. OE-10
8. 083E+0
5. 673E+0
3. 083E+0
1. 233E+0
I.036E+0
6. 747E-1
•
i
•
i
i
•
i
•
•
i
i
I-
6. 793E-2
••
20cm thick
r—
:..,
'>
1
n.i
40cm thick |
ID
1.369E-I
2.
3.
1.
9.
1
43MeV p - Li neutrons on Iron
4. 50E + 1 * 2. 740E+3
3. 50E+1
6. 395E+2
2. 75E+I
5. 945E+2
4. 454E+2
2. 25E+I
3. 016E+2
I. 75E+1
2. 027E+2
I.245E+2
1.316E+2
1. 753E+2
2. 725E+2
•
440E-1
249E+0
I47E+1
915E+0
>
m
„•
2
6
"i 100cm thick
I. 200E+1
1.015E+0
j-
3
8. 151 E-l
1. 190E+0
6. 792E-1
E
4. 982E-2
2. 216E-1
3. I99E-2
2
•*l
i
n
S
•
Read as 4. 50 x 10
10
Fig.1.23
-4
10'
. i
. i
i
. i
.
i
10
10
Neutron Energy [MeV]
u
10'
Neutron spectra behind various thick iron measured by the
Bonner spnere spectrometer for 43-MeV p-Li neutrons
Table 1.26
Neutron spectra behind iron measured by the Bonner sphere
spectrometer for 68-MeV p-Li neutrons
Energy
(MeV)
Neutron Flux
(n cm
Lethargy
20cm thick 40cm thick
H C'1)
100cm thick
OOE+1*
50E+1
50E+1
50E+I
50E+I
1. 190E+3
6. 935E+3
2. 458E+3
1.866E+3
1. 345E+3
1. 752E+2
9. 746E+2
2. 874E+2
2. I85E+2
1. 310E+2
5. 770E+0
I.593E+1
3. 469E+0
4. 852E+0
2. 727E+0
2. 75E+t
2. 25E+I
(. T5E+I
1.35E+1
1. OOE + 1
8. 752E+2
5. 086E+2
4. 332E+2
2. 940E+2
2. 683E+2
1.05IE+2
4. I34E+I
5. 888E+I
3. 836E+1
4. 429E+1
4. 563E+0
1.570E+0
8. 45IE-I
2. 413E+0
6. 809E-I
6. 70E+0
4. 49E+0
3. 01E+0
2. 02E+0
I.35E+0
3. 227E+2
5. 3I7E+2
7. 730E+2
1. 032E+3
1.47IE+3
4. 553E+1
6. 325E+I
t. 3I2E+2
I.754E+2
3. 185E+2
4. 022E-1
7. 252E-1
1.394E+0
1.894E+0
2. 629E+0
9. 07E-1
4. 98E-1
2. 24E-I
8. 65E-2
1.50E-2
1.937E+3
1. 776E+3
7. 556E+2
2. 506E+2
3. 540E+1
9. 968E+0
3. 244E+1
2. 462E+I
4. 171E+1
5. 577E+0
3. 35E-3
4. 54E-4
2. 26E-5
5. 04E-6
1. I2E-6
2. 018E+1
1. 072E+1
4. 297E+0
3. 210E+0
3. 045E+0
6. 238E+2
9. 477E+2
5. 293E+2
2. 938E+2
4. 733E+1
3. 383E+1
I.424E+1
5. 6I7E+0
3. 107E+0
2. 191E+0
1.20IE+0
1. 855E-1
8.
6.
5.
4.
3.
to
CD
4. 14E-7
3. 437E+0
I.OE-10
Read as 8. 00 x 10'
10'
68MeV p - Li neutrons on Iron
oo
eg
20cm thick [
>
m
50
40cm thick j
X
:100cm thick
O
to
4. 850E+0
2. I32E+0
1.5I5E+0
4. 835E-1
2. 606E-1
10 - 2
10"
Fig.1.24
-v-2
10"M
10"'
10"
Neutron Energy [MeV]
Neutron spectra behind various thick iron measured by the
Bonner spnere spectrometer for 68-MeV p-Li neutrons
Table 1.27
Neutron spectra behind concrete measured by the Bonner
sphere spectrometer for 43-MeV p-Li neutrons
Energy
(MeV)
to
o
Neutron Flux
(n cm " Lethargy
25cm thick
50cm thick
100cm thick
.636E+I
(5. 268E+0
5. 573E+0
2. 492E+0
.642E+0
4.
3.
2.
2.
1.
50E+1*
50E+I
75E+1
25E+1
75E+I
5.
1.
1.
8.
5.
500E+3
073E+3
113E+3
8I2E+2
741E+2
7. 250E+2
1. 564E+2
1.315E+2
9. 571E+1
6. 533E+1
1.
1.
6.
4.
3.
35E+I
OOE-ff
70E+0
49E+0
01E+0
4.
2.
2.
2.
2.
005E+2
936E+2
543E+2
001E+2
428E+2
4.
4.
3.
3.
4.
633E+I
1 95E+1
656E+1
344E+I
345E+I
10
.370E+0
.173E+0
.648E+0
.111E+0
.946E+0
i \.
:I.
<).
!i.
!).
3. 181E+1
1.75IE+1
2. 609E+1
1.392E+1
1.163E+1
8.
1.
3.
4.
2.
6.
4.
5.
5.
4.
455E+I
638E+I
408E+1
612E+1
454E+I
8. 349E+0
7. I28E+0
8. 594E+0
I.085E+1
1.07IE+1
2. 927E2. 642E2. 629E5. 137E.941E-
.OIIE-2
. 162E-2
. 777E-2
2. 236E-2
. 446E-2
3. 377E+I
5. 04E-6
3. 770E+I
1. 12E-6
2. I68E+1
4. 14E-7
1.0E-10
Read as 4. 50 x 10'
1. 169E+I
1. 402E+1
4. 895E+0
5. 963Er. 425E2. 470E-
2. 941E-2
2. 216E-2
. 077E-2
65E-2
50E-2
35E-3
54E-4
26E-5
i
r
43MeV p- Li neutrons on Concrete
I71E-2
869E-2
705E-2
715E-2
173E-2
1. 875E+2
1. 529E+2
1.593E+2
9. 488E+1
8. I61E+I
327E+1i
833E886E285E062E-
i
7
l I. 229E-1
;!. 288E-I
.504E-I
.628E-1
!>. 817E-2
2. 02E+0
1. 35E+0
9. 07E-1
4. 98E-1
2. 24E-1
.
' \.
r.
i \.
2.
i
150cm thick
10'
25cm thick
I
!i. 963E-2
1. 533E-2
i. 736E-2
.648E-2
.415E-2
50cm thick
>
u
m
s
p
s
100cm thick
5
i
10
!
r
,
150cm thick
.
10"
Fig. 1.25
,
-2
i
. i
.1
. i
. i
-2
, i
10
10"
Neutron Energy [MeV]
10'
Neutron spectra behind various thick concrete measured by the
Bonner sphere spectrometer for 43-MeV p-Li neutrons
Table 1.28
Neutron spectra behind concrete measured by the Bonner
sphere spectrometer for 68-MeV p-Li neutrons
Energy
(MeV)
I
CO
Neutron Flux
(ncrn
Lethargy ' ' U C " ' )
50cm thick
100cm thick 150cm thick
8. OOE+I*
6. 50E+1
5. 50E+1
4. 5OE+I
3. 5OE+I
6. 847E+2
2. 149E+3
4. 819E+2
3. 065E+2
2. 126E+2
1. 672E+1
8. 793E+I
2. 080E+t
I. 947E+I
6. 419E+0
5. 783E-1
7. 227E+0
1.52IE+0
1. 497E+0
8. 229E-1
2. 75E+I
2. 25E+I
1. 75E+1
1.35E+1
I.OOE+t
1. 297E+2
8. 866E+1
6. 503E+1
5. 277E+1
5. 301E+1
9. 6I7E+0
1. 3I9E+I
5. 109E+0
5. 126E+0
4. 466E+0
8. 429E1. 741E-
6. 70E+0
4. 49E+0
3. O1E+O
2. 02E+0
1.35E+0
6. 303E+1
6. 096E+1
8. 678E+1
5. 923E+1
4. 13IE+1
7. 345E+0
9. 705E+0
1. 185E+I
1.022E+1
5. 903E+0
9.
7.
8.
9.
5.
9. 07E-I
4. 98E-1
2. 24E-1
8. 65E-2
I.50E-2
3. 35E-3
4. 54E-4
2. Z6E-5
5. 04E-6
1. I2E-6
4. 14E-7
1. OE-IO
2. 950E2. 5 I 9 E 2. 170E-
•
7. 619E+0
4. 203E+0
4. 166E+0
1. 913E+0
1.073E+0
5.
4.
2.
5.
7.
7. 998E-1
9. 285E-1
7. 6I4E-I
1. 206E+0
2. 419E+0
1.341E-I
9. I07E-2
7. 3I4E-2
6. 624E-2
4. 13IE-2
8. 259E+0
I. 290E+0
9. 931E-2
229E408E668E147E-2
830E-2
1
i
'
i
' i
i
' i
' i
68MeV P - 7 Li neutrons on Concrete
U
oo
CO
470E831E971E924E577E-
5. 760E+I
3. 245E+1
2. 648E+1
.825E+1
. 768E+1
. 690E+1
. 910E+1
. 806E+I
. 554E+I
. 638E+I
Read as 8. 00 x 10 '
10'
50cm thick
i
1 '•• i
i
~
>
m
TO
o
r
•el
n
8.
o
o
100cm thick
1-1
•—•
i
i
u
i
2
150cm thick
10
.
i
i
i
. i
l
. 1
10 -6
. 1
10u
Neutron Energy [MeV]
Fig. 1.26 Neutron spectra behind various thick concrete measured by the
Bonner sphere spectrometer for 68-MeV p-Li neutrons
Table 1.29
Fission rates of
232
Th and
238
U behind iron for 43-MeV
p-Li neutrons
P o s i t ion
Z"
R"
(cm) (cm)
I
CO
0
10
20
40
70
0
0
0
0
0
0
10
20
40
70
20
20
20
20
20
Fission reaction rate
Ist
(n
8. 0IE+4
2. 43E+4
5. 64E+3
2. 97E+2
6. 96E+0
U
(%)
c
(0. 59)
(1. 0)
(1. 8)
(3. 4)
(9. 8)
1.00E+2 (4. 3)
2. 47E+2 (5. 7)
1.95E+2 (3. 5)
5. 14E+1 (5. 0)
3. 6IE+0 (20. )
(n
(X)
43MeV p-Li Neutron on Iron
3. 27E+4 (0. 24)
1.02E+4 (0. 89)
2. 49E+3 (0. 99)
1. 16E+2 (3.3)
1. 79E+0 (28.)
10M
TTi beam axis
20cm from beam axis
U beam axis
U 20cm from beam axis -
u
».. •o
6. 12E+I (17.)
1.77E+1 (14.)
1. 53E+0 (21.)
2
3 10 - cf
m
OS
c
o
'w
.S3
Thichness of iron shields
D i s t a n c e from the beam axis
Read as 8.01 x 1 0 4
73
n
a
ao
O
10u
-1
10
Fig. 1.27
50
100
Thickness [cm]
150
Fission rates of
Th and
U behind iron on the beam axis
and 20-cm off axis for 43-MeV p-Li neutrons
Table 1.30
Fission rates of
p - L i neutrons
232
T h and
Z38
U behind iron for 6 8 - M e V
Fission reaction rate
Position
R"
7'
(cm) (cm)
(n
0
20
40
70
100
0
0
0
0
0
1. 18E+5 e
1. 53E44
I.23E+3
3. I8E+1
2. 59E+0
20
40
70
100
130
20
20
20
20
20
JS.y
2t2
(X)
(n
10°
Th
(X)
68MeV p-Li Neutron on Iron
(0. 38)
(0. 66)
(2.3)
(7.1)
(11.)
5. 71E+4 (0. 49)
7. 70E+3 (0. 90)
5. 47E+2 (3. 3)
1. 08E+1 (12. )
8. 51E-1 (19. )
104
I
7. 14E+I (4.0)
1.68E+2 (3.4)
I.58E+I (6.0)
2. 57E+0 (9.3)
1.08E+0 (12.)
4. 69E+1 (4. 7)
1. 15E+2 (4. 0)
7. 12E+0 (8. 6)
9. 07E-I (15. )
4. 59E-1 (18. )
^ ^ h beam axis
20cm from beam axi:
beam axis
20cm from beam axis
1 io 3
>
m
z
10
W
to
* Thichness of iron shields
" Distance from the beam axis
c
Read as .18
1 x 10 8
6
a
101
10u
o
-A
10"
Fig.1.28
50
100
Thickness [cm]
150
Fission reaction rates of 2 3 Z Th and Z3S U behind iron
iron on the
f 68-MeV
6 8 M V p-Li
Li neutrons
beam axis and 20-cm off axis for
T a b l e 1.31 F i s s i o n rates o f
p - L i neutrons
Posi t ion
T h a n d 23> U behind concrete for 4 3 - M e V
Fission reaction rate
Rb
in
(en) (cm)
(n //C" )
(X)
0
25
50
100
150
0
0
0
0
0
7. 28E+4 €
1. I5E+4
1. 26E+3
1.98E+1
1. 72E+0
(0.40)
(1.4)
(5.6)
(8.0)
(17.)
0
25
50
20
20
20
20
20
Z*
too
150
1
213
U
3. 24E+2 (6.4)
4. 78E+2 (15.)
I.90E+2 (8.4)
1.37E+1 (17.)
1.33E+0 (20.)
(n fiC~l)
Th
(X)
105
3. 07E+4 (0. 60)
4. 32E+3 (4.8)
5. 23E+2 (4.9)
7. 80E+0 (24.)
43MeV p-Li Neutron on Concrete
-o-232!^
10"
6. 24E+1 (16.)
I.48E+2 (12.)
7. 58E+1 (8.8)
5. 73E+0 (27.)
beam axis
20cm from beam axis
beam axis
20cm from beam axis
uA
103
1)
(Sa
o
ISSI
I
23Z
* Thichness of Concrete shields
b
Distance from the beam axis
c
Read as 7. 28 x 1 0 '
m
73
2
10
n
o
Q.
10'
10"
50
Fig.1.29
100
Thickness [cm]
150
200
Fission rates of 2 3 2 Th and 2 3 8 U behind concrete on the beam
axis and 2 0 - c m off axis for 4 3 - M e V p - L i neutrons
Table 1.32 Fission rales of
p-Li neutrons
Posi t ion
I'
Rb
(cm) (cm)
2 32
Th and
U behind concrete for 68-MeV
Fission reaction rate
2I
'U
"'Th
(n " C " 1 ) (X)
(n fiC ') (X)
1. 18E+5'
2. 37E+4
4. 63E+3
1. 72E+2
9. 47E+0
(0. 38)
(1. 7)
150
0
0
0
0
0
(4. 8)
(7. 5)
5. 71E+4 (0. 49)
1.41E+4 (2. 2)
2. 43E+3 (1. 4)
9. 23E+I (6. 4)
4. 93E+0 (10. )
25
50
100
150
20
20
20
20
1. 28E+3
7. 82E+2
8. 30E+I
7. 4IE+0
(3. 9)
(1. 9)
(3. 3)
(6. 7)
2. 82E+2
I.96E+2
3. 86E+I
3. 46E+0
0
25
50
too
(t.I)
68MeV p-Li Neutron on Concrete
—•-o-
232
Th beam axis
Th 20cm from beam axi
73Z
104
U 20cm from beam axis
(8. 1)
(3. 7)
(4. 7)
(9. 5)
u 10
>
m
73
I
CO
o
* T h i c h n e s s of Concrete s h i e l d s
' D i s t a n c e from t h e beam a x i s
c
Read a s t. 18 x 1 0 '
1 10
2
o
o
to
10'
10u
50
Fig. 1.30
100
Thickness [cm]
150
200
Fission rates of 2 3 2 Th and 2 3 8 U behind concrete on the beam
axis and 20-cm off axis for 68-MeV p-Li neutrons
additional
iron
collimator
.
test shield
10.9 cm 0
point source
neutron beam spreading
>
m
73
f
5.94 x 10 sr
401 cm
Tc
Ts
Fig. 1.31 Calculation geometry for the Monte Carlo codes
The values of shield thickness, Ts and collimator thickness, Tc are
tabulated in Table 1.1.
n
^o m
ioroui-join
0.010^00
UGO<f-
ouiowow
OOOOOO
> 3 e»
o o o o —ro
OOOOOO
rssroro
rorororororo
rorororororo
UlOlCTip>O>~l
—Jp»CO;-JpoJO
OBOBOBOBpOpI
»;-l;-J;-jpop»
O O - J —J—1CT>U 1
. . ^ oco-*>.^<jiin
ooGjro<o-^o
«o—jo»-^oo»
oui—ICJ—o
OOBO>^O>—i
S-S
SSSSSS 2£5-ro*. oocooiroooui *.co*-»-^u>
oa>«O£<c
rororo
oxnouotos
o>—i—J—J—o
UIIOUJOBOJ —
——-JO»«O—
*^°22~
mmm
mmmmmm
mm mm mm
mrjnmmmm
mmrnmmr|i
mmryir|irjii^
_
— •<
•<
w
M
H
r
O
-i
o
O
3
O
3
m O
t=
3
CD
O
O
*.—ro
in—to—*.—
——co
OOIMOUIUI
OJ— in—O><JI
M U U » O —
mmm
I I I
-~ja>O)
mmmmmm
I I I I I I
anntnj*4»Oi
mmmmmm
I I I I I I
c*> to ro ro INS —•
mmmmmm
mmmmmm
I I I I I •£
——————
mmmmmm
•.*oo~* mmm .^~*
, , i fjj£_,j^,j
*~»i~»
^^^^ ^a^s.^^*tn^"
>>
UOIO»OOI
~'"°M
a 3a
ceo cocooa oooooo o o g - S S SSS22S SJSSSSIS
<n —<o
o - ^ c o — oo*»
^p>—tfio>co
cn<o-**0
—o^o>
mmrnm
I I I I
(ji^^u
ui-*>'^<oio
— toenro—J*O
mmmmmm
I I I t I I
i*oro————•
roo>co**«oo>
^^00—o>oo—J
rnmmmmm
I I I I I I
^-»—^——•
jotofo—p>—
tnco-^cncncn
cncna>tototo
SSS£ S2S——o> oroouirocn o Jtoroto o»^cntoooco
icntnpoo
S 2 2 So>^Soo2 SSocnaito O « . O * M » --totojoco ^^iowtoto
mmm mmmmmm mmmmmm mmmmmm mmmmrnm mmmmrnm
i l l
I I I I I l
JOOOO
I I 1 I I I
oo*cnc
1 I 1 I I I
ccn^cucoro
i I I i i i
ra— — — —
i i i i i i
——^ — —- *
qo
to
Cross Section (b)
p
n> o o
Ini
1
1
JENDL-3
S33
M
3
•"•-.
— —
•
.
L
-
1
O
tn
o
•i
1—
sowsk
o -
>
c3
33
&
^
crtD
f
r •r
i
1
..3^;=
-
IWS
1
2^'5en
CD "O
CO
630-96
i
*•
i
JAERI-Data/Code
96-029
2. Neutron Fluxes in and around Iron Beam Stop Irradiated by 500 MeV Protons
(Summary)
1) Accelerator (Organization) : Proton Synchrotron (KEK)
2) Projectile (Energy)
: Proton (500 MeV)
3) Target
: Iron
4) Shielding material
: Iron and Concrete
5) Geometry
: Beam Stop of Rectangular Parallelepiped,
Forward and Lateral Shields
6) Instrument
: Activation Detectors (Fe, Al, Cu, Au, C)
7) Measured Quantities
: Saturated Activity
2.1 Experimental Arrangement
Cross-sectional plane view of a beam stop for the experiment0 is shown in Fig. 2.1. The beam
stop consisted of an iron beam catcher of rectangular parallelepiped and an iron shielding box of
rectangular parallelepiped. Activation detectors were packed in iron pipes of 55.0 cm long and 2.0 cm
inner diameter and put into the hole bored in the beam stop.
Plan view of a beam dump room for the experiment2' is shown in Fig. 2.2. In the figure, a
concrete wall thickness in the beam direction is 2 m and a lateral wall thickness is 1.5 m. Activation
detectors were set inside and outside the concrete shielding wall at 0, 65, 80, 90 and 100 degree around
the beam stop. The origin for the directions was set at 5 cm from the entrance point of proton beam
toward the beam direction.
2.2 Methods of Measurement and Instrument
Saturated activity distributions were measured with a 40 cm3 Ge(Li) gamma-ray detector.
Activation detectors of Fe, Al, Cu and Au were used in the beam stop. Physical properties of
activation detectors used for the experiment are listed in Table 2.1.
Activation detectors of C and Al were used in the beam dump room. Physical properties of the
activation detectors are listed in Table 2.2.
2.3 Beam Conditions
The 500 MeV proton beam impinged on the beam stop perpendicularly at its center. For the
measurements in the beam stop, the beam profile was about 6.0 cm (FWHM) in the horizontal and 3.0
cm (FWHM) in the vertical direction. For the measurements in the beam dump room, the beam profile
was about 3.0 cm (FWHM) in the horizontal and 1.5 cm (FWHM) in the vertical direction. The
accuracy of absolute beam intensity was within 4%.
-
38 -
JAERI-Data/Code
96-029
2.4 Measured Results
Measured distributions of saturated activities in the beam stop are shown in Figs. 2.3 through 2.5
and Tables 2.3 and 2.4. Measured distributions of saturated activities in the beam dump room are
given in Table 2.5. All measured data in the beam stop and in the beam dump room are normalized
by a condition of one proton incidence.
2.5 Model for Calculation
a. Source Condition
The 500 MeV proton beam of mono-direction along the Z-axis impinges on the origin in Figs.
2.6 and 2.7.
b. Calculation Geometry
The beam stop is expressed with a two-dimensional (R-Z) model shown in Fig. 2.6. The beam
dump room is expressed with a three-dimensional (X,Y,Z) model shown in Fig. 2.7, however,
it can be expressed with a two-dimensional (R-Z) model.
c. Material Descriptions
Densities of iron and concrete, and atomic composition of concrete are given in Table 2.6.
2.6 Proposed Neutron Cross Sections
Neutron reaction cross sections except the l2C(n,2n) reaction have been calculated3' up to 500MeV.
The resultant cross sections are shown in Figs 2.8 - 2.11 and are given in Tables 2.7 and 2.8. For the
12
C(n,2n) reaction, we propose a simple cross section4* shown in Fig. 2.12.
2.7 Normalization between Calculation and Measurement
The calculated distributions in the beam stop and in the beam dump room are requested to be
normalized by a condition of one proton incidence.
2.8 Notice
In the beam catcher, the detectors are activated by not only neutrons but protons. For example,
Fe => 56Co is mainly due to proton reaction. Therefore, direct contributions of protons to activation
should be considered in the calculation. There are two ways to consider the contributions. One way
is to use some proton spallation cross section data and the other is to calculate residual nuclei directly
using a high energy particle transport code, such as, HETC and NMTC/JAERI. The proton reaction
is negligible outside the beam catcher.
-39-
JAERI-Data/Code
96-029
References
1. Arakita Y., Hirayama H., Inagaki T. and Miyajima M. : "Study of an Iron Beam Stop for 500 MeV
Protons", Nucl. Instrum. Methods, J64, 255-265 (1979).
2. Ban S., Hirayama H. and Katoh K. : "Measurement of Secondary Neutron Fluxes around Beam
Stop for 500 MeV protons", ibid., 184, 409-412 (1981).
3. Nakashima H., et al. : "Benchmark Problems for Intermediate and High Energy Accelerator
Shielding", JAERI-Data/Code 94-012 (1994).
4. Patterson H. W. and Thomas R. H. : "Accelerator Health Physics", Academic Press (1973).
40-
Table 2.1 Physical properties of activation detectors for measurements in the beam stop
Detector
Detector Shape
Dimension
Reaction
(cm)
Fe
Al
Cu
Au
Cylinder
Cylinder
Cylinder
Rectangular
2.00 xl.O
1.40 xO.5
2.00 xO.5
1x 1x0.05
Fe -»48 V, Fe -• 52 Mn, Fe ->54 Mn,
27
Al(n,x) 24 Na
Cu -» 58Co
197
Au(n, y) 1 9 8 Au
Fe
56
Co
>
tn
pa
I
Table 2.2 Physical properties of activation detectors for measurements in the beam dump room
Detector
C
Al
Detector Shape
Cylinder
Hollow Cylinder
Dimensions
(cm)
70 X4
90 X6. 5
(Inside 70 X 5)
n
n
Reaction
©
12
27
n
C(n,2n) C
Al(n,spal.) 18 F, 27Al(n, a )24Na
JAERI-Data/Code
Table 2.3
96-029
Saturated a c t i v i t y d i s t r i b u t i o n s of
48
V,
52
Mn,
54
Mn and
56
Co
in beam stop
Z(cm)
40
R
(cm)
0.0
7.0
14.0
28.0
44.0
-2.5
Fe -*
5.22E-29
6.92E-30 *
6.87E-32 9.95E-31
6.51E-32
5.41E-33
Fe -»
0.0
7.0
14.0
28.0
44.0
4.88E-30
2.16E-31
8.68E-33
Fe -»
0.0
7.0
14.0
28.0
44.0
56.0
8. 18E-29
1.77E-29
9.25E-30
4. 93E-30
Fe -»
0.0
1.5
2.0
3.0
4.0
5.0
6.0
7.0
12.5
27.5
67.5
82.5
2.48E-30
2.12E-30
6.17E-31
8.68E-32
1.79E-32
1.06E-30 2.30E-31 5.94E-32 2.07E-32
1.06E-30 2.28E-31 6.23E-32 2.02E-32
6.11E-31 1.58E-31 5.23E-32 2.30E-32
7.38E-32 3.68E-32 1.49E-32
1.72E-32 2.27E-32
3.19E-30
2.76E-30
9.30E-31
2.02E-31
2.81E-32
6.11E-31
5.74E-31
3.58E-31
6.07E-32
2.85E-31
2.73E-31
2.16E-31
1.15E-31
2.33E-32
7.87E-32
7.69E-32
7.15E-32
3.67E-32
1.12E-32
6.73E-29
5.75E-29
1.79E-29
7.45E-30
2.08E-30
1.49E-30
1.26E-29
1.24E-29
8.86E-30
2.09E-30
1.30E-30
1.11E-30
6.21E-30
5.88E-30
5.17E-30
3.05E-30
8.24E-31
6.02E-31
1.70E-30 6.84E-31
2.07E-30 6.28E-31
1.44E-30 6.93E-31
1.02E-30
52
Mn
4.23E-29
1.88E-29
1.65E-30
1.50E-31
2.18E-32
2. 68E-32
2.28E-32
2.38E-32
1.51E-32
7.14E-33
54
Mn
5.88E-28
2.80E-28
4.19E-29
1.20E-29
7.57E-30
6.03E-30
56
Co (Relative to54 Mn)
5.88E-28
2. 36E-28
1.60E-28
6.19E-29
3.03E-29
8.32E-30
52.5
2.45E-28
1.71E-28
7. 08E-29
4.09E-29
2.21E-29
1.34E-29
* Read as 6.92 x 10"JU (n/proton).
-
42 -
4.41E-31
JAERI-Data/Code
Table 2.4
96-029
58
198
52.5
67.5
82.5
Saturated activity distributions of
in beam stop
R
(cm)
27.5
Z (cm)
40
24
Na,
Co and
-2.5
12.5
27
Al(n, x)24Na
0.0
1.82E-28
7.0 1.08E-29* 2.53E-29
14.0 2.03E-30 4.87E-30
28.0 3.26E-31 6.79E-31
7.43E-30
5.52E-30
3.04E-30
6.68E-31
1.46E-30
1.78E-30
9.32E-31
4.22E-31
6.24E-31
5.58E-31
3.20E-31
1.14E-31
4.07E-31
2.78E-31
2.22E-31
8.47E-32
Cu -» 58Co
0.0
1.21E-27
7.0 1.29E-29 7.50E-29
14.0 1.49E-30 8.05E-30
28.0 2.79E-31 9.70E-31
2.96E-29
2.01E-29
5.73E-30
1.25E-30
5.49E-30
4.46E-30
2.54E-30
8.12E-31
2.28E-30
1.98E-30
1.30E-30
7.71E-31
8.58E-31
5.84E-31
4.67E-31
2.54E-31
Au(n ,Y) I98 Au
4. 33E-27 3.69E-27
3.OOE-27 4.15E-27 2.82E-27
3.68E-27 2.19E-27
2.03E-27 2. 79E-27 1.34E-27
4.69E-28 7. 36E-28
2.18E-28 2. 47E-28 2.54E-28
2.23E-27
2.46E-27
2.74E-27
1.77E-27
6.04E-28
2.32E-28
2.21E-28
2.16E-28
2.42E-28
1.80E-28
7.23E-29
1.97E-29
1.47E-28
1.58E-28
1.39E-28
1.05E-28
2.83E-29
1.84E-29
Au
97.5
8.16E-32 2.49E-32
8.51E-32 1.77E-32
6. 07E-32 2.43E-32
2.87E-32
19T
0.0
7.0
14.0
28.0
44.0
54.0
* Read as 1.08 x 10"29 (n/proton).
43-
1.20E-28
8.93E-29
1.15E-28
6.14E-29
3.19E-29
2.10E-29
3. 45E-29
3.39E-29
2.27E-29
1.22E-29
JAERI-Data/Code
Table 2.5
Posit ion
Ia
I
I
I
100' ' I
0' ' 0 b
65' ' 0
0' '
65' 3
80' '
90' '
80' 3 o
90' ' 0
100' 5
o
96-029
Experimental results of saturated activi t i e s around beam stop
F s"1 per proton/s
U
C s"1 per proton/s
1.96E-33
1.08E-33
1.04E-33
1.18E-33
8.71E-34
1.15E-35
1.11E-35
9.86E-36
7.25E-36
4.40E-36
18
c
Inside the concrete shield.
b
24
Na s"1 per proton/s
3.84E-34
2.99E-33
1.73E-34
1.64E-34
2.14E-33
2.13E-33
1.85E-36
1.46E-35
1.74E-36
1.18E-36
1.70E-35
1.43E-35
Outside.
c
1.96x10
-33
Table 2.6 Densities and atomic composition
Material
Density
Iron
7.8 g/cm3
Concrete
H
0
Si
Ca
Al
2.35 g/cm3
1. 20%
54%
31%
9.70%
4.10%
- 44 -
Table 2.7 Group-wise neutron cross sections for the benchmark calculation
en
I
Energy
reaction cross section (barn)
(eV)
Fe(n,x)52Mn
Fe(n,x)54Mn
Fe(n,x)48V
1.42E-02
5.00E+08*
1.80E-02
9.87E-03
1.56E-02
1.06E-02
1.95E-02
4.50E+08
1.10E-02
1.70E-02
2.06E-02
4.00E+08
1.80E-02
1.11E-02
2.13E-02
3.75E+08
1.14E-02
1.90E-02
2.20E-02
3.50E+08
2. 27E-02
3.25E+08
2.00E-02
1.20E-02
1.26E-02
2.18E-02
2. 36E-02
3.00E+08
1.34E-02
2.55E-02
2.45E-02
2. 75E+08
2. 82E-02
1.42E-02
2.60E-02
2.50E+08
2.64E-02
1.52E-02
2.88E-02
2.25E+08
2.28E-02
1.63E-02
3.18E-02
2.00E+08
2. 13E-02
1.78E-02
3.46E-02
1.80E+08
2.07E-02
3.81E-02
2.11E-02
1.60E+08
2.03E-02
2.57E-02
4.31E-02
1.40E+08
1.89E-02
4.79E-02
3.14E-02
1.20E+08
5.18E-02
1.77E-02
3.69E-02
1.10E+08
1.67E-02
4.45E-02
5.70E-02
1.00E+08
6.57E-02
1.38E-02
5.00E-02
9.00E+07
5.00E-02
7.80E-02
8.00E+07
6.97E-03
7.00E+07
4.66E-02
9.23E-02
2.99E-03
4.04E-02
1.07E-01
6.50E+07
1.90E-03
3.16E-02
6.00E+07
1.32E-03
1.26E-01
2.31E-02
6.32E-04
1.54E-01
5.50E+07
1.36E-04
1.85E-02
1.93E-01
5.00E+07
1.70E-02
2.43E-01
4.50E+07
1.46E-05
1.43E-02
4.68E-07
2.80E-01
4.00E+07
7.54E-03
2.59E-01
3.50E+07
0.00E+00
2.23E-03
1.99E-01
0.00E+00
3.00E+07
8.97E-04
1.39E-01
0. 00E+O0
2.75E+07
1.55E-04
8.39E-02
2.50E+07
0.00E+00
3.05E-02
4.99E-05
0.00E+00
2.25E+07
8.60E-03
0.00E+00
1.83E-06
1.96E+07
1.28E-02
0.00E+00
1.75E+07
0.00E+00
0.00E+00
0.00E+00
2.01E-02
1.49E+07
0.00E+00
2.67E-02
0.00E+00
1.35E+07
Read as 5.Ox 10s
Energy
(eV)
1.22E+07
1.00E+07
8.19E+06
6.70E+06
5.49E+06
4.49E+06
3.68E+06
3.01E+06
2.46E+06
2.02E+06
1.65E+06
1.35E+06
1.11E+06
9.07E+05
7.43E+05
4.98E+05
3.34E+05
2.24E+05
1.50E+05
8.65E+04
3.18E+04
1.50E+04
7. 10E+03
3.35E+03
1.58E+03
4.54E+02
1.01E+02
2.26E+01
1.07E+01
5.04E+00
2. 38E+00
1.12E+00
4.14E-01
1.00E-04
reaction cross section (barn)
Fe(n,x)54Mn
Fe(n.x)48V
Fe(n,x)52Mn
0.00E+00
3.08E-02
0.00E+00
3.07E-02
0.00E+00
0.00E+00
0.OOE+00
3.03E-02
0.00E+00
2.86E-02
0.00E+00
0.00E+00
2.34E-02
0.OOE+00
0.00E+00
1.60E-02
0.00E+00
0.00E+00
0.00E+00
1.12E-02
0.00E+00
0.00E+00
5.41E-03
0.00E+00
0.00E+00
2.31E-03
0.00E+00
0.00E+00
0.00E+00
6.96E-04
0.00E+00
0.00E+00
1.04E-04
0.00E+00
0.00E+00
2.62E-05
0.00E+00
3.24E-06
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.OOE+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+0O
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0. 00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.OOE+00
0.00E+00
0.00E+00
0.00E+00
lower limit
>m
o
Tab Ifi 2.8 Group-wise neutron cross sections for the benchmark calculation
Energy
reaction cross section (barn)
Energy
reaction cross section (barn)
Cu(n,x)58Co 27Al(n, alpha)24Na 27Al(n,x)18F
(eV)
Cu(nix)58Co 27Al(n,alpha)24Na 27 Al(n.x) 18 F
(eV)
2.12E-02
6. 17E-03
1.22E+07
0.00E+00
5.00E+08*
5.05E-03
0.00E+00
1.05E-01
2.25E-02
6.65E-03
1.OOE+07
6.65E-02
4.50E+08
5.44E-03
0.00E+00
0.00E+00
2. 39E-02
7.04E-03
8. 19E+06
2.56E-02
4.00E+08
5.65E-03
0.00E+00
0. 00E+00
2. 52E-02
7.32E-03
3.75E+08
5.76E-03
6.70E+06
0.00E+00
2.69E-03
0. 00E+00
2.66E-02
7.52E-03
3. 50E+08
5.49E+06
0. 00E+00
5.92E-03
0.00E+00
2.33E-05
2.82E-02
7.62E-03
3. 25E+08
4.49E+06
0.00E+00
0.00E+00
6.15E-03
1.79E-09
3.01E-02
7.63E-03
3.00E+08
3.68E+06
0.00E+00
6.49E-03
0.00E+00
6.21E-17
3.25E-02
7.86E-03
2. 75E+08
0.00E+00
6.66E-03
3.01E+06
0.00E+00
0.00E+00
3.49E-02
8.29E-03
2.50E+08
2.46E+06
0.00E+00
0.00E+00
0.00E+00
6.27E-03
3.74E-02
2.25E+08
8.87E-03
5.46E-03
2. 02E+06
0.00E+00
0.00E+00
0.00E+00
3.95E-02
2.00E+08
9.72E-03
0.00E+00
4.53E-03
1.65E+06
0.00E+00
0.00E+00
1.04E-02
4.12E-02
1.80E+08
0.00E+00
3.79E-03
1.35E+06
0.00E+00
0.00E+00
1. 15E-02
4.28E-02
1.60E+08
1.11E+06
0.00E+00
0.00E+00
0.00E+00
3.29E-03
4.25E-02
1.34E-02
1.40E+08
9.07E+05
0.00E+00
3. 00E-03
0.00E+00
0.00E+00
1.20E+08
4.09E-02
1.52E-02
2.86E-03
7.43E+05
0.00E+00
0.00E+00
0. 00E+00
1.64E-02
3.96E-02
1.10E+08
2.79E-03
4.98E+05
0.00E+00
0.00E+00
0.00E+00
1.72E-02
3.82E-02
0.00E+00
2.77E-03
3.34E+05
0.00E+00
0.00E+00
l.OOE+08
3.58E-02
1.65E-02
9.OOE+07
0. 00E+00
2.90E-03
2. 24E+05
0.00E+00
0.00E+00
3.19E-02
1.43E-02
8.OOE+07
0. 00E+00
2.91E-03
1.50E+05
0.00E+00
0.00E+00
2.86E-02
1. 18E-02
7.OOE+07
8.65E+04
0.00E+00
2.45E-03
0. 00E+00
0.00E+00
2.64E-02
1.02E-02
6.50E+07
3.18E+04
0.00E+00
2.01E-03
0.00E+00
0.00E+00
2.80E-02
8.93E-03
6.OOE+07
1.50E+04
0.00E+00
0. 00E+00
0. 00E+00
1.24E-03
5.50E+07
3.37E-02
8.37E-03
3.78E-04
0.00E+00
7.10E+03
0.00E+00
0.00E+00
4.51E-02
7.73E-03
5.35E-05
0.00E+00
5.OOE+07
3.35E+03
0.00E+00
0.00E+00
5.75E-02
6.04E-03
0.00E+00
4.50E+07
1.58E+03
0.00E+00
0.00E+00
1.01E-06
5.56E-02
4.OOE+07
3.36E-03
4. 54E+02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
3. 18E-02
1.01E+02
3.50E+07
2.00E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
1.06E-02
3.66E-03
0.00E+00
0.00E+00
3.OOE+07
2.26E+01
0.00E+00
0.00E+00
1.07E+01
2. 75E+07
3.65E-03
6. 79E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
1.63E-02
0.00E+00
0.00E+00
5.04E+00
0.00E+00
2. 50E+07
0.00E+00
0.00E+00
3. 30E-02
2. 25E+07
0.00E+00
0.00E+00
2. 38E+00
0.00E+00
0.00E+00
0.00E+00
5.48E-02
0.00E+00
1. 12E+00
.96E+07
0.00E+00
0.00E+00
0.00E+00
0.00E+00
9.09E-02
0.00E+00
0.00E+00
4.14E-01
0.00E+00
1.75E+07
0.00E+00
0.00E+00
1.49E+07
0.00E+00
1.20E-01
0.00E+00
1.00E-04
lower 1imit
0.00E+00
1.25E-01
0. 00E+00
1.35E+07
Read as 5.0X108
tn
73
n
n
-1600mm
Shielding box
1737mm
200mm
500MeV
proton
-350mm
Beam Catcher
H
100mm
t
E
E
E
o
in
E
E
E
o
o
CO
Beam duct
o.
o
o
E
E
o
o
IT)
Insulator
150 150 125 125 150 150 150 75
Iron pipe 20mm <f> for packing of the sample disks
Fig. 2.1 Cross-sectional plane view of the beam stop
>
m
70
JAERl-Data/Code
96-029
0
1
2
3
4m
BEAM AXIS
Fig. 2.2 Plan view of beam dump room
Open circles denote measurement points for directions
0, 65, 80, 90 and 100 degree.
Brack circle denotes the origin for each direction.
- 48 -
JAERI-Data/Code
96-029
' ' ' I
-29
10
c
o
:=-2-5cm
c
o
•>K*
u
O
u
o
n
a
•o
o -31
i/M0
a -3
in iff
52.5cm
52.5cnn
ro 32
,-28
10'
c
°-««-29
o
\27.5cm
a
•a
<h
10
-
a
tn
82.5cm
52.5cm
67.5cm
Fig. 2.3 Lateral distributions of saturated activities
of 48V, 52Mn and MMn in beam stop
10 31
i
50
I
I
i
i
0
I
i
I
50
Dashed lines shows relative distribution
of 56Co.
r, cm
- 49 -
Saturated
activities/proton
Saturated activities /proton
m
6
31
en
o
00
(0
3
8
p
o
!3
Saturated
activities /proton
JAERI- Data/Code
96-029
Saturated activities per proton
Fig. 2.5
Iso-activity-contours of a Co and
- 51 -
lM
Au in beam stop
R
550mm
1050mm
250mm.
450mm
200mm.
350mm
E
o
o
E
E
£
o
>
o
o
m
73
CM
e
en
n
"
I
V
iron
air
iron
Fig. 2.6 Calculation model of the beam stop
JAERI-Data/Code
10Q°
90°
65°
80°
\ I/
\
96-029
I
n
! /
w
\l-/
'
TTTT^
u
-z
W
O
in
in
O
iron
--C
!
o
concrete
55cm
5cm
100cm
<
>
75cm
181cm
in
in
m
381cm
vX,Y
Fig. 2.7 Calculation model of the beam dump room
- 5 3 -
0.06
•
0.05
Nakamura(TIARA)
calculated cross
section
_n
nat
58,
Cu(n,xr°Co
0.04
XI
c
g
o
a>
to
0.03
m
2
VI
v>
s
o
on
I
u
0.02
o
0.01
0.00
10 u
10 1
102
TO3
Neutron Energy(MeV)
Fig. 2.8 ™'Cu(n,xrCo cross section
Nakamura's data will be published in the Journal of Nuclear and Science Technology.
Solid line is calculated cross section for the benchmark calculation.
0.06
Uwamino
54
nat
S2
Fe(n,x) Mn x 0.058
•Evaluated cross section
0.05 -
Fe(n,x)52Mn
0.04 TO
O
tS
>
m
0.03 -
CD
i
en
0.02
8.
0.01
0.00
10u
101
Neutron Energy(MeV)
Fig. 2.9
Ml
Fe(n,x)32Mn cross section
Uwamino's data will be published in the Journal of Nuclear and Science Technology.
Solid line is calculated cross section for the benchmark calculation.
Uwamino's data is deduced with relative isotopic abundance (5.8%) of MFe.
10'J
nat
Mt
•
-
Fe(n,x) 48 V
Fe(n,x) 54 Mn
197
Au(n,gamma)' 98 Au
.<•-••••.,
•
i
10
i
-1
' •
TO
- • " " 1 .
XI
—t
|
C
o
u
I_ .
0)
IS)
o
tmmmJ
•*
rJ
(/I
{
,.J
1
•
1
•
:
10
m
•
•
•
-3
70
I
|
L.
- 2
10'
1
,~r—•
J
*••
i
1
*! I
J
I.J
!
"
•
"•I
i
•
.
*""i
i
i
—
a
•
j
r
•
,
10°
103
10'
Neutron Energy(MeV)
Fig. 2.10 Calculated cross sections of ""'FeCn.xV^V, ""'FeCn.x^Mn and
l97
Au(n,gamma)198Au for the benchmark calculation
O
c
c
a
•27AI(n,alpha)24Na
27
AI(n,x) l0 F
10
-1
03
g
o
-2
10
70
CO
(/I
V)
o
o
u
-3
10
o
-4
10
10°
10 1
102
103
Neutron Energy(MeV)
Fig. 2.11 Calculated cross sections of 27Al(n,alpha)24Na and 27Al(n,x)l8F for the benchmark calculation
JAERI-Data/Code
96-029
CO
C\J
tron Enerc
"*" CD
,-
oz
CD
,2n) ci"OSS sect ion
O
c
P
(N
<N
bb
PU
o
O
O"1"
SSOJQ
-
58 -
JAERI-Data/Code
96-029
3. Reaction Rate Distributions inside Thick Concrete Shield Irradiated by 6.2 GeV Protons
(Summary)
1) Accelerator (Organization)
Bevatron (LBL)
2) Projectile (Energy)
Proton (6.2 GeV)
3) Target
Ordinary Concrete
4) Shielding material
Ordinary Concrete (Target)
5) Geometry
Rectangular Slabs
6) Instrument
Activation Detector (Al, C, Au)
7) Measured Quantities
Relative Reaction Rate
3.1 Experimental Arrangement
Experimental arrangement" is shown in Fig. 3.1. A shielding assembly consisted of seven ordinary
concrete slabs of 4 ft thickness. The concrete slabs were separated by 3-inch-wide gaps to allow
insertion of detectors. All portions of these gaps, except slots actually used for detector placement,
were filled with gypsum wallboard (approximately same density as concrete) to prevent neutron
streaming along the gaps. (1 ft = 30.48 cm, 1 inch = 2.54 cm)
3.2 Methods of Measurement
Gold-foils, aluminum-discs and carbon scintillators, in the form of 4 inch diameter by thicknesses
between 1/32 and 1 inch, were used as activation detectors for measurement of radiation fields shown
in Table 3.1. Both aluminum and carbon reactions can be initiated by protons of somewhat higher
energies. The y-ray activities of
198
Au and
24
Na were measured with a Nal crystal scintillation
n
spectrometer, while the activities of C were measured by observing the positron decay inside the
carbon scintillator. These detectors were placed at every 4-ft depth and every 1-ft from the beam axis
in lateral direction.
Aluminum-discs were used for measurements of incident proton energy
dependence of attenuation profiles along the beam axis.
3.3 Beam Conditions
The 6.2 GeV proton beam impinged on the shielding assembly perpendicularly to its front surface.
The beam spot was kept within 2 inch in diameter, which was observed by using a scintillatortelevision system. The 4.2 and 2.2 GeV proton beams were used for the measurements of incident
proton energy dependence of attenuation profiles.
3.4 Measured Results
Lateral profiles of the detector count rates taken at each 4-ft depth are shown in Figs. 3.2 - 3.4 and
given in Tables 3.2 - 3.4. Attenuation profiles of the three detectors measured along the beam axis
are shown in Fig 3.5 and given in Table 3.5. The count rates in the figure are normalized at a depth
-59-
J A ERI-Data/Code
96-029
of 8 ft. The attenuation lengths in the table were obtained from the profile beyond 12 ft using the
density for ordinary concrete, 2.4 g/cm3. Incident proton energy dependence of attenuation profiles is
shown in Fig 3.6 and given in Table 3.6.
3.5 Model for Calculation
a. Source Condition
A proton beam impinges on the concrete surface perpendicularly at its center. The beam
profile on the surface is circular, 5 cm in diameter. Incident proton energies are 6.2 GeV for
the calculation of attenuation profiles along the beam axis and in lateral direction, and 2.2 and
4.2 GeV for the calculation of incident proton energy dependence of attenuation profiles.
b. Calculation Geometry
We propose to use a simple calculation geometry with a three-dimensional (X,Y,Z) model
shown in Fig. 3.7. If it expresses a geometry with a two-dimensional (R-Z) model, the radius
of a cylinder should be 11.23 ft (342.3 cm).
c. Material Descriptions
We propose to use the composition and the density of the NBS concrete given in Table 3.7 as
those of the shielding assembly.
3.6 Normalization between Calculation and Measurement
Measured data are relative values, therefore, the relative attenuation profile is only requested for
comparison. Calculated data for lateral profiles should be normalized by experimental value on the
beam axis. Calculated attenuation profiles on the beam axis should be normalized by experimental
value at a depth of 8 ft.
3.7 Notice
In the experiments, aluminum and carbon detectors are activated not only by neutrons but protons.
Therefore, direct contributions of protons to activation should be considered in the calculation. There
are two ways to consider the contributions. One way is to use some proton spallation cross section
data and the other is to calculate residual nuclei directly using a high energy particle transport code,
such as, HETC and NMTC/JAERI.
References
1. Smith A. R. : "Some Experimental Shielding Studies at the 6.2-BeV Berkeley Bevatron", Proc. of
the USAEC First Symposium on Accelerator Radiation Dosimetry and Experience, p.365,
CONF-651109 (1965).
-
60 -
JAERI-Data/Code
96-029
Scintillator
Beam line
Height: 18 ft
Detector slots
Fig. 3.1 Plan view of shield array
Table 3.1 Measured radiation fields and used reactions for each activation detectors
Detector
Radiation field
Gold foil
Aluminum disc
Carbon scintillator
thermal neutron
neutrons of En>6.7 MeV
neutrons of En>20.4 MeV
-
61 -
Reaction
197
Au(n,Y)198Au
A1 -> MNa
12
C -> "C
27
JAERI-Data/Code
96-029
Table 3.2 Lateral-attenuation profiles for gold-foil detector
Relative response [counts/min]
Distance from
beam line [ft (m)]
1
b
0 ( 0.00 )
1 ( 0.30 )
2 ( 0.61 )
3 ( 0.91 )
4 ( 1.22 )
5 ( 1.52 )
6 ( 1.83 )
7 ( 2.13 )
8 ( 2.44 )
9 ( 2.74 )
10 ( 3.05 )
Depth in concrete
Read as 1.9 x 10*
4 ft '
(1.22 m)
l^En-o^
5.9E+05
1.8E+05
5.8E+04
2.1E+04
8.4E+03
3.6E+03
1.4E+03
5.9E+02
2.5E+02
1.1E+02
8 ft
(2.44 m)
1.9E+05
9.6E+04
4.5E+04
2.0E+04
9.0E+03
4.1E+03
1.8E+03
7.4E+02
3.2E+02
1.4E+02
-
12 ft
(3.66 m)
2.7E+04
2.0E+04
1.3E+04
7.5E+03
3.7E+03
1.7E+03
7.9E+02
3.4E+02
1.6E+02
6.7E+01
3.0E+01
16 ft
(4.88 m)
3.0E+03
2.4E+03
1.6E+03
9.2E+02
5.1E+02
2.9E+02
1.6E+02
9.0E+01
5.5E+01
3.4E+01
2.2E+01
20 ft
(6.10 m)
2.4E+02
2.2E+02
1.8E+02
1.3E+02
8.4E+01
5.2E+01
3.2E+01
2.0E+01
1.3E+01
8.8E+00
6.6E+00
24 ft
(7.32 m)
2.1E+01
1.9E+01
1.7E+01
1.3E+01
1.0E+01
7.4E+00
5.2E+00
3.5E+00
2.3E+00
1.7E+00
1.3E+00
10'
197
Au(n, Y ) 1 9 8 Au
24 ft,
5
10
Distance from beam line [ft]
Fig. 3.2 Lateral-attenuation profiles for gold-foil detector
- 6 2 -
JAERI-Data/Code
96-029
Table 3 3 Lateral-attenuation profiles for aluminum detector
Relative response [counts/min]
Distance from
beam line [ft (m)]
0 ( 0.00 )
1 ( 0.30 )
2 ( 0.61 )
3 ( 0.91 )
4 ( 1-22 )
5 ( 1-52 )
6 ( 1-83 )
7 ( 2.13 )
8 ( 2.44 )
9 ( 2.74 )
10 ( 3.05 )
* Depth in concrete
"Read as 5.8 x 10*
4 ft •
(1.22 m)
5.8E+06 b
1.0E+06
2.5E+05
8.2E+04
3.0E+04
1.3E+04
5.5E+03
2.5E+03
1.2E+03
5.5E+02
2.5E+02
8 ft
(2.44 m)
7.6E+05
2.7E+05
1.1E+05
5.0E+04
2.3E+04
1.1E+04
4.8E+03
2.3E+03
1.0E+03
4.9E+02
2.2E+02
5
12 ft
(3.66 m)
6.5E+04
3.6E+04
1.8E+04
9.3E+03
4.9E+03
2.7E+03
1.5E+03
8.0E+02
4.4E+02
2.4E+02
1.3E+02
16 ft
(4.88 m)
5.0E+03
3.7E+03
2.3E+03
1.3E+03
7.6E+02
4.7E+02
2.9E+02
1.7E+02
1.1E+02
6.6E+01
4.0E+01
20 ft
(6.10 m)
2.5E+02
2.1E+02
1.6E+02
1.1E+02
7.2E+01
4.4E+0I
2.5E+01
1.4E+01
8.8E+00
6.0E+00
4.3E+00
10
Distance from beam line [ft]
Fig. 3.3
Lateral-attenuation profiles for aluminum detector
-
63 -
JAERI-Data/Code 96-029
Table 3.4 Lateral-attenuation profiles for carbon detector
Relative response [counts/min]
beam line [ft (m)]
0 ( 0.00 )
1 ( 0.30 )
2 ( 0.61 )
3 ( 0.91 )
4 ( 1.22 )
5 ( 1.52 )
6 ( 1.83 )
7 ( 2.13 )
8 ( 2.44 )
9 ( 2.74 )
10 ( 3.05 )
3
Depth in concrete
"Read as 6.0 x 10*
10' F5
4 ft '
(1.22 m)
6.0E+06"
4.8E+05
1.1E+05
3.5E+04
1.2E+04
5.4E+03
2.8E+03
1.5E+03
8.4E+02
-
1
1
1
1
16 ft
(4.88 m)
1.6E+03
9.5E+02
5.7E+02
3.1E+02
1.7E+02
9.8E+01
5.7E+01
3.5E+01
2.2E+01
1.5E+01
1.0E+01
12 ft
(3.66 m)
2.9E+04
1.2E+04
5.4E+03
2.6E+03
1.3E+03
6.8E+02
3.6E+02
1.8E+02
9.9E+01
5.6E+01
3.3E+01
8 ft
(2.44 m)
5.0E+05
1.2E+05
4.0E+04
1.6E+04
6.9E+03
3.3E+03
1.7E+03
9.4E+02
5.3E+02
3.1E+02
1.9E+02
|
1
1
'
20 ft
(6.10 m)
9.2E+01
7.2E+01
5.2E+01
3.6E+01
2.3E+01
1.4E+01
8.1E+00
4.6E+00
2.5E+00
1.3E+00
-
1
12
Mill
Distance from
nc
C->
:
10c
jss
a
©
lio3
1 Illlll 1 1
Depth in concrete
e
•
-:
V.4 ft
- 8 ft
i i
* 12
ft
-
i
PS
1
in
tS 102
10* r-
• 16 ft —
S
10°
1
1
1
1
1 ^^ 2 4 ft,
5
\ v ^ 20 ft
1
I
10
Distance from beam line [ft]
Fig. 3.4 Lateral-attenuation profiles for carbon detector
- 64
24 ft
(7.32 m)
7.1E+00
5.5E+00
4.3E+00
3.2E+00
2.3E+00
1.6E+00
1.1E+00
-
JAERI-Data/Code
96-029
Table 3.5 Numerical data of plots in Fig.3.5 and attenuation lengths
determined by their slopes beyond 12 ft thickness
Depth in shield
fft(m)l
4 ( 1.22 )
8 ( 2.44 )
12 ( 3.66 )
16 ( 4.88 )
20 ( 6.10 )
24 ( 7.32 )
Attenuation
length
a
b
Reaction
A1 -> 24Na
6.2E+05
7.2E+04
6.2E+03
4.6E+02
3.2E+01
2.4E+00
I2
C -> 1!C l
1.1E+06"
7.2E+04
4.4E+03
2.5E+02
1.5E+01
1.2E+00
27
108 g/cm2
197
114 g/cm2
Au(n,Y)I98Au
4.9E+05
7.2E+04
9.8E+03
9.3E+02
7.1E+01
5.8E+00
120 g/cm2
Reaction for estimation of flux
Read as 1.1 x 10*
8
12
16
20
Depth in shield [ft]
Fig. 3.5
Attenuation profiles along the beam axis measured with
197
Au(n,Y)198Au, 27Al->24Na and 1 2 C-> n C reactions
Data are normalized at a depth of 8 ft in concrete.
-
65 -
JAERI-Data/Code
96-029
Table 3.6 Numerical data of plots in Fig. 3.6 and attenuation lengths
determined by their slopes beyond 12 ft thickness
Depth in shield
[ft(m)l
4 ( 1.22 )
8 ( 2.44 )
12 ( 3.66 )
16 ( 4.88 )
20 ( 6.10 )
24 ( 7.32 )
Attenuation
length
2.2 GeV'
9.1E+05 b
5.6E+04
2.2E+03
1.1E+02
6.5E+00
-
Proton Energy
4.2 GeV
6.6E+05
5.6E+04
3.5E+03
2.2E+02
1.4E+01
9.9E-01
6.2 GeV
4.9E+05
5.6E+04
5.0E+03
3.7E+02
2.5E+01
1.9E+00
99 g/cm2
108 g/cm2
114 g/cm:
' Incident proton energy
Read as 9.1 x 105
b
xu
j
'
1
•
1
'
1
:
'
'
1
27
AI ->
24
I
'
M
Na
I
6
10
^~
%
:
f \
N^
"
m
2
•
.
" "
GeV protons
!
GeV protons
_
2
4 - GeV protons
105
X
\
J ,
lative irespond
•
•
104
r
\
103
102
-j
r
>
101
10°
r
i
i
i
i
i
8
i
12
.
i
16
20
24
Depth in shield [ft]
Fig. 3.6
Attenuation profiles along the beam axis measured
with Al-> Na reaction comparing with those for
incident protons of 2.2 and 4.2 GeV
Data are normalized at a depth of 8 ft in concrete.
-
66 -
JAERI-Data/Code
96-029
28J? (8.53m)
22 ft
(6.71m)
w
00
*
t
proton beam
5cm0
I
Fig. 3.7 Calculation geometry
Table 3.7 Elemental composition and density of the NBS concrete
Element
Weight fraction
5.60E-03"
4.98E-01
1.71E-02
2.40E-03
4.56E-02
3.16E-01
1.20E-03
1.92E-02
8.26E-02
1.22E-02
Hydrogen
Oxygen
Sodium
Magnesium
Aluminum
Silicon
Sulfur
Potassium
Calcium
Iron
Sum
1.00E+00
density
2.4 g/cm3
' Read as 5.60 x 10 3
-
67 -
JAERI-Data/Code
96-029
4. Neutron and Hadron Fluxes inside Iron Beam Dump Irradiated by 24 GeV Protons
(Summary)
1) Accelerator (Organization)
Proton Synchrotron (CERN)
2) Projectile (Energy)
Proton (24 GeV)
3) Target
Iron (Beam Dump)
4) Shielding material
5) Geometry
none
Rectangular Slabs
6) Instrument
Activation Detector (In, S, Al),
Radiophotoluminescent(RPL) Dosimeter
7) Measured Quantities
: Neutron and Hadron Flux, Absorbed-Dose
4.1 Experimental Arrangement
A sketch of a beam dump 12) is given in Fig. 4.1. The beam dump consisted of 20 rectangular iron
absorber slabs of 5 cm thickness, separated by 7 mm slots in which thin aluminum plates supporting
the activation detectors and dosimeters were placed. The density of the iron absorber slabs was 7.86
± 0.02 g/cm3. The transverse dimensions of the slabs were 30 x 30 cm. Total length of the beam
dump is 113.3 cm.
4.2 Methods of Measurement and Instrument
The characteristics of activation detectors and dosimeters for the experiment are summarized in
Table 4.1. Composition of RPL dosimeter is given in Table 4.2. The activation detectors and RPL
dosimeters were mounted on 0.5-mm-thick and 24 cm x 30 cm cross section aluminum plates with
activation detector holding holes which were accurately punched out for every detector size. A sketch
of the aluminum plate for holding Al activation detectors is exemplified in Fig. 4.2. In the figure, R
and r show, respectively, the exact distance from the center of the aluminum plate and the radius of
the activation detectors and RPL dosimeters. An aluminum plate was also placed in front of the first
absorber slab in order to measure albedo effects (slot Oth).
4.3 Irradiation Conditions
The 24 GeV proton beam impinged on the beam dump perpendicularly at its center. Three
separate irradiations were performed for different durations in order to optimize the production of the
various isotopes of different half-lives. Each irradiation conditions are summarized in Table 4.3.
Beam intensity of irradiations was measured using a monitor and aluminum activation detectors placed
upstream of the beam dump. The values of the beam intensity in this table have an error of 10%. The
beam spot size was about 3 mm in diameter. The arrangement of activation detectors and RPL
dosimeters for each irradiation is given in Table 4.4.
-
68 -
JAERI-Data/Code
96-029
4.4 Measured Results
The measured fluxes in each slot are shown in Figs.4.3 - 4.6 and are given in Tables 4.5 - 4.8.
These fluxes were obtained from measured saturated activity by dividing by n • s ; (n : the number
of atoms in the detector, s : effective cross section (see Table 4.1)). The absorbed doses measured by
RPL dosimeters are shown in Fig. 4.7 and are given in Table 4.9. In Tables 4.5 - 4.9, all measured
data are normalized by a condition of one proton incidence.
4.5 Model for Calculation
a. Source Condition
The 24 GeV proton beam of 3 mm in diameter impinges on the beam dump perpendicularly
at its center.
b. Calculational Geometry
We propose to express the calculation geometry with a three-dimensional (X,Y,Z) model shown
in Fig. 4.8. However, it can be expressed with a two-dimensional (R-Z) model.
c. Material Descriptions
The density of the iron used for the beam dump is 7.86 g/cm3.
4.6 Normalization between Calculation and Measurement
All calculated results are requested to be normalized by a condition of one proton incidence for
the comparison with experimental ones.
References
1. Fasso A., Stevenson G. R., Bruzzi M., Furetta C , Rancoita P. G., Giubellino P., Steni R. and Russ
J. S. : "Measurements of low-energy neutrons in an iron calorimeter structure irradiated by 24
GeV/c protons", CERN/TIS-RP/90-19 (1990).
2. Fasso A., Ferrari A., Ranft J., Sala P. R., Stevenson G. R. and Zazula J. M. : "A comparison of
FLUKA simulations with measurements of fluence and dose in calorimeter structures", Nucl.
Instrum. Methods Phys. Res., A332(3), 459-468 (1993).
-69-
JAERI-Dala/Code
96-029
Table 4.1 Summary of activation and dosimetry techniques
Main contributing
reaction
H5
In(n,n') 115m In
27
Al(n,a) 24 Na
27
Al(h,x) 18 F
RPL dosimeters
Sample size
Measurement
technique
Effective
Nominal
cross section energy range
0.3 mmx 10 mm <>
|
GeLi
120 mb
0.8-15MeV
(neutrons)
6 mm x 23 mm <>
j
GMT
300 mb
3-25 MeV
(neutrons)
0.5 mm x 10-30 mm 4>
Nal
85 mb
6-25 MeV
(neutrons)
0.5 mm x 10-30 mm <>
|
Nal
8 mb
>35 MeV
(hadrons)
6 mm x 1 mm <|)
Schott - Jenner DOS2
Table 4.2 Composition of RPL dosimeter
Element
Weight fraction
0
P
53.7 %
33.4 %
Al
4.6%
Ag
U
3.7%
B
0.9%
3.7%
-
70 -
JAERI-Data/Code
96-029
Table 4 3 Irradiation conditions
Irradiation
Duration
[min]
Beam intensity
[protons / sec]
Beam spot size
(diameter)
1st
2nd
180
112
10.83 x 10 9
3 mm
3mm
3rd
22
11.14 x 10 9
5.86 x 10
9
3 mm
Table 4.4 Arrangement of activation detectors and RPL dosimeters for each irradiation
Slot
0
1
2
3
4
5
6
7
8
First irradiation
Al(24Na), Sulfur
Al(24Na), RPL
Al(24Na), Sulfur
Al(24Na), RPL
Al(24Na)
Al(24Na), Sulfur
Al(24Na), RPL
Al(24Na), Sulfur
Second irradiation
Indium
Al(24Na)
Indium
Al(24Na)
Indium
Al(24Na)
Indium
Third irradiation
Al( 1 8 Fand 2 4 Na)
Al( l 8 Fand 2 4 Na)
Al( 1 8 Fand 2 4 Na)
Al( 1 8 Fand 2 4 Na)
Al(24Na), RPL
Al(24Na), Sulfur
Al(24Na), RPL
Al(24Na)
-
_
Indium
_
24
Al( Na)
_
-
Al( 1 8 Fand 2 4 Na)
Q
y
10
11
12
13
14
15
16
17
18
19
20
Al(24Na), RPL
71 -
JAERI-Data/Code
96-029
Table 4.5 Neutron fluxes measured by indium activation detectors using
ll5
In(n,nf)lls-In reaction
R
r
[mm]
0
25
50
75
100
135
[mmj
5.0
5.0
5.0
5.0
5.0
5.0
siot[0]
error
flux
7.21E-02 9.37E-03
3.26E-02 2.46E-03
1.82E-02 8.77E-04
1.21E-02 4.36E-04
7.69E-03 8.39E-04
4.69E-03 4.43E-04
slot[2]
flux
error
1.53E-01 2.30E-03
1.35E-01 2.20E-03
7.87E-02 8.70E-04
5.24E-02 7.30E-04
3.23E-02 7.40E-04
1.36E-02 3.30E-04
R
r
[mm]
5.0
5.0
5.0
5.0
5.0
5.0
slot[8]
error
flux
1.51E-01 1.10E-03
1.08E-01 1.30E-03
6.96E-02 7.60E-04
5.26E-O2 7.40E-04
3.64E-02 6.60E-04
2.37E-02 5.50E-04
slot[13]
flux
error
5.81E-02 8.10E-04
4.58E-02 3.17E-03
3.47E-02 6.30E-04
2.63E-02 1.11E-03
1.91E-02 3.61E-O4
1.11E-02 2.06E-04
[mm]
0
25
50
75
100
135
slot[4]
flux
error
2.32E-01 1.71E-03
1.54E-01 3.96E-03
9.34E-02 5.42E-03
6.00E-02 1.72E-03
4.10E-02 1.44E-03
2.28E-02 6.00E-04
R : detector position, r: detector radius
flux, error : [ n / cm2 / proton ]
Table 4.6 Neutron fluxes measured by sulfur activation detectors using
32
S(n,p)32P reaction
R
[mm]
0
25
50
100
135
r
[mm]
11.5
11.5
11.5
11.5
11.5
slot[0]
flux
error
8.77E-03 4.38E-04
3.69E-03 8.51E-05
1.94E-03 4.46E-05
7.78E-04 8.59E-06
4.37E-04 1.71E-05
R
[mm]
0
25
50
100
135
r
!
slot[8]
slot[ll]
[mm]
flux
error
flux
error
11.5
2.00E-02 1.00E-03 1.09E-02 5.46E-04
11.5 : 1.21E-02 3.36E-04 ! 7.54E-03 1.26E-04
11.5
7.83E-03 1.78E-04 5.01E-03 1.01E-04
11.5 ! 3.38E-03 1.32E-04 I 2.44E-03 3.95E-05
11.5 j 1.95E-03 6.94E-05 1.42E-03 6.48E-05
slot[2]
flux
error
4.07E-02 2.04E-03
1.69E-02 3.72E-04
8.13E-03 1.59E-04
2.70E-03 4.46E-05
1.41E-03 9.26E-06
R : detector position, r: detector radius
flux, error: [ n / cm2 / proton ]
- 7 2 -
slot[5]
flux
error
3.20E-02 1.6OE-O3
1.78E-02 5.83E-05
1.01E-02 5.35E-05
4.00E-03 2.85E-05
2.11E-03 3.70E-05
JAERI-Data/Code
96-029
Table 4.7 Neutron fluxes measured by aluminum activation detectors using
27
Al(n,a)24Na reaction
R
[mml
0
12
30
50
70
100
135
r
[mml
5.0
5.0
7.5
7.5
10.0
15.0
15.0
R
slot[0]
flux
error
1.18E-01 2.37E-O3
1.09E-02 8.87E-04
3.65E-03 1.69E-04
2.0OE-O3 6.35E-05
1.18E-03 3.06E-05
6.75E-04 1.30E-05
4.02E-04 1.86E-05
slot[l]
error
flux
1.75E-01 1.75E-03
3.65E-02 1.62E-03
1.17E-02 3.37E-04
5.42E-03 1.33E-04
3.07E-03 7.88E-05
1.53E-03 3.16E-05
8.92E-04 8.29E-05
slot[3]
slot[4]
r
_[mm]_ [mml
0
5.0
12
5.0
30
7.5
50
7.5
70
10.0
100
15.0
135
15.0
flux
1.41E-01
4.81 E-02
1.88E-02
9.77E-03
5.65E-03
3.05E-03
1.66E-03
R
r
_[mm]_ [mml
0
5.0
12
5.0
30
7.5
50
7.5
70
10.0
100
15.0
135
15.0
slot[6]
error
Flux
8.26E-02 1.07E-03
3.82E-02 1.71E-03
1.78E-02 7.45E-04
9.67E-03 4.51E-04
6.71E-03 1.70E-04
3.57E-03 5.81E-05
2.04E-03 3.89E-05
slot[7]
error
Flux
6.96E-02 1.25E-03
2.94E-02 9.89E-04
1.52E-02 3.20E-04
8.92E-03 3.76E-04
5.81E-03 2.83E-04
3.48E-03 6.69E-05
1.98E-03 5.32E-05
30
50
70
100
135
r
[mml
5.0
5.0
7.5
7.5
10.0
15.0
15.0
slot[10]
flux
error
3.02E-02 6.64E-04
1.81 E-02 5.UE-04
9.73E-03 3.94E-04
6.13E-03 2.04E-04
4.35E-03 5.17E-05
2.70E-03 3.86E-05
1.67E-03 3.84E-05
slot[ll]
error
flux
2.28E-02 5.70E-04
1.35E-02 3.97E-04
8.03E-03 2.47E-04
5.37E-03 1.72E-04
3.78E-03 6.96E-05
238E-03 2.97E-05
1.49E-03 3.58E-05
R
[mml
0
12
30
50
70
100
135
r
[mml
5.0
5.0
7.5
7.5
10.0
15.0
15.0
slot[17]
error
flux
4.72E-03 2.69E-04
3.80E-03 2.72E-04
2.47E-03 3.94E-05
1.85E-03 5.11E-05
1.36E-03 3.52E-05
9.21E-04 1.84E-05
5.96E-04 2.15E-05
slot[20]
error
flux
1.77E-03 9.91E-05
1.43E-03 4.58E-05
8.87E-04 2.48E-05
6.58E-04 1.97E-05
5.33 E-04 1.44E-05
3.60E-04 9.36E-06 :
2.67E-04 9.61E-06
R
[mml
0
12
error
2.3OE-O3
2.52E-03
4.16E-04
3.23E-04
9.51E-05
5.68E-05
3.59E-05
flux
1.17E-01
5.20E-O2
2.01E-02
1.10E-02
6.54E-03
3.49E-03
1.88E-03
R : detector position, r: detector radius
flux, error : [ n / cm2 / proton ]
-
73 -
error
2.95E-O2
6.23E-03
7.45E-04
3.81E-04
1.98E-04
9.48E-05
9.27E-05
slot[2]
nux
1.80E-01
4.99E-02
1.71E-02
8.08E-03
4.66E-03
239E-03
1.26E-03
error
1.80E-03
1.54E-03
3.08E-04
1.61E-04
532E-05
2.54E-05
8.54E-06
slot[51
nux
1.01E-01
3.97E-02
1.91 E-02
1.02E-02
6.77E-03
3.66E-03
1.97E-03
error
1.91E-O3
4.56E-04
5.48E-04
9.46E-05
7.30E-05
3.77E-05
3.01E-05
slot[8]
flux
error
4.84E-02 7.19E-04
2.46E-02 7.92E-04
1.37E-02 2.79E-04
8.55E-03 1.82E-04
5.71E-03 9.21E-05
3.32E-03 6.53E-05
2.00E-03 6.10E-05
slot[16]
nux
7.81 E-03
5.19E-03
3.61 E-03
2.74E-03
2.03E-03
1.28E-03
7.94E-04
error
3.36E-04
3.08E-04
1.28E-04
9.54E-05
3.20E-O5
5.38E-05
2.69E-05
JAERI-Data/Code
96-029
Table 4.8 Hadron fluxes measured by aluminum activation detectors using
27
Al(h,x)18F reaction
R
r
[mml
0
12
30
50
70
100
135
[mm]
5.0
5.0
7.5
7.5
10.0
15.0
15.0
R
r
[mm]
0
12
30
50
70
100
135
[mm]
5.0
5.0
7.5
7.5
10.0
15.0
15.0
slot[0]
error
flux
5.00E-01 2.50E-02
8.95E-03 1.74E-03
2.32E-03 1.20E-04
1.07E-03 1.02E-04
6.06E-04 4.62E-05
3.18E-04 1.35E-05
1.50E-04 1.55E-06
slot[2]
error
flux
9.34E-01 4.67E-02
1.38E-01 8.54E-03
2.75E-02 5.95E-04
9.54E-03 3.86E-04
4.29E-03 7.19E-05
1.67E-03 3.76E-05
8.15E-04 2.33E-05
slot[8]
error
flux
2.10E-01 1.05E-02
6.45E-02 4.60E-03
2.58E-02 1.21E-03
1.30E-02 2.65E-04
7.31E-03 1.55E-04
3.70E-03 1.21E-04
1.89E-03 5.18E-05
slot[20]
error
flux
6.43E-03 3.22E-04
4.85E-03 3.06E-04
2.98E-03 5.93E-04
1.95E-03 3.92E-04
1.07E-03 1.96E-05
6.53E-04 1.80E-05
4.10E-04 3.88E-05
slot[4]
error
flux
6.81E-01 3.41E-02
1.39E-01 5.76E-03
3.70E-02 1.06E-03
1.59E-02 1.46E-04
7.73E-03 8.36E-05
3.41E-03 4.78E-05
1.59E-03 5.18E-06
R : detector position, r: detector radius
flux, error : [ hadron / cm2 / proton ]
Table 4.9 Absorbed dose measured by PRL dosimeters
R
r
[mm]
0
12
24
36
48
60
80
100
140
[mm]
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
dose
4.29E-10
1.98E-10
4.92E-11
2.85E-11
2.50E-12
2.19E-12
1.43E-12
8.76E-13
2.68E-13
error
2.57E-10
5.95E-11
4.35E-12
2.73E-12
9.55E-14
1.68E-13
6.25E-14
4.60E-14
1.35E-14
dose
error
6.80E-10 6.27E-11
3.07E-10 1.41E-11
9.69E-11 7.36E-12
5.24E-11 1.85E-12
3.32E-11 1.20E-12
2.30E-11 2.04E-12
2.93E-12 1.22E-13
1.99E-12 8.05E-14
7.80E-13 0.00E+00
dose
3.67E-10
1.93E-10
7.56E-11
4.58E-11
2.89E-11
2.71E-11
5.26E-12
2.49E-12
1.22E-12
R
[mm]
0
12
24
36
48
60
80
100
140
r
[mm]
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
slot[10]
dose
error
1.17E-10 2.06E-11
7.73E-11 6.79E-12
4.78E-11 3.63E-12
3.80E-11 3.29E-12
3.12E-11 1.35E-12
2.86E-12 1.44E-13
2.57E-12 4.63E-14
1.87E-12 5.83E-14
9.46E-13 3.16E-14
slot[16]
dose
error
5.42E-11 8.78E-12
3.04E-11 2.46E-12
2.29E-11 1.37E-12
3.58E-12 3.32E-13
2.53E-12 1.85E-13
2.45E-12 9.69E-14
1.58E-12 4.64E-14
1.17E-12 3.62E-14
5.87E-13 2.02E-14
slot[20]
error
dose
4.04E-12 4.68E-13
3.05E-12 1.77E-13
2.22E-12 1.10E-13
1.56E-12 9.07E-14
1.19E-12 4.2 IE-14
8.27E-13 5.17E-14
6.10E-13 2.27E-14
3.64E-13 2.38E-14
2.49E-13 2.12E-14
slot[l]
slot[3]
R : detector position, r: detector radius
dose, error: [Gy / proton ]
-
74 -
slot[6]
error
5.39E-11
1.42E-11
4.21E-12
2.64E-12
2.O8E-12
1.26E-12
1.52E-12
1.27E-13
4.51E-14
JAERI-Data/Code
96-029
30 cm
30 cm
113.3 cm
0.7 cm (slot thickness)
5 cm (iron thickness)
Fig. 4.1 Sketch of the dump assembly
D
O
o
o
o
OOOOoooOOO®
o
o
s
o
o
rn
o
o
24 cm
Fig. 4.2
Sketch of a 0.5-mm-thick aluminum plate showing
holes for the aluminum detectors
-
75 -
- 9 1 -
Neutron flux [ n cm" proton
TO
O
1
{
Z
o
c
cj
o
flux
tor usi
c
C6
C?
o
1
""1
'"I
T
1
1
1
1 11
I
"1
1
i
1 1 i i i
3
—
CD
C
s"
CD
V)
a.
CT
B"
i i
—
}
,,,l
i 111
1
1
1
o
1
..1
to
1
i
t—'
i
i i
..1
_
•
i
o
1
3
to
i B
o
150
a:
5"
J-
Slot 0
: §o
<:
Slot
_
00
o _
Slot
-
3
Slot
Slot
c'
actr
ion
o
~_
2 "
c -
i
Q.
CD
W
—
i
™
•-•-«
CD
W
en
i
§
as
2.
[UIUIj
3*
-
3
001
Ln
en
i -
i
<
Ul
TO
]
I I 1
Neutron flux [ n cm" proton" ]
TO
T 1 n
I I Ii I iiI
Q-
JB
C?
O
o
c
1
o
flux
usi
si
GO
•
CD
3
CO
(a
cn
C
^
CD
to
D.
cr
CD
CU
I I"
I(
1
^7
3
a
TO
I
65
O
a
5'
I1
cn
C_
5'
3
5"
o
3
|
I I I I II
620-96
.,.,1
_|
\1
I
I
I I I I II
r
c
31
j
-
LL-
1
—1,
Neutron flux [ n cm
proton" ]
o
I
I
I 11
III
§
8 3
k
\ \ \ \w
\ \ \ \ \\
\ \ \ \\\
\j\
"
2;
1
—' ro
\
5
S
en
\\
03
s
5" S3
t-_t
CD
C/3
o g
_
ON
CD
0:
A
00
o
o"
3*
1I
X
-•
o
O
o
1
8 EL
1 111
ill
ml
i
i 11 m i l
i
i i i mil
^
o
lot
00
i
o
31 _
EG
1
°
I
o 2.
- g
o 3
0
Neutron flux [ n cm" proton" ]
I
5
I
a.
I
I I I nil
T
I
I
111
a
o
S?
5
>
"3*
JO o
S3
a
c
- H
a:
s
3 >-
o
o"
00
5"
o
I
1
1 1 1 mil
II
1
i
i 11 ml
I
1
1 1 1 mil
6J0-96
1
1 1 1 • • ill
nil
i
I I I
mil
10u
I
-[—r
I
i
T
i
r
18 r
1O
ALUMINUM for
t-A-H
T
F
1
1 1
|
u
~ :KH
A
1
'
|
j
I •
Slot 1
i
M H
A
O lO" rr
1
h-A-i
o
10->«
I-CH
^
i
•
MH
1 '
•8 io-
Slot 4 (xlO"3)
c
o
o
MH
io
:t-CH
•-0-
-•
1 Slot 8 (xlO"4)
;
;>+i
I
I
I
50
I
I
I
I
I I
100
I
I
io"
I
18
—
k-
1R
1R
detectors using " Al(h,x) F reaction
1
1
1
1
1
MM
1
50
Radius [mm]
^7
3
;
MM
4
1 1
I-CH
Slot 10 (xlO" ) -
MH
~!
Slot 16
MM
1
1
Slot 20
1 1 i
100
MM <
150
Radius [mm]
Fig. 4.7
m
73
n
o
D.
n
t-O-it-O-*
-
150
Hadron fluxes measured by aluminum activation
(xlO- ) '
MM ~l
I-OH
i
I
o10""
linn
17
(Slot 20 (xlO"4) j
Slot 6 (xio" )
MH
MM
-7
KM
MH
-16
1-0-H
10
Slot 3
15
C/5
1n -6
2
M H
^
Slot 2 (xlO"2)
io-
1
I-O-I
:
10-
_L I
:
13
Slot 0
i
Fig. 4.6
1
i-CH
i
,-8
10"
1
HH
•
a
3
-a io
X
1
" 1"
•
c
o
U
1
1 1010
I
1
lO"11 L -
-
1fr2
o
u
00
1 ' '
RPL dosimeter
-4-1 10
C3
1
10-10 L -
10-1
O
1
io- 9
Absorbed dose measured by RPL dosimeters
is
JAERI-Data/Code
slot 1
slot 0
96-029
slot 20
Sl(5t2
1 2 3
o
slot 19
slot 3
4
5
proton
& 20
o
o
o
CO
30 cm
-•5 cm
(iron thickness)
r^
0.7 cm
(slot thickness)
113.3 cm
side
front
Fig. 4.8
-»*
Geometry of iron dump assembly for calculation
-79-
JAERI-Data/Code
96-029
Postscript
The benchmark problems will be mainly distributed to the participants in SATDF-2. They are
expected to calculate the problems. The authors will collect and compile the calculation results. A
compiled report will be presented and discussed at SATIF-3 which will be held in Tohoku University
on 12-13 May, 1997.
Acknowledgements
The authors would like to express their appreciation to Dr. H. Yasuda for his useful comments.
- 80 -
%k (SI)
i 15 Sli
ft
f1
ft
%
Id
+
m
a C•f 7 I,
m. r
>r
t&n
ft It
P
T y
X ir 7 •>'T y
rad
sr
y
s
ft
* ft
7
T'
•y
Hi
I
/J
—
/;
-, Itf , *
I". '•' . 6 t-t *
X;
% 1 ,
Hi,
il
m
/j
X
•y"
y ? 9 ? y
m
«
X
•
V
y
+"
7
T
y x
-
?&
y 9" 9
y
X
-b
ft
T
X
^
X
y
')
u -y ••
-
^
y
;u
m
7
5 xft
fi ft
9c.
/N'
ft
ft
W
X
W
ft'
• ^
N( = 10 5 dyn)
ft
h
a
+
u
7
/u
^
'j
y t- y y
K
u
0.101972
0.224809
1
2.20462
4.44822
0.453592
1
tf
D
d
c
m
n
•y
+
')
j
•? -i 9 D
n
/
•f
t*
P
f
7 i A
r
a
^
s5 is, M B
tztil,
1 eV
fc J; !>* 1 u rafflli CODATA <n 1986 Jf-tft^
£4
h,
T-./U,
1 A=0.1 nm-10-'°m
3. barli,
1 bar=0.1 MPa = 105Pa
- IC
Ga[=Icm/s' = 10-''m/
•5,
1 Ci=3.7xlO'°Bq
r. barnfci
4.
r a d - l c G y = 1 0 2Gy
rem^ 1 cSv= 10 2 Sv
fti MPa( = 10bar)
1
7
/)'
o
rad
rero
i.
T
+*
/
+
-fe y
io10"' *
10"'s
10'"
EJ
A
b
bar
Gal
Ci
R
E
P
T
G
M
k
h
da
1 b=100fm'=10-2'm2
Ibf
9.80665
h
1 Pa-s(N-s/m 2 )=10P(*T x ' ) ( g / ( c m - s ) )
ft*Alt lm2/s=10
Id
y
cd- sr
lm/m'
s '
J/kg
J/kg
kgf
ft
/ < •
Wb/m2
Wb/A
Bq
Gy
Sv
-(
w
Wb
T
H
°C
lm
lx
^
«
Id 'i
-It
h
10"'
10"2
io- 3
10"'
SI
9
?
10*
106
103
102
10'
K eV
t y y x t- • - /.
N-m
J/s
A-s
W/A
C/V
V/A
A/V
V-s
n
s
/.
•y
«4
s'
m-kg/s2
N/m!
V
F
K
y
1 u= 1.66054 x 10^'kg
c
(•
ft 7
ffi ta t
%
IV
7
'«'
M
-
1O'S
10' 2
1, L
t
IV
mm>
x
10"
1 eV=l.60218* 10 " J
Hz
N
Pa
J
W
h y
h
ft a
"i
u
Kill
•y
-
3
-y
a f.+- ^
ft
a
Id
min, h, d
B 5 ,fl
h
7
y
d5
IJ
K
mol
cd
t"
IV
-e
m
)t
T
y
ft
9s.
kg
s
A
RH
;
«
5}
m
!iin
kgf /cm'
atm
mmHg(Torr)
1
10.1972
9.86923
7.50062 x 10
0.0980665
1
0.967841
735.559
0.101325
1.03323
1
2
6.89476 x 10":l 7.03070 x 10"' 6.80460 x 10"
S t ( x V- 9 x ) ( c m ! / s )
lbf/in'(psi)
145.038
14.2233
14.6959
760
1.31579 x 10"J
1.33322 x 10"' 1.35951 x 10~3
1
1
1.93368 x 10"'
51.7149
1
J(=10'erg)
kgf-m
kW- h
cal(lt»ffi)
Btu
ft • Ibf
eV
IV
1
0.101972
2.77778 x 10"'
0.238889
9.47813x10 <
0.737562
6.24150 x 10 "
= 4.184 J
1
9.80665
2.72407 x 10"'
2.34270
9.29487 x 10
7.23301
6.12082 x 10 "
= 4.1855 J (15 "C)
X
(i:
3.6 xlO
1
6
3.67098 x 10
8-f
fit
8.59999
1
x 10 s
4.18605
0.426858
1.16279 x 10"'
1055.06
107.586
2.93072 x 10"'
252.042
1.35582
0.138255
3.76616 x 10"'
0.323890
1.60218 x 1 0 ' "
m
s
Bq
1
1.63377 x 10 '" 4.45050 x 1 0 " 3.82743 x 10
Ci
1
2.70270 x 1 0 "
3.7 x 10'°
1
«
Gy
1
0.01
3412.13
=4.1868 J(fflB&M%
2.24694 x 10
2.65522 x 10
3.08747
2.61272x 10
1
778.172
6.58515 x 10 "
= 75 k g f - m / s
8.46233 x 10
= 735.499 W
1
22
1.51857 x 10"
rad
m
100
8-1
1
2S
(ftfti 1 :)
3.96759 x 10"j
1.28506 x 10"
- 20
1 cal = 4.18605 J ( i " t » y . : )
m
«
IS
1
j
.58 x 10"'
fl:'M'
1PS((A«>/J)
1
1.18171 x 10"
C/kg
9
R
3876
1
m
fft
Sv
rem
1
100
0.01
1
(86 if 12
fl 26 umtf.)
NEUTRON TRANSMISSION BENCHMARK PROBLEMS FOR IRON AND CONCRETE SHIELDS IN LOW, INTERMEDIATE AND HIGH ENERGY PROTON ACCELERATOR FACILITIES
© Copyright 2026 Paperzz