Production and Respiration in Animal Populations Author(s): W. F. Humphreys Source: Journal of Animal Ecology, Vol. 48, No. 2 (Jun., 1979), pp. 427-453 Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/4171 . Accessed: 20/10/2014 12:09 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. . British Ecological Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of Animal Ecology. http://www.jstor.org This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions Journalof AnimalEcology(1979),48, 427453 PRODUCTION AND RESPIRATION IN ANIMAL POPULATIONS BYW. F. HUMPHREYS School of BiologicalSciences, Universityof Bath, ClavertonDown, Bath, BA2 7AY, Avon,England SUMMARY (1) Analysis is made of 235 energy budgets from the literatureto determinethe relationshipbetweenannualproductionandrespirationin naturalpopulationsof animals. (2) Homoiothermsseparate into four groups; insectivores,birds, small mammal communitiesand othermammals. (3) Poikilothermsseparate into three groups; fish and social insects, non-insect invertebratesand non-socialinsects. (4) The invertebrategroupsare separableinto trophiccategoriesand herbivoreshave the lowestproductionefficiency. (5) Thereis no relationshipbetweenanimalweightand productionefficiency. (6) Withinthe groupsderived,specieswith differenthabitats(aquaticand terrestrial) do not have differentproductionefficiencies. (7)Thereis no firmevidencethatproductionefficiencyis dependentuponthe magnitude of production. (8) Distributionof the data indicatesthat there is no quantumjump in production efficiencybetweenpoikilothermicand homoiothermicanimals. (9) Regressionequationsare given for each of the derivedgroups relatingannual productionto respiration(both as logl0 cal m-2 yr' ) in animalpopulations. INTRODUCTION Engelmann(1966)suggestedthat therewas a linearrelationshipbetweenannualproduction and respirationper unit area in animal populations.Additionaldata have been added to the 'Engelmannline' (Golley 1968; Hughes 1970; McNeill & Lawton 1970; Shorthouse1971; Leveque1973)but the relationshiphas been analysedseriouslyonly thrice. McNeill & Lawton(1970)plotted respirationagainstproduction(both as logl0 kcal m-2 yr'1) and wereable to separateclearlythe homoiothermsfrom the poikilotherms. Theysuggestedthatwhensufficientdatawereavailablethe poikilothermswouldbe divisible into threegroups;short lived with low cost resting (overwintering)stages, short stagesand long lived poikilotherms,and thatthe prolived withhighcost overwintering ductionefficiencywould decreasein the same order.They showedthat the relationship for the short lived poikilothermshad a slope (b in y = a + bx) differentfrom 1.0 whetherproductionor respirationwas taken as the dependentvariablebut the slope for the homoiothermdata did not so differ. Shorthouse(1971)addeda few additionaldatato thoseconsideredaboveandwas able to derivepredictiveequationswithnarrowerconfidenceintervalsby separatingthepoikilo0021-8790/79/0600-0427$02.00 ?1979 Blackwell ScientificPublications This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 428 Productionand respirationin animalpopulations thermsby habitat(aquaticv. terrestrial)ratherthan life cycleduration(for his equations see Humphreys1978:Table 6). Grodzifiski& Frenchin Grodzin'ski & Wunder(1975)analysedthe data availablefor smallmammalsand separatedinsectivoresfrom rodentsby theirdifferentslopeswhich wererespectivelygreaterand less than unity. Almost everyenergybudgethas been derivedfrom a uniqueset of assumptionsand methods,some of whichlead to detectableerrors(e.g. Kozlowski's(1968)reinterpretation of Birch'sreworking(in Allee et al. 1949)of Lindeman's(1942)CedarBog budget) while others may lead to undefinablebias (see Humphreys1978).It has been claimed that these differencesin assumptionsand methodsmay introducesufficientnoise into energybudgetsto preventthe separationof some of the subdivisionsdiscussedabove and particularlythe separation of animals by trophic level (Humphreys1978) as suggestedby Kozlovsky (1968). In addition it has been claimed that the resolution obtainablefrom energybudgetsmay be insufficientto test hypothesesusingenergetics methodologies(Humphreys1978)as attemptedby Sutherland(1972). The numberof energybudgetsnow availableshouldpermitthe analysisof someof the energyrelationsof animalpopulationsmentionedabove.This hasbecomemoreimportant as the originalequationsderivedby McNeill & Lawton(1970)areincreasinglybeing used to completeenergybudgetsfrom a knowledgeof eitherproductionor respiration (Phillipson1971;Mason 1971, 1977;Hughes 1972;Olah 1976). MATERIALSAND METHODS I follow the terminologyof Petrusewicz& Macfadyen(1970) to describethe energy budgetswhereP is net production(thatdue to growth,Pg, and reproduction,Pr) and R is metabolic heat loss; A = P + R = C - FU all in caloric units. Energy budgets for 235 naturalpopulationswereextractedfromthe literature(Appendix).With one exception (Llewellyn1975)energybudgetshaveno varianceestimate;differencesin methodologies and assumptionsused by differentworkerssuchas the arbitraryadjustmentof R, the inclusionor not of Pr in the estimationof P and the effectsof immigrationshould resultin energybudgetsthat varywidelyaroundthe truevalue (see McNeill & Lawton 1970; Humphreys1978).No objectivemethod is availableto distinguish'good' from 'bad'energybudgetsso I haveappliedno selectionto the data with the followingexceptions. The data for Pogonomyrmex badius(Golley & Gentry 1964) were excludedas they are widelybelievedto be aberrant(set Petal 1978).Budgetspartiallyderivedusing the equationsfrom McNeill & Lawton (1970) were excludedas were those covering more than one taxonomiccategory(see below). I have not excludedbudgetscovering only the larvalstagesof insectsas I did elsewhere(Humphreys1978). Wherenecessarythe followingconversionfactorswereused: 1 g carbon = 10.94kcal. 1 kJ = 0.2388kcal. Maximumlive weight for a specieswas taken from the original sourcedirectly,readfromfigures,or convertedfromdry weightassuming75%/waterin the livinganimal(fleshweightonly in molluscs)or from caloricvalueusingcaloricdata for the appropriategroupcompiledby Cummins& Wuycheck(1971). The data wereinitiallygroupedinto 'taxonomic'categorieswhichin some caseswere welldefined(mice,voles, shrews,fish,socialinsects,orthoptera,hemiptera,molluscaand crustacea)or, wheredatawereinsufficient,into loose taxonomicgroups(othermammals, other insectsand othernon-insectinvertebrates). Data for birdswerepooled from both This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions W. F. HUMPHREYS 429 single speciesstudiesand communitystudiesand a separatecategoryerectedfor small mammalcommunitybudgets. Statisticaltreatment As discussedby W. Grodzin'ski& N. R. French(personalcommunication)production cannot occur in the absenceof respirationwhile the converseis not true; theoretically thereforeproductionshouldbe treatedas the dependentvariable.In practicerespiration is calculatedfrom the biomassat differenttimes and ideally as an integralso that the changeof biomassplus a constantis tracked.Changein biomassis an index of production whichmakesrespirationthe dependentvariablein practice.However,as discussed elsewhere(McNeill & Lawton1970),both R and P are derivedfrom eithernumbersof individualsor biomass and are thus not strictlyindependent.I see no alternativeto presentingthe analysestreatingboth P and R as dependentvariables;this has the added advantageof permittingpredictionof the other parameterfrom either known P or known R. Leastsquaresregressionswerecalculatedfor each of the originalfourteentaxonomic groupstreatingeitherP or R (log1ocal m-2 yr 1)as the dependentvariable.Regressions werecompared(see below)with each otherand pooled if not significantlydifferentuntil the minimumnumberof separategroupswas found. Withinsome of the pooled groups the data wereanalysedin an attemptto separatefurthertaxonomiccategories(Diptera from otherinsects,ants fromtermitesand gastropodfrompelecypodmolluscs),trophic categories(herbivoresfrom carnivoresfrom detritivores),life cycle duration (short lived, < 2 years,from long lived, > 2 years),and habitat(aquaticfrom terrestrial). Least squaresregressionswere calculatedfor each group consideredand the lines comparedusingthe analysisof varianceprocedureof Davies & Goldsmith(1972:Table 7.7). Analyseswereconductedto test fourrelationshipswithinandbetweenthe regression lines of the form log y = a + b log x. Firstlywhetherx and y werecorrelatedand the slope(b) of the equationdifferedfromzero.Analysiscontinuedto test whetherthe two (or more) regressionlines had a similarslope (P > 0.05); if the slopes were statistically similarthe lines weretestedfor commonintercept(a). If the interceptswere similarthe lines were pooled otherwisethey were treatedas separategroups. In this mannerall groupsweretestedagainstall adjacentgroupsbeforepooling.Finallythe individuallines or the commonslopefor severalpooledgroupsweretestedfor a slopeof 100. Wherethe slope is 1.00,thereis no relationshipbetweenthe magnitudeof annualR (or P) per unit area and the productionefficiencyP/(P + R) = P/A. The estimatesfor P and R containunspecifiedmeasurementerroras well as natural variability.The groupsof data are typicallynon-normaland open ended.In a lengthy discussionof varioustypes of linearregressionRicker(1973)recommendsthe use of the geometricmean estimateof the functionalregressionof y on x (the GM regression), especiallyif it is desirableto avoid decisionsabout the relativeaccuracyof measuringx andy. Thisformof regressiongivesthe best estimateof the slopefor predictivepurposes and Ricker recommendsthe use of ordinarysymmetricalconfidencelimits. For this reasonI presentfor the derivedgroupsthe functional(GM) regressionsand the more familiarleastsquarespredictiveequations.Whereit is necessaryto obtainGM regressions for the common slope of severalgroupsit has been approximatedfrom the weighted meancorrelationcoefficientfor the groups. Unless specifiedthe equations given are standardpredictiveregressions.Anyone This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 430 Productionandrespirationin animalpopulations interestedin the slope of the relationshipsfor specificgroupscan calculatethe slope(v) for the GM regressionfrom the appropriatepredictiveequationsas: v = b/r (Ricker 1973). The indexP/A was also analysedfromthe individualstudieswithoutconsiderationof the magnitudeof P or R. Data wereanalysedfor homogeneityof variancesby Bartlett's test (Sokal & Rohlf 1969).Analysisof variancewas conductedand the meanstested by the Student-Newman-Keuls a posterioritest for unequalsamplesizes (Sokal & Rohlf 1969). RESULTS Variance Regressionsfor the originalfourteentaxonomicgroupshave significantheterogeneity in the residualvariances(P < 0.005). This heterogeneityremainsafter exclusion of severalof the more extremevariancesand cannotbe removedby transformationof the data. I follow McNeill & Lawton (1970) in the belief that the empiricalrelationship betweenP and R is of sufficientinterestto use standardregressiontechniquesin its analysis.My use of analysisof varianceis to obtain objectivesubdivisionsof the data available:while I retainthe usual criterionof significanceat the 5%.probabilitylevel, any tests givingprobabilitiesclose to the 5%?level may be viewedwith caution.While moderateheterogeneityof variancesis not seriousfor overalltests of significance,single degreeof freedomcomparisonsmay be seriouslyin error(Sokal & Rohlf 1969). Productionas the dependentvariable Regressionstatisticsfor the originalfourteen'taxonomic'categoriesare presentedin Table 1. All the relationshipsare significant(P < 0-003)and none of the slopes differ significantlyfrom the others; these lines have a common slope of 0.961 (?0.021 S.E.) which does not differfrom a slope of 1.0 (ts233= 1.857, 0.1 > P > 0.05). Sequential comparisonof the interceptspermittedpooling of severalgroups leaving 7 separate regressionlines(Table2); summaryanalysesof variancefor some of the moreinteresting comparisonsare givenin Table3. Withinthe pooledgroupsnone of the regressionlines differsfrom any other with whichit has been pooled and the pooled groupsare clearly separatedwithone exception;the interceptsfor the insectivorelinediffersfromthatof the birds(P = 0.0001)but the smallmammalcommunityline does not differfromthose for the birdsor the insectivores.Poolingthe insectivoredatawiththosefor the smallmammal communitiesresultsin a regressionnot significantlydifferentfrom that for the birds (Table3). Hencethese threelines are kept separate(Fig. 1). The common slope of the GM regressionfor the seven derivedgroups(v = 1.026) does not differfrom 1.0. Re-analysisfor commonslope, havingexcludedall budgetsfor more than one species, gives a common slope not differentfrom 1.0 (v = 1.000; Table2). Analysisfor commonslopebetweengroupsfor the homoiothermsandpoikilothermsseparatelyshowsneitherdiffersfrom unity (v = 1.085and 0.984 respectively). Furthertaxonomiccategoriescould not be separatedfrom the seven derivedgroups (Table 3). None of the following could be separated;rodents from non-insectivore mammals,dipterafrom any non-socialinsect group,ants from termitesnor gastropod frompelecypodmollusca.Howeversplittingthe non-socialinvertebrates into arthropods and non-arthropodsgave significantseparationbut with generallywider confidence This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions TABLE 1. Regression statistics relating annual production (log10 P cal m-2 yr-') to respiration (lo Community studies for birds and small mammals are includ Group Correlation Regression equation coefficient N Mean R Mean P P = 0-608R - 0-684 6 3-151 1. Insectivores 0.958 1-052 P = 0-854R - 0-946 0-920 22 1-524 2-893 2. Mice 20 3.801 2-233 P = 1-078R - 1-866 0.923 3. Voles P = 0-911R - 1-190 14 3.724 2.202 0*963 4. Other mammals P = 1-139R - 2-399 0.840 8 1.997 3.859 5. Small mammal communities P = 0.734R - 0-830 0.929 9 2.105 4.000 6. Birds 0.965 P = 0.834R - 0-249 9 4-337 3-370 7. Fish P = 1.002R - 1-048 0.858 13 3.241 2.198 8. Social insects 0.919 P = 0.859R + 0.337 22 3.286 3.432 9. Orthoptera P = 1-015R - 0.188 0.967 14 2-980 2.838 10. Hemiptera P = 0-961R - 0.006 0.977 25 3.827 3.673 11. All other insects P = 1-033R - 0-717 0.860 45 4-832 4.272 12. Mollusca P = 0-946R - 0-231 0.959 9 4.608 4.130 13. Crustacea P = 1.018R - 0.483 0.911 19 3.703 3-286 14. All other non-insect invertebrates Non-insect invertebrates: P = 0-979R - 0-407 0.902 11 3-323 2-847 15. Carnivores 0-907 22 4-298 P = 1-069R - 0-601 4-583 16. Detritivores 16 4.617 3-982 17. Herbivores P = 0-971R - 0-500 0*943 Arthropods: P = 0-970R - 0-060 0.971 62 3.480 3.316 18. Short lived (<2 yrs) P = 1.206R - 0-224 0.889 12 3-120 3.539 19. Long lived (>2 yrs) Common slope (? standarderror): Groups 1-14 b = 0-961 ? 0.021 N = 235 tsj.o = 1.857 NS v = 1.0 15-17 b = 1-013 ? 0-057 N = 49 tsj.0 = 0.228 NS 18-19 b = 0-987 ? 0-035 N = 74 ts1.o = 0*371NS This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions TABLE2. Seven different predictive regression equations relating annual respiration (loglo R ca in animal populations. The GM regression which better estimates the slope is given b the predictive regressions m-2 yr') Group Insectivores Birds Small mammalcommunities All other mammals Fish and social insects Non-insect invertebrates Non-social insects Mean R Mean Standa P intercept Regression equation N P = 0-608R - 0-864 P = 0-636R - 0.952 P = 0-734R - 0.830 P-0790R - 1.055 P = 1*139R - 2.399 P = 1356R - 3-236 P = 0-885R - 1.084 P = 0-938R - 1.259 P = 0-912R - 0-749 P = 1.042R - 1.234 P = 0-974R - 0.394 P = 1-068R - 0-820 P = 0-969R - 0.037 P = 10OR -0.144 6 As in 9 As in 8 As in 56 3.447 1.967 0.289 22 3.742 2.646 0.470 73 4.511 3-998 0.397 61 3.456 3-312 0.288 Common slope for above groups: b = 0-942 ? 0.0209 N = 234 ts.o Common slope for non-community studies*: b = 0.952 + 0.0208 N = = 2-758 P < 0.01 210 ts1.0 = 2.28 * Excludes birds, small mammal communities and other budgets pooled for more than on This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions TABLE 3. Synopses of analyses of variance testing for common slopes and intercepts for s annual respiration (log1o R cal m-2 yrT-) to production (log10 P cal m2 yr-) i Group Homoiotherms v. poikilotherms Insectivoresv. birds Insectivoresv. small mammal communities Birds v. non-insectivoremammals Rodents v. other non-insectivoremammals Fish v. social insects Diptera v. Orthopterav. Hemiptera v. all other non-social insects Non-social arthropods v. non-arthropod Test for parallel lines F P d.f. 1.5 0.215 1,232 0*8 0.397 1,11 0.131 1,10 2-7 0-4 0.546 1,64 0.288 1.2 1,55 0-4 0.560 1,17 1.1 0.361 3,54 Test for common F d.f. 427.7 1,233 32.1 1,12 2.7 1,11 12.1 1,65 0.01 1,56 1,18 0-3 0.1 3,57 0.01 1,131 0.908 10-7 1,132 0.0 1,131 0.946 23.5 1,132 0.2 0.2 2,43 2,56 0.799 0.823 3-5 2-4 2,45 2,58 0-04 3.2 0.2 1,18 1,70 1,58 0.842 0.079 0.660 1-3 6.1 0.1 1,19 1,71 1,59 0 0 0.6 1,58 1,44 1,130 0.984 0.982 0.461 0.01 0.7 2-4 1,59 1,45 1,131 invertebrates Non-social insects v. non-insect invertebrates Herbivoresv. carnivoresv. detritivores: non-insect invertebrates non-social insects Short v. long lived: non-insect invertebrates non-social insects Insect larvae v. all stages Aquatic v. terrestrial: non-social insects non-insect invertebrates all invertebrates This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions Productionandrespirationin animalpopulations 434 0 6 6 - 7 V 0 X_ +Ov/ ~~~~~~v 00 ~~ 4 ~~~~~~~~~~~0 N 0 0 4 C o-E24- 51y u X A 10 + 4 10 V/ x 2 o ?~ (Am L 40 * xu * EU U 2 0 40 ~ ~~~ Respiration(logl0 cal m-2y'1) FIG.1. The relationshipbetweenrespirationand production (both as log10cal m-2 yr'1) in naturalpopulations of animals.The regressionlines, not adjustedfor common slope, of the seven derivedgroups (Table 2) are shown. The points for Perognathuspenicillatis and P. baileyi(Appendix)are not plotted. The lines are numbered1 = insectivores,2 = small mammal communities, 3 = birds,4 = other mammals, 5 = fish and social insects, 6 = non-insectinvertebratesand 7 non-social insects. The symbols denote: O insectivores, I small mammal communities, * other mammals, * birds, + fish, x social insects, 0 molluscs, 0 Crustacea,j other non-insect invertebrates,A Orthoptera,* Hemiptera, V other non-social insects. intervals than the separation into non-social insects and non-insect invertebrates (95%/ confidence intervals of P at R = 1 and R = 6 respectively: non-social insects, + 0-596 and ? 0.597; non-insect invertebrates, +0.871 and + 0.806; arthropods, ? 0.694 and + 0.693; non-arthropodinvertebrates,+1.073 and + 0.861). The former division is thereforeretained. Habitat andboth groupspooledcould Data for the non-socialinsects,non-insectinvertebrates not be separatedaccordingto habitattype (aquaticv. terrestrial)and all gavecommon lines (Table3). This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions W. F. HUMPHRES 435 Life stage Studiesconductedon the larvalstagesonly of the non-socialinsectswouldbe expected to have higherP/A than those studiescoveringall life stages.Separationof the data by these criteriaresultedin commonregressionlines (Table3). Durationof life cycle Insufficientdataarepresentto separatethe non-socialinsectsinto long and short lived species.No separationwas possible (commonintercept;P = 0.273) betweenthe long lived (> 2 y) and short lived (< 2 y) invertebrates(excludingsocial insects).However, arthropodsare divisibleinto shortand long lived speciesgivingparallel(P = 0.079)but separate(P = 0.016)lines (Table3). Trophictype The non-insectinvertebratescould be separatedinto three trophic types; when the interceptswere calculatedfrom the common slope for the three groups(b = 1.013 + 0.0572) the efficiencyP/A is greatestfor detritivores(a = -0.346), intermediatefor carnivores (a = -0.521) and least for herbivores (a = -0-696). The non-social insects had commonslopeswith a marginallevel of probabilityfor the intercepts(P = 0.102); againherbivoreshad the lowestefficiencyP/A but carnivoreswereintermediate. Respirationas the dependentvariable Regressionstatisticsfor the originalfourteentaxonomicgroupsarepresentedin Table 4. All the relationshipsare significant(P < 0-003)but the slopesare not common(P = 0.012).Removalof the datafor insectivoresandmolluscsyieldsparallellines(P = 0-130) with a commonslope of v = 0.997 + 0.019whichdoes not differfrom 1.0. Analysisof the linesas beforeyieldsthe samesevengroups(Table5) previouslyderived but with non-parallellines (P = 0.044). Exclusionof the insectivoredata yieldsparallel lines (P = 0.061) with a common slope (v = 1-012)not differentfrom unity. Further analysisconfirmsthe taxonomicdivisionspreviouslyfound as well as those for life cycle duration,habitatand trophictype. Non-insectinvertebratesagain separateinto carnivores, detritivoresand herbivoreswith P/A decreasingin that order.Trophicseparation TABLE4. Regressionstatisticsrelatingannualrespiration(logio R cal m2 yr-1) to production(logio P cal m-2 yr 1) in animalpopulations.Communitystudies for birdsand small mammalsare included of Standarderror Significance slopefrom1.0 Regressionequation N intercept slope Group 6 0.201 0.225 R = 1.510P+ 1.563 NS 1. Insectivores 0.348 0.088 NS R = 0-992P+ 1.392 24 2. Mice 0-193 0.076 <0-02 R = 0-789P+ 2.039 21 3. Voles NS 0083 R = 1-018P+ 1*483 14 0.332 4. Othermammals NS 8 0.275 0.163 R = 0.619P+ 2.623 5. Smallmammal communities 0.156 0.177 9 NS R = 1-178P+ 1.521 6. Birds NS 0.114 0.227 R = 1-117P+ 0*574 9 7. Fish NS 0.189 R = 0.694P+ 1.816 13 0.534 8. Socialinsects NS 0*246 0.092 R = 0.982P+ 0.203 23 9. Orthoptera 0.070 NS R = 0*922P+ 0*365 14 0.405 10. Hemiptera NS 0.046 0.263 R = 0.993P+ 0.179 24 11. All otherinsects <0.001 0-326 0.065 R = 0.716P+ 1.775 45 12. Mollusca 9 0.259 0.110 NS R = 0-969P+ 0.607 13. Crustacea 0.086 <0.05 R = 0 812P+ 1.041 19 0.414 14. Othernon-insect invertebrates This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions Productionandrespirationin animalpopulations 436 TABLE 5. Predictive regression equations relating annual production (log1o P cal m2 yr'1) to respiration (logloRcalMr2yr-') in animal populations. GM regressions, which better estimate the slope, are given below each predictive equation; statistics relate to the latter Group 1. Insectivores Significanceof slope from 1.0 N R = 1.510P + 1.572 6 0.200 0.2251 NS R = 1.176P + 1-524 9 0.156 0.1766 NS 8 0.275 0.1635 NS 56 0.308 0.0465 NS 22 0.450 0.1015 NS 73 0.369 0.0446 0.01 > P > 0.001 61 0.287 0.0322 R = 1.576P + 1.493 2. Birds standarderror intercept slope Regression equation R = 1.266P + 1.335 3. Small mammal communities 4. All other mammals R = 0.619P + 2.623 R = 0-737P + 2.387 R = 1-007P + 1.466 R = 1.067P + 1.349 5. Fish and social insects 6. Non-insect invertebrates R = 0-839P + 1.504 R = 0-959P + 1.187 R = 0.856P + 1.088 R = 0-937P + 0-767 R = 0-963P + 0.271 7. Non-social insects NS R = 0.994P + 0-169 Common slope for groups 2-7: b = 0.923 ? 0.018, v = 1.007 Common slope for groups 4-7: b = 0.932 ? 0.018, v = 0.999 TABLE 6. Regression equations relating annual population respiration (log1o R calm-2yr-1) to production (logloPcalMr2yr'1) for all significant groups calculated from the common slopes for P (b = 0.942 ? 0.021) and R (b = 0.923 ? 0.018) as dependent variables. The intercepts for a slope of 1.0 are given in parentheses. Slopes (v) for GM regressions, approximated from weighted mean correlation coefficient, are 1*013R and 0.992P Group Regression equations Insectivores P = 0.942R - 1.917 (-2.151) R = 0.923P + 2.180 (2.099) Birds P = P= P = P = - 1.664 1.639 1.281 0.863 R = R = R = R = Small mammal communities Other mammals Fish and social insects Non-insect invertebrates Non-social insects Non-insect invertebrates: Herbivores Carnivores Detritivores 0.942R 0.942R 0-942R 0.942R - (-1.895) (-1.864) (- 1.480) (-1.078) 0.923P 0.923P 0.923P 0.923P + + + + 2.057 2.016 1.632 1-282 (1.895) (1.864) (1.480) (1.078) P = 0.942R - 0.252 (-0.513) P = 0.942R + 0.056 (-0.435) R = 0.923P + 0.821 (0.513) R = 0.923P + 0.399 (0.144) P = 0.942R - 0*366(-0.635) P = 0.942R - 0.283 (-0.476) P = 0.942R - 0.019 (-0.285) R = 0*923P + 0.941 (0.635) R = 0923P + 0.695 (0.476) R = 0.923P + 0.626 (0.285) of the non-social insects is again marginal (P = 0.058) with the same rank order of efficiencyfound previouslywhen the interceptwas calculatedfrom the common slope for the threegroups. Regressionequationsfor the derivedgroupsarepresentedin Table6 for both P and R as the dependentvariable;interceptsaregivenfor a slopeof 1.0as wellas thosecalculated from the commonslope. Productionefficiencyand the magnitudeof P or R We are concerned here with the slope of the regression lines; as both variables are taken as logarithms (simple allometry relationship) then a slope of unity shows that the magnitudeof P or R has no effect on productionefficiency(P/(P + R) = P/A). By attemptingto groupthe data I am looking for law-likerelationshipsbetweenP and R where both are subject to error and have random variability (functional relationships This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions W. F. HUMPHREYS 437 sensuSprent1969).No independentestimateof the varianceof P and R is availablein energybudgetsso no maximumlikelihoodestimateof the slopeis possible(Sprent1969). However,the rangeof the slopefor R can be calculated;it lies betweenthe slopesfor R as the independentvariableand as the dependentvariable(in the latter case derived from reciprocalslope P). The rangefor slope P can be derivedin a similarmanner. Takingthe specificcase of the common slopes in Table 6 the slope rangesbetween 0.942R-1.083R(i.e. 1/0.923)or 0.923P-1.062P(i.e. 1/0-942)with mean slopes of 1.013 and 0.993 respectively.In generalbecausethe slopesare less than 1-0whetherR or P is treatedas the dependentvariablethe rangeof slope in each case includes1.0. Themost appropriateestimateof the slopefor dataof this typeis v of the GM regression. In each case v is close to 1.0; while exactconfidenceintervalsare unavailablefor v calculatedfrom the commonslope, they would have to departwidelyfrom those for b in the predictiveequationsto show significantdepartureof the slopesfrom unity. In neitherof the above treatmentsis there any evidencethat the slope departsfrom unity; the magnitudeof P or R has no effecton productionefficiency. Productionefficiencyand weight Regressionof maximumlive weight(logl0, g) of the animalsagainsttheirproduction efficiencygave the followinglevels of significance(N): insectivores,P = 0.144(6);other mammals, P = 0.462(52); fish, P = 0.290(7); non-social insects, P = 0-118(52); non- P = 0.490(31).No significantrelationshipexistsbetweenthese two insectinvertebrates, variables. Productionefficiency The meanproductionefficiency(P/A) is shownfor variousgroupsin Table7 irrespective of the absolutemagnitudeof P and R. The seven derivedgroupshave significant heterogeneityas do the trophicgroupswithinthe non-insectinvertebrates. Therankorder of productionefficiencybetweenthe trophicclassesfor the non-insectinvertebratesand the non-socialinsects is the same as in the previousanalyses.However,the between trophicclassvariancesarehomogeneousfor the non-socialinsectsandthe herbivoresare clearlyseparatedfrom the carnivores(SNK: P < 0.05) but not from the detritivores; herbivoreshave the lowest productionefficiency. DISCUSSION This analysisconsiderablyextendspreviousanalysesof the relationshipbetweenannual populationproductionand respirationin animalpopulations(McNeill& Lawton1970; Shorthouse1971;Grodzin'ski & Frenchin Grodzin'ski& Wunder1975).Homoiotherms separatefrom poikilotherms(McNeill & Lawton 1970)but clearseparationis possible withinthese two groups. Homoiothermsseparate into three (insectivores,birds and other mammals)and possiblyfour (smallmammalcommunities)groups.Grodzifisky& Frenchin Grodzinski & Wunder(1975),takingP as the dependentvariable,showedthat the slopesfor insectivores and rodents were different.I was unable to separaterodents from other noninsectivoremammals;when the lattertwo groupswere pooled the slope did not differ wheny = P but did so differwheny = R. Althoughinsectivoreswere includedin the small mammalcommunitybudgets,in only 2 (Hansson 1971) of the 8 budgetswere This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions Productionandrespirationin animalpopulations 438 7. Mean production efficiency (P/A) ranked in order of increasing efficiency. Statistics were calculated using arcsine Vx transformation and have been reconverted for this table. Vertical lines next to the trophic types include statistically common groups using Student-Newman-Keuls 'a posteriori test for unequal sample sizes TABLE Group P/A % 0.86 1.29 1.51 Standard error N Coefficientof variation 1. Insectivores 0.109 6 35.6 9 0.030 15.3 2. Birds 0.126 8 3. Small mammal 28.8 communities 3.14 0-278 56 4. Other mammals 29.6 9-77 0.890 5. Fish and social insects 22 29.7 6. Non-insect invertebrates 25.0 3-671 73 36.8 7. Non-social insects 40.7 2-036 61 20.7 Non-insect invertebrates: j 20.8 1-38 15 8. Herbivores 24.9 5.09 9. Carnivores 11 41.2 l 27-6 4.82 1 36.2 10. Detritivores 23 34.3 Non-social insects: 11. Herbivores 1-93 49 | 38.8 20*7 12. Detritivores 1.64 6 | 47.0 17.0 I 55*6 13. Carnivores 0*64 5 9.5 Groups 1-7: Homogeneity x2 = 127.48 P < 0.005; ANOVA, F = 97.83, P < 0-001. Groups 8-10; Homogeneity x2 6*315,0.05 > P > 0.025; ANOVA, F = 3.541, 0.05 > P > 0-025. Groups 11-13: Homogeneity x2 = 1.608; 0-5 > P > 0.1; ANOVA, F = 4.230, 0-025 > P > 0.01. Groups 1, 3 and 4: HomogeneityX2 = 1.212, 0-9 > P > 0-5. Group 1 = 3, 1 # 4, 3 # 4 (SNK P < 0-05). sufficient insectivores present to affect markedly the community P/A ratio. Comparison of the methodologies used to derive community and single species budgets is beyond the scope of this paper but separation of community from single species budgets in mammals does raise questions as to the validity of the bird line which is based mainly (7 of 9 budgets) on community studies. Poikilotherms separation clearly into three groups (fish and social insects, non-insect invertebrates and non-social insects). The latter two groups could also be separated into arthropod and non-arthropod species but the resulting regressions had wider confidence intervals so I have retained the former division. The arthropods but not the invertebrates (both excluding social insects) could be separated into long and short lived species and the latter had the lower production efficiencies. This separation is mainly due to the long lived arthropods belonging to the non-insect invertebrate group which have already been separated from the non-social insects. However, many of the former group are molluscs which probably have long life cycles but have been excluded from the analysis as insufficient information is available in the sources. The separation of the non-insect invertebratesfrom the non-social insects may be due to the difference in average life cycle within the groups; but this is probably not the case as two other groups (crustacea and general invertebrates), despite both containing mainly short lived species, are not separable from the molluscs. While accepting McNeill & Lawton's (1970) arguments concerning the effects of longevity and cost of overwintering stages on production efficiency it would appear that the resolution of the budgets is insufficient to distinguish the effects. The separation of insects from other invetrebrates appears to be real and not a function of trophic type, longevity or This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 439 W. F. HUMPHRBYS habitat.Insectsare not the 'particularlypoor converters'suggestedby Calow(1977),at least in naturalpopulations. Shorthouse(1971)separatedaquaticfrom terrestrialpoikilotherms;I was unableto separateany of the invertebrategroupings(excludingsocialinsects)accordingto habitat. This again indicatesthe low resolutionof energybudgetsas terrestrialinsects(mainly orthopteraand hemiptera)tend to have low cost resting stages (eggs) while aquatic stages(larvae).In thistheycontrastwiththe speciestendtowardshighcost overwintering non-insectinvertebrateswhich mostlyfall into one groupwith high cost overwintering stages(mollusca,crustaceaand arachnids)and are longerlived. I presentthe groupsonly as the best availabledivisionfor predictivepurposes;when moredata are availablesome of my groupingsmay be shownto resultfromthe distribution of datapresentlyavailableand it may be possibleto moreclearlydescribethe effects of habitat,longevity,trophictype and taxa on the relationshipbetweenP and R. WitheitherP or R as the dependentvariablethe non-insectinvertebratesseparateinto trophic categories(detritivores,herbivoresand carnivores:for y = P, P = 0.038; for y = R, P = 0.022)withthe maincontributionto the separationbeingbetweenherbivores and detritivores(P = 0.006). The same comparisonfor the non-social insects gave marginal significance in each case (for y = P, P = 0.102; for y = R, P = 0.058). When the interceptswerecalculatedfor the commonslopewithineachanalysisherbivoreshad, in eachcase,the lowestproductionefficiency(P/A) andcarnivoresthe greatestin threeof four analyses.Whentrophiccomparisonsweremadedirectlyfrom P/A withoutregard to the magnitudeof P or R (Table7) rathersimilarresultswere obtained;howeverthe analysiswas strengthenedfor the non-socialinsects which gave significantseparation while having homogeneousvariancesbetween trophic groups. These results do not supportthe contentionthat detritivoreshavelow P/A becauseof theirpoor qualityfood (Macfadyen1967),that P/A is inverselyrelatedto trophiclevel (Kozlowski1968)or that high conversionefficiencyis associatedwith herbivory(Calow 1977). Whileit has been possibleto separateobjectivelya numberof groupswith differing productionefficienciesthere is no longer the clear separationof homoiothermsand poikilothermdata (Fig. 1) seen in McNeill & Lawton(1970: Fig. 1). The production efficienciesof animalpopulationsform a continuumand there has been no quantum jump betweenpoikilothermsandhomoiothermsin the evolutionof productionefficiency. Any departureof the slopeof the regressionequationsfromunitywouldimplythatthe magnitudeof P or R affectsthe productionefficiency;if this werethe case some cogent theory would be neededto accountfor the effect. The common slope for the original fourteentaxonomicgroups (y = P) does not differfrom unity nor does that for the twelveparallellineswheny = R. In contrastto McNeilland Lawton(1970)who found the slopefor the shortlivedpoikilothermsbut not the homoiothermshada slopediffering from 1.0,I findthe reverseto be the case. Usingthe moreappropriateGM regressionsit is clearthat the slopes do not differfrom unity; when many speciesare consideredthe magnitudeof P or R does not influenceproductionefficiency.Intraspecificeffectsare consideredlater. McNeill & Lawton(1970)suggestedtwo reasonsfor the departureof theirregression fromunityfor shortlivedpoikilotherms;animalsfor somereasonlimitedto low productivity may compensateby having maximumproductionefficiency,or the slope may reflectthe distributionwithintheiranalysisof datafromspeciesof differinglongevityand overwinteringcosts. SeveralfactorsmayinfluenceP/A: the energeticcost of competition may increaseat high intraspecificproductivitylevelswherespeciesnumbersare reduced This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 440 Productionandrespirationin animalpopulations and competitiontends to be intraspecificand should be most intense;converselyP/A may be reducedin rare species (low density and low productivity)by the energetic requirementsof findingresources.Suchhypothesisare relativeto the speciesconcerned. If productivityinfluencesP/A then differentspecies should be affectedover different rangesof P or'Rdependingon theirnormalvaluesfor populationdensityor productivity. The sumeffectson the regressionlineswouldnot be expectedto causethe slopeto depart from unity. The sizeclassstructureof a populationhasan identifiableeffecton P/A; younganimals tend to havegreaterP/A than old ones (Calow1977)so that growingpopulationswith a high proportionof youngindividualshave greaterP/A than stableor decliningpopulations. While this should not cause a departureof the regressionfrom unity, at least within one metabolicclass of animals,it may explainthe separationof the non-social insectsfromthe non-insectinvertebrates. Theformertend to haveindividualsdeveloping rapidlyfrom eggs within one or two seasonsand short reproductivelife which should give high P/A; most non-insectinvertebratesdo not have this phenologyand would have lowerP/A. The firmestevidenceI have showsthat the slopes of the regressionequationsdo not depart from unity; until a body of theory is developedand firm empiricalevidence obtainedto suggestotherwise,I recommendthe use of a slopeof 1.0for all the predictive equationsin Table6. It has beensuggestedthat P/A is greaterin highdensitypopulations(highproduction) (Bobek 1969;W. Grodzin'sky& N. R. Frenchpersonalcommunication).Examination of the trendin the relationshipbetweenP/A andP in speciesfor whichthereareavailable more than two energybudgetsdoes not supportthis contention.Five of sevenhomoiothermicspeciesshow no trend in the relationshipwhile six of eleven poikilothermic specieshave a directrelationshipand threehave no trendin the relationship. None of the five taxa consideredshoweda significantrelationshipbetweenadult live weightand productionefficiency.The increasedefficiencyof resourceutilizationsuggested (Cody 1966)for more K-selectedand hence larger(Southwood1976)speciesis not achievedthrough changes in productionefficiency(or P/C; unpublished)within the groupsI considered.In additionthe field data do not supportFenchel's(1974)view that R/A is directlyrelatedto body size. Despite the largerdata base used here the confidenceintervalswithinany regression line do not improveon those of McNeill & Lawton(1970)and in some cases they are wider.Neverthelessthe predictivepower of the regressionsis improvedby therebeing morespecificmetabolicgroupsfromwhichto choose.Whilethe failureto improveon the confidenceintervalspartlyreflectsmy lackof dataselectiontheyarea realmeasureof the innatevariabilityof energybudgetsand of the varianceintroducedby differingmethodologiesandassumptions.Methodologicaldifferencesmaygiveat leasta twofoldvariation in the estimateof R (Humphreys1978);this would give 1.59-1.77and 1.764184 fold variation in P/A for non-social insects and non-insect invertebratesat production efficienciesin Table 7. This variationcompareswith 2.7 and 3.2 fold variationin P/A within the 95%/confidenceintervalsin Table 6 for non-socialinsects and non-insect invertebratesrespectively.These methodologicaldifferencespreventany true measure of withingroupplasticityof P/A in animalpopulations.The contentionthat the noise introducedinto energybudgetsby methodologicaldifferencesmay preventseparation of manygroups(Humphreys1978)is clearlyincorrect.However,the resolutionis low and some subdivisionsthat would be expectedcannotbe found. This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions W. F. HUMPHREYS 441 ACKNOWLEDGMENTS I am gratefulfor the considerableassistancegiven me by the Bath UniversityLibrary staffin obtaininga largeamountof loan material.A. J. Collinsand P. K. Nandi of the Departmentof Mathematicsdiscussedwith me variousstatisticalproceduresbut I am responsiblefor the use made of them. D. Clark obtainedfor me various computer andN. R. Frenchkindlysentme an unpublishedmanuscript. softwareandW. Grodzin'ski REFERENCES Allee, W. C., Emerson, A. E., Park, O., Park, T. & Schmidt, K. P. (1q49). Principles of Animal Ecology. Saunders,Philadelphia. Aulak, W. (1973). Productionand energy requirementsin a population of the bank vole in a deciduous forest of Circaeo-alnetumType. Acta Theriologica,18, 167-190. Bear, S. L. & Fleharty,E. D. (1976). A model of the daily energy budget and energy flow through a population of the white-footed mouse. Acta Theriologica,21, 12-23. Backiel, T. (1970). Productionand consumption in the population of Aspiusaspius(1.) of the Vistula River. Polski archowumhydrobiologli,17, 249-258. Backiel, T. (1971). Productionand food consumption of predatoryfish in the Vistula River. Journalof FisheriesBiology, 3, 369405. Bailey, C. G. & Mukerji, M. K. (1977). Energy dynamics of Melanopusbivittatusand Melanoplus femurrubrum(Orthoptera: Acrididae) in a grassland ecosystem. CanadianEntomologist, 109, 605-614. Bailey, C. G. & Riegert, P. W. (1973). Energy dynamics of Encoptolophussordiduscostalis (Scudder) (Orthoptera:Acrididae) in a grasslandecosystem. CanadianJournalof Zoology, 51, 91-100. Bernard, F. R. (1974). Annual biodeposition and gross energy budget of mature pacific oysters, Crassostreagigas. Journalof the FisheriesResearchBoard of Canada,31, 185-190. Bobek,B. (1969). Survival,turnover and production of small rodents in a beech forest. Acta Theriologica, 14, 191-210. Bobek, B. (1971). Influence of population density upon rodent production in a deciduous forest. AnnalesZoologici Fennici, 8, 137-144. Bolton, P. (1969). Studiesin thegeneral ecology,physiologyand bioenergeticsof woodlandLumbricidae. Unpublished Ph.D. thesis, University of Durham. Buechner,H. K. & Golley,F. B. (1967). Preliminaryestimation of energyflow in Uganda kob (Adenota kob thomasiNeumann). SecondaryProductivityof TerrestrialEcosystems(Principlesand Methods) (Ed. by K. Petrusewicz),pp. 243-254. Pafistwowe WydawnictwoNankowe, Warszawa. Calow, P. (1977). Conversion efficienciesin heterotrophicorganisms.BiologicalReviews,52, 385-409. Chew, R. M. & Chew A. E. (1970). Energy relationships of the mammals of a desert shrub (Larrea tridentata)community. Ecological Monographs,40, 1-21. Chlodny,J. (1968). Evaluation of some parametersof the individual energy budget of the larvae of Pteromaluspuparum(L.) (Pteromalidae)and Pimpla instigator(Fabr.) (Ichneumonidae).Ekologia Polska, A16, 505-513. Cody, M. L. (1966). A general theory of clutch size. Evolution,20, 174-184. Cummins,K. W., Costa, R. R., Rowe, R. E., Moshiri, G. A., Scanlon, R. M. & Zajdel, R. K. (1969). Ecological energetics of a natural population of the predacious zooplankter Leptodorakindtii Focke (Cladocera). Oikos, 20, 189-223. Cummins,K. W. & Wuycheck, J. C. (1971). Caloric equivalents for investigations in ecological energetics. MitteilungenInternationaleVereinigungLimnologie,No. 18. Dame, R. F. (1976). Energy flow in an intertidaloyster population. EstuarineCoastal MarineScience, 4, 243-253. Davies, 0. L. & Goldsmith,P. (Eds.) (1972). Statistical Methodsin ResearchandProduction.Oliver & Boyd, London. Davis, D. F. & Golley, F. B. (1965). Principlesin Mammalogy.Van Nostrand Reinhold, New York. Duke, K. M. & Crossley, D. A. (1975). Population energetics and ecology of the rock grasshopper Trimerotropissaxatilis. Ecology, 56, 1106-1117. Edgar, W. D. (1971). Aspects of the ecological energeticsof the wolf spiderPardosa(Lycosa) lugubris (Walckenaer).Oecologia,Berlin, 7, 136-154. Engelmann,M. D. (1961). The role of soil arthropods in the energetics of an old-field community. Ecological Monographs,31, 221-238. This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 442 Productionandrespirationin animalpopulations Engelmann,M. D. (1966). Energetics, terrestrialfield studies and animal productivity. Advancesin Ecological Research,3, 73-115. Everson,I. (1970). The population dynamics and energy budget of Notothenia neglecta Nybelin at Signy Island, South Orkney Islands. British AntarcticSurvey Bulletin,23, 25-50. Fenchel, T. (1974). Intrinsic rate of natural increase: the relationship with body size. Oecologia, Berlin, 14, 317-326. Fitzpatrick,C. M. (1968). Populationdynamicsand bioenergeticsof the isopodAsellus aquaticus L. in a smallfreshwaterpond. Unpublished M.Sc. thesis, University of Durham. Fleharty, E. D. & Choate, J. R. (1973). Bioenergetic strategies of the cotton rat Sigmodonhispidus. Journalof Mammalogy,54, 680-692. French, N. R., Grant, W. E., Grodzifiski,W. & Swift, D. M. (1976). Small mammal energetics in a grasslandecosystem. Ecological Monographs,46, 201-220. Gliwicz,J. (1973). A short characteristicsof a population of Proechimyssemispinosus(Tomes, 1860), a rodent species of the tropical rain forest. Bulletinde l'AcademiePolonaisedes Sciences, Cl IL 21, 413-418. Golley, F. B. (1960). Energy dynamics of a food chain of an old-field community. Ecological Monographs, 30, 187-206. Golley, F. B. (1968). Secondaryproductivityin terrestrialcommunities, AmericanZoologist, 8, 53-59. Golley, F. B. & Gentry, T. D. (1964). Bioenergetics of the Southern Harvester Ant, Pogonomyrmex badius.Ecology, 45, 217-225. Gorecki,A. (1977). Energyflow throughthe common hamsterpopulation. Acta Theriologica,22,25-66. Grimm,R. (1973). Zum EnergieumsatzphytophagerInsekten im Buchenwald. I. Untersuchungenan Populationender Russelkafer(Curculionidae)RhynchaenusfagiL.,Strophosomus(Schonherr)und OtiorrhynchussingularisL. Oecologia, Berlin, 11, 187-262. Grodzifiski,W. (1971). Energyflow through populations of small mammalsin the Alaskan taiga forest. Acta Theriologica,16, 231-275. Grodziniski,W., Bobek, B., Drozdz, A. & Gorecki, A. (1970). Energy flow through small rodent populationsin a beech forest. EnergyFlow throughSmall MammalPopulations(Ed. by K. Petrusewicz and L. Ryszkowski), pp. 291-298. Pafistwowe WydawnictwoNaukowe, Warszawa. Grodzinisk;,W., Janas, K. & Migula, P. (1966). Effect of rodent density on the primaryproduction of alpine meadows in Bieszczady Mountains. Acta Theriologica,11, 419-431. Grodzinski,W. & Wunder,B. A. (1975). Ecological energetics of small mammals. Small mammals: theirProductivityandPopulationDynamics(Ed. by F. B. Golley, K. PetrusewiczandL. Ryszkowski) pp. 173-204. CambridgeUniversity Press, Cambridge. Gylienberg,G. (1969). The energy flow through a Chorthippus parallelus(Zett.) (Orthoptera)population on a meadow in Tvarminne,Finland. Acta Zoologica Fennica, 123, 1-74. Hackworth,L. T., Ake, R. L. & Matta, J. F. (1973). Energy flow for a grasshopperpopulation in a marsh. VirginiaJournalof Science, 24, 131. Hagen, A., Ostbye, E. & Skar, H.-J. (1975). Energy budget of a population of the root vole Microtus oeconomusin a high mountain habitat Hardangervidda.Ecological Studies. vol. 16 Part 2 Animals and Systems Analysis(Ed. by F. E. Wielgolaski),pp. 170-173. Springer-Verlag,New York. Hansson, L. (1971). Estimates of the productivity of small mammals in a South Swedish spruce plantation. Acta Zoologica Fennica,8, 118-126. Healey, 1. N. (1967). The energy flow through a population of soil collembola. SecondaryProductivity of TerrestrialEcosystems(PrinciplesandMethods)(Ed. by K. Petrusewicz),pp. 695-708. Pafistwowe WydawnictwoNaukowe, Warszawa. Hinton, J. M. (1971). Energy flow in a natural population of Neophilaneuslineatus (Homoptera). Oikos, 22, 155-171. Hodkinson,I. D. (1973). The population dynamics and host plant interactions of Strophingiaericae (Curt.) (Homoptera: Psylloidea). Journalof Ecology, 42, 565-584. Hofsvang, T. (1973). Energy flow in Tipulaexcisa Schum. (Diptera, Tipulidae) in a high mountain area, Finse, South Norway. NorwegianJournalof Zoology, 21, 7-16. Holmes, R. T. & Sturges, F. W. (1973). Annual energy expenditure by the avi fauna of a northern hardwoods ecosystem. Oikos, 24, 24-29. Holter, P. (1975). Energy budget of a natural population of Aphodiusrufipeslarvae (Scarabaeidae). Oikos, 26, 177-186. Hughes, R. N. (1970). An energy budget for a tidal flat population of the bivalve Scrobiculariaplana (Da Costa). Journalof AnimalEcology, 39, 333-356. Hughes,R. N. (1971a). Ecological energeticsof Nerita (Archaeogastropoda:Neritacea)populationson Barbados, West Indies. Marine Biology, 11, 12-22. Hughes, R. N. (1971b). Ecological energetics of the keyhole limpet Fissurella barbadensisGmelin. Journalof ExperimentalMarine Biology & Ecology, 6, 167-178. Hughes, R. N. (1972). Annual production of two Nova Scotian populations of Nucella lapillus (L.). Oecologia,Berlin, 8, 356-370. This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions W. F. HUMPHREYS 443 Humphreys,W. F. (1978). Ecological energeticsof Geolycosagodeffroyl(Araneae: Lycosidae)with an appraisal of production efficiency in ectothermic animals. Journal of Animal Ecology, 47, 627-652. Kale, H. W. (1965). Ecology and bioenergeticsof the long-billed marsh wren (Telmatodytespalustris griseus (Brewster)).Publicationsof the Nuttall OrnithologicalClub No. 5. Kay, D. G. & Braefield,A. E. (1973). The energy relations of the polychaete Neanthes (Nereis) virens (Sars). Journalof AnimalEcology, 42, 673-692. Kimerle,R. A. & Anderson,N. H. (1971). Productionand bioenergeticrole of the midge Glyptotendipes barbipes(Staeger)in a waste stabilization lagoon. Limnology& Oceanography,16, 646-659. Kozlowski,D. G. (1968). A critical evaluation of the trophic level concept. I. Ecological efficiencies. Ecology, 49, 48-60. Kuenzler,E. J. (1961). Structureand energy flow of a mussel population in a Georgia salt marsh. Limnology& Oceanography,6, 191-204. Lawton,J. H. (1971). Ecological energetics studies on larvae of the damselflyPyrrhosomanymphula (Sulzer)(Odonata: Zygoptera).Journalof AnimalEcology, 40, 385-423. L6v8que,C. (1973). Bilans energetiquesdes populations naturelles de mollusques benthiques du Lac Tchad. CahiersOfficede la rechercheScientifiqueet Techniqueoutr-MerSerie Hydrobiologie,7, 151-165. Lindeman,R. L. (1942). The trophic-dynamicaspect of ecology. Ecology, 23, 399418. Llewellyn,M. (1975). The effects of the lime aphid Eucallipterustiliae (Aphididae)on the growth of the lime Tiliax vulgaris.Part 2. The primary production of saplings and mature trees, the energy drain imposed by the aphid populations and revised standard deviations of aphid population energy budgets. Journalof AppliedEcology, 12, 15-24. Macfadyen,A. (1967). Methods of investigation of productivity of invertebrates.SecondaryProductivity of TerrestrialEcosystems(Principlesand Methods) (Ed. by K. Petrusewicz),pp. 383412. Pafistwowe WydawnictwoNaukowe, Warszawa. MacKinnon,J. C. (1973). Analysis of energy flow and production in an unexploited marine flatfish population. Journalof the FisheriesResearchBoard of Canada,30, 1717-1728. McMahon,R. F. (1975). Growth, reproductionand bioenergeticvariationin three naturalpopulations of a freshwaterlimpet Laevapexfuscus. Proceedingsof the Malacological Society, London, 41, 331-352. McNeill, S. (1971). The energetics of a population of Leptoternadolobrata(Heteroptera: Miridae). Journalof AnimalEcology, 40, 127-140. McNeil, S. & Lawton, J. H. (1970). Annual production and respiration in animal populations. Nature, London,225, 472474. Manga, N. (1972). Population metabolism of Nebria brevicollis(Coleoptera: Carabidae). Oecologia, Berlin, 10, 223-242. Mann, K. H. (1965). Energy transformationsby a population of fish in the River Thames. Journalof Animal Ecology, 34, 253-275. Mason, C. F. (1971). Respiration rates and population metabolism of woodland snails. Oecologia, Berlin, 7, 80-94. Mason, C. F. (1977). Populations and production of benthic animals in two contrastingshallow lakes in Norfolk. Journalof AnimalEcology, 46, 147-172. Mathias, J. A. (1971). Energy flow and secondary production of the amphipod Hyalella azteca and Crangonyxrichmondensisoccidentalisin Marion Lake, B.C. Journal of the Fisheries Research Board of Canada,28, 711-726. Menhinick,E. F. (1967). Structure, stability and energy flow in plants and arthropods in a Sericea lespedezastand. Ecological Monographs,37, 255-272. Miller, R. J. & Mann, K. H. (1973). Ecological energeticsof the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. Marine Biology, 18, 99-114. Montgomery,S. D., Whelan,J. B. & Mosby, H. S. (1975). Bioenergeticsof a gray squirrelpopulation. Journalof WildlifeManagement,39, 709-717. Moulder,B. C. & Reichle, D. E. (1972). Significanceof spider predation in the energy dynamics of forest floor arthropod communities. Ecological Monographs,42, 473498. Nielsen, M. G. (1972). An attempt to estimate energy flow through a population of workers of Lasius alienus (F6rst) (Hymenoptera: Formicidae). Natura Jutlandica,16, 99-107. Odend'hal, S. (1972). Energetics of Indian Cattle in their environment. Human Ecology, 1, 3-22. Odum, E. P., Connel, C. E. & Davenport,L. B. (1962). Population energy flow of three primary consumer components of old field ecosystems. Ecology, 43, 88-96. Odum, E. P. & Smalley, A. E. (1959). Comparison of population energy flow of a herbivorousand deposit feeding invertebratein a salt marsh ecosystem. Proceedingsof the National Academyof Sciences, Washington,45, 617-622. This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 444 Productionandrespirationin animalpopulations Olah, J. (1976). Energy transformationsby Tanypuspuntipennis(Chironomidae)in Lake Balaton. Annals Instituteof Biology (Tibany),HungarianAcademyof Science, 43, 83-92. Otto, C. (1975). Energeticrelationshipsof the larval population of Potomophylaxcingulatus(Trichoptera) in a South Swedish stream. Oikos, 26, 159-169. Paine, R. T. (1971). Energy flow in a natural population of the herbivorous gastropod Tegula funebralis.Limnology& Oceanography,16, 86-98. Pelikan, J. (1974). Dynamics and energeticsof a reed swamp population of Arvicolaterrestris(Linn.). ZoologickeListy, 23, 321-334. Petal, J. (1978). The role of ants in ecosystems. ProductionEcology of Ants and Termites(Ed. by M. V. Brian), pp. 293-325. CambridgeUniversity Press, Cambridge. Petrides, G. A. & Swank, W. G. (1965). Estimating the productivity and energy relations of an africanelephant population. Proceedings9th InternationalGrasslandsCongress,Sao Paulo, 831842. Petrusewicz,K. & Macfadyen,A. (1970). Productivityof TerrestrialAnimals:Principlesand Methods. I.B.P. Handbook No. 13, Blackwell ScientificPublications, Oxford. Phillipson,J. (1971). Otherarthropods.Methodsof Studyin QuantitativeEcology:Population,Production andEnergyFlow (Ed. by J. Phillipson), pp. 262-287. I.B.P. Handbook No. 18. BlackwellScientific Publications, Oxford. Qasrawi, H. (1966). A study of the energyflow in a naturalpopulationof the grasshopperChorthippus parallelusZett. (Acrididae).Unpublished Ph.D. thesis, University of Exeter. Ricker, W. E. (1973). Linear regressionin fisheryresearch.Journalof the FisheriesResearchBoard of Canada,30, 409-434. Rogers, L., Lavigne, R. & Miller, J. L. (1972). Bioenergeticsof the westem harvesterant in a short grass plains ecosystem. EnvironmentalEntomology,1, 763-768. Ryszkowski,L., Goszczynski,J. & Truszkowski,J. (1973). Trophic relatio-nshipsof the common vole in cultivated fields. Acta Theriologica,18, 125-165. Saito, S. (1965). Structureand energetics of the population of Ligidiumjaponicum (Isopoda) in a warm temperateforest ecosystem. JapaneseJournalof Ecology, 15, 45-55. Saito, S. (1967). Productivity of high and low density populations of Japonarialaminataarmigera (Diplopoda) in a warm temperateforest ecosystem. Researchesin PopulationEcology,9, 153-166. Sameoto, D. D. (1972). Yearly respiration rate and estimated energy budget for Sagitta elegans. Journalof the FisheriesResearchBoard of Canada,29, 987-996. Shorthouse,D. J. (1971). Studies on the biology and energetics of the scorpion Urodacus yashenkoi (Birula 1904). Unpublished Ph.D. thesis, AustralianNational University, Canberra. Smalley, A. E. (1960). Energy flow of a salt marsh grasshopperpopulation. Ecology, 41, 672-677. Sokal, R. R. & Rohlf, F. J. (1969). Biometry. Freeman, San Francisco. Southwood,T. R. E. (1976). Bionomic strategies and population parameters. Theoretical Ecology Principlesand Applications.(Ed. by R. M. May), pp. 26-48. Blackwell Scientific Publications, Oxford. Sprent, P. 1969. Models in Regressionand Related Topics. Methuen and Co., London. Standen, V. (1973). The production and respiration of an enchytraeid population in blanket bog. Journalof Animal Ecology, 42, 219-246. Steigen, A. L. (1975). Energeticsin a population of Pardosapalustris (Araneae: Lycosidae) on Hardangervidda,Norway. Ecological Studies Vol. 16, Pt. 2. Animalsand Systems Analysis (Ed. by F. E. Wielgolaski), pp. 129-144. SpringerVerlag, New York. Stockner, J. G. (1971). Ecological energetics and natural history of Hedriodiscustruquii(Diptera) in two thermal spring communities.Journalof the FisheriesResearchBoard of Canada,28, 73-94. Streit, B. (1976). Energyflow in four differentpopulations of Ancylusfluviatilis(Gastropoda: Basommatophora). Oecologia,Berlin,22, 261-273. Sutherland,J. P. (1972). Energeticsof high and low populations of the limpet Acmaeascabra(Gould). Ecology, 53, 430-437. Teal, J. M. (1957). Community metabolism in a temperate cold spring. Ecological Monographs,27, 283-302. Tilly, L. J. (1968). The structureand dynamics of Cone Spring. Ecological Monographs,38, 169-197. Trevallion,A. (1971). Studies on Tellina tenuis Da Costa. III Aspects of general biology and energy flow. Journalof ExperimentalMarine Biology and Ecology, 7, 95-122. Tudorancea,C. & Florescu,M. (1968a). Cu privirela fluxul energetic al populatiei de Unio pictorum din Balta Crapina. Annalele UniversitatatiiBucureti Stiintele Naturii, 17, 233-243. Tudorancea,C. & Florescu,M. (1968b). Considerationsconcerningthe production and energetics of Unio tumidusPhilipssonpopulation from Crapinamarsh. Travauxdu Museumd'histoirenaturelle GrigoireAntipa, Bucureti, 8, 395-409. Van Hook, R. I. (1971). Energy and nutrient dynamics of spider and orthopteran populations in a grasslandecosystem. Ecological Monographs,41, 1-26. This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions W. F. HUMPHREYS 445 Weidemann,G. (1971). Food and energyturnoverof predatoryarthropodsof the soil surface;methods used to study population dynamics, standing crop and production. Ecological Studies, Analysis and Synthesis Vol.2. IntegratedExperimentalEcology,Methodsand Resultsof EcosystemResearch in the GermanSolling Project (Ed. by H. Ellenberg),pp. 94-99. SpringerVerlag, Berlin. Wiegert, R. G. (1964). Population energetics of meadow spittlebugs (Philaenus spumariusL.) as affected by migration and habitat. Ecological Monographs,34, 217-241. Wiegert, R. G. (1965). Energy dynamics of the grasshopperpopulations in old-field and alfalfa field ecosystems. Oikos, 16, 161-176. Wiegert,R. G. (1970). Energeticsof the nest buildingtermiteNasutitermescostalis(Holm.) in a Puerto Rican forest. A TropicalRain Forest. A Study of Irradiationand Ecology at El Verde,Puerto Rico (Ed. by H. T. Odum), Vol. 1 pp. 57-64. Division of TechnicalInformation, United States Atomic Energy Commission. Wiens, J. A. & Nussbaum,R. A. (1975). Model estimation of energy flow in north westernconiferous forest bird communities. Ecology, 56, 547-561. Wignarajah,S. (1968). Energy dynamics of centipedepopulations(LithobiomorphaL. crassipes, L. forficatus)in woodlandecosystems.Unpublished Ph.D. thesis, University of Durham. Studiesin the productivityof Lepidopterapopula-tions.EcologicalStudies,Analysis Winter,K. (1Q971). andSynthesis Vol.2. IntegratedExperimentalEcology, MethodsandResultsof EcosystemResearch in the GermanSolling Project (Ed. by H. Ellenberg),pp. 94-99. SpringerVerlag, Berlin. Wood, T. G. & Sands, W. A. (1978). The role of termitesin ecosystems.ProductionEcology of Ants and Termites(Ed. by M. V. Brian), pp. 245-292. CambridgeUniversity Press, Cambridge. Woodland,D. J. (1967). Populationstudyof afreshwatercrayfishCheraxalbidus Clark: with particular reference to the ecoenergeticsof a population. Unpublished Ph.D. thesis, University of New England, Armidale, N.S.W. (Received11 July 1978) This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions Productionandrespirationin animalpopulations 446 0% ~~ ~ 4-A 4) - u 0 0 o ; oo a t t t t Ot - __Y_s uuua t V O tFO0 tXO Y X X " X 0 0 F N N ~ c~~ci~ U c~Nc"NN -~~ oVvtvvvvOZOQvvvOOO-O-;;>2OO 4 4 4 4 4 4 4 XE*'S414Q .'' a C ON wO% ~t NO o N ^ gr0NNO r w") ro S 8 or o m 0 t NOF | 00 m000 I - WO m Go8 8 S o ~N0NGoO t . - ci, 0 ' N N N .' .'4 1 2 t ONO - o -N -". . cr a X t-N oo N t0N0 N t ? -OO P-4 0 Z o g o8 ~~~~~o Pa 0 0~~~ 0 0 o ~~~~~~~~ A e0X 0 m 3 ? ^_R o .8 0 E 0c)= 0oo0, 4)A 4) -3 0 - > t . -4 g a=-Q Qp> o 3 3rrg>> orj 04 -4-~ 0 O .~~~~ ~ 0o U ~~ ~~~ 0 cm E X t *2 E i i 0 ^ EE ro o o U _? This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions F Cd 00 447 W. F. HUMPHREYS i 's CA t t = -0 0 - 'o F4 . 0. 0. 0 0 0 0 kA- o o- 0 o"' ~~~~~-4-40- ^ Go Wo ttr O rA O O O 0 9 O~ [ t 00 ol o O O-4l O OU O 'r? Ch O~ 0 m 4X 00'N t ent 0 00 e~O 0000 Ft08 00-I 0q W | |~~teq a0 ) - en QK SEaEg Se32 20 en ON o o O4' OOO i4O 3n s 0I ?R o>o OOL'O e00"4W- .0 3 3g1 a^e O n~ 0 _z00 O O oo O QO N n(O >- 0 00 ) in in o 4)~~~~~~~~~~~~~~~~~~? W Eoin wO woN N -11 en in ? 0 4))))) 0 Xn in Xo X. Xo "- -4 - - -(O '0 ~~ ~~~>> 0 Q p.4EE iESEmmRemS *X CS 1U 9-Q?bm324wA E# Z00(t This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 0 00000 inanimalpopulations Production andrespiration 448 - vo~~~~~0 rA s rA rA Go - :03 sta*$ GO goi ; - :I..U v 0 2... 0 O 00 *-t 93 t- u o 00 00 0 -????ffi> 0 0 ,^ 3, -I : A o-, co-| 4-f X f -1- f ffi 0~~~ -t 00ON t-- 0 - -~~~~~~~~~~~~ cd 1 A .E 1 cd ON 0 0u W ut ON t as 0 0 in t en o tn u Xm-St@O*FOOS-O - 0G c) o Cd Ca C4l mmm U] IttE 2ld 0Cd ~~~~~~~~~~~~~~, o-41 % . ~~~~~~~~~30 0 a E0 44 ) '4S g-Q .4 < YYYYd I ig3}g ) > t3%)> 4 0 , jj 5!I - - 4tk|v.) X .S. 2,A4(~~ St 'l- . 04Q d),3 W , This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions s 44 W. F. HUMPHRES 449 ~~~~~~~~~~~~~~~~~~~~~~~e en 0f ON ONi 0s 8 8 o X en 4 4 fi fi 4 fi ff n~~~~~enen en t- tff ] O>OQ;f fif t?- > fi >fiON 4 as Os v .; ONChON Q~~~~~~O ON=== Ch444wO C0 000 N -o 0 ? > t? \4> s ooNPt ON0 0t0F>tFt a~~~~ON o~~~~~~~~~~~~~~~~.oo. ) q WI en ", 6030 0 0 . ONe 0 R~'oenV 0en ^ o o N %o e *r- *"- 000 o e o W o4 in 0? outt _, * 00c oo 00 tfi u cr en t- - en 0? oo ^ o u N t- en ee e - ON W t-o 8 8 ?Oc 8-? ' 00i N en n oooo . m .o.o CM~~~~~~~~~~~~~~~~C aaaab A C;t@eB .bckA 666 *w OAA 8O O O ~~~ 5 0 0 0 0 O) Old ehci C4 0<Cd= O la u UU o.t ~ + . : .," 'C''d''I' . 00000 4- S , .,O W,.-0-W e,W - . U~~~~~~~~~~~4 'cdCOcd d 00 CdCo O S. $_S ous-4 1.5 0 ... .E t j--0S S R0C nnn:2oooooo222ooooooooooo O.-.~ O 6 obC; S $4.4$. -11 I-,Z0s0 0 2 +, ".) SIiuttggIS ~ ~ ~ ~ ~ ~ 4 4 """94) .~. " " $ - +j44 . . . 0~~4)4 0 t 60 C's . t4t ~ This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions Okk . Productionand respirationM-animalpopulations 450 0000 0,0 GO 00 "14 O 4) 0 0 0 8as TO C4 ONt-- to U 0 0 4.0 > ".4 V..q cq >1 a 0 4) 0 or Q g 0 Q 4) 0 1 U O cil C> 14? oo -4 M V" In C) rn ".4 o O\ M O W mtON "_4 N 0 OS O 00 oo cq en 6 ob t-Z.\j> A 6 a (OIZ, 00 46 C; t- N t- 10 OSas 00 O\ 00 &04 ONt- tn oo f.-. as C4 CN OS v--# O? "14 tl- "q WI 4) 0 C's co cl 140 00 I 4 U04 .0. bf W, $.04 (t) la 0 r' 0 -= I W.4 4.0 O OO 10 U4 ;-( .4) .2 2 . 04 04 W1 Cd '-' 44 =,e v -,..t r. t t co CdCdco Cdgt cd cd to ce $cd 0 ok O, O, 00 8 0 4) . -4 "." 0 0 0 0 'O 10 0 0 O 0 4.) 04 04 0 0 4) 0 = = 0 O '.,s >% 0 " 0 41 10,010 1z: 4) -,.O 4., _. >* >1 u u u u z z z z z z z 0000000003009P >'41. I..* R " 2 0 1, 0-1, S. -v7v" IU t 04 C42 CZ,, C44 'I- CS.CS,C4, r., Zs Q44 I..Qt -Z IC-I aZ g ;4 1-4, 4 Z;-Z Q4 -Z gt -Z it I'z, t 0 %:"tl 0 t: t It t b f. P4. -9: to t-IO .3 -3, m . %, tko4 t-kO ,:" %! C4.-to 15 zt, - , '4 ., '4-, 'I-, .v v't V it, 00.4 CS .13 V 4z .0 4 " :3 .14 wc tol k %) C, It IQ CZ- C,-,t, 44 A4 C.) 4-N z z %)z v _I_N ;FSPS IU lu It: t: NS to b-ot-kob-ot3 4 gz4 OZI This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions .!2 It 24 e W. F. HumpHREys 451 00 tt- 00 t- 00 00 00 00 to Cd 00 t- tas -q Cd ba Cd bo 0 :3 0 bo "-I tall 0 "-I tall 1140 "-I 00 kn a-, en en eq 0 e en V--l en %n0 Mt 'we en eq e, e eq ONCd Cd Cd Cd Cd en W) W) en t- kn tn en 1140 00 o 11404 oo 00 N C,, en V6 Cd a Ob kn lb C; 00 V--q qe cd cd 00 0 100 o Cd W : cd cd --I 11 go 'o o" 10 >.- Cd *3 *3 cd cd 'W"', t- as W) 0 00 en e; b e; ob V- t.:. 00 W) OWO, o Cs W) 0 0 kn 00 en C C a tt- tn -I --q 0 0 0 en eq kl ds 1141161164 %n en 00 00 a,, 1140 00 o W) ONN 00 ONen e; - e; o o en en W) 00 A 00 00 00 11401140 as 00 1140 1140 6 cd cd cd Cd 0 0 0 Cd Cd Cd Cd Cd 10 10 0 0 0 Cd Cd Cd 0 0 0 P a. 0.5 - Cd cd cd cd cd cd0 44 10 10 10 0 0, rl 0 C, cd Id 0 *3 cd cd 0 10 cd cd Cd -o -o -o 0 0 0 0 Cd Cd Cd s., cd 'O0 'D 0 0 Cd 'U' O'. A.O u q u 0 0 "O b GO Su 'ra Cd Z., bo Cd :3 cd :!z ,Its Q4 Z 8 rA -4 It It Cd 0.0 In, Q_., Q j Cd -Z) ;-4 cn 0 O U u it 0 tj ..Q " :j tt:i- o Q -;., bo lu t3 zi 1--4 '..,t ") %) t3 to ZS u 42 Q bo ra 4: Q4 %) .1.4 1--4 --4 Q 14 14 0 Q FS 4 FQ4 4 1-;4 1 This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions bo S: t3 tho -bo Productionandrespirationin animalpopulations 452 00 00 -n g m e ?e 00 M -S 00 %O 0 V- 0 _ 00 e 00e-n RO b F u F 08 W ^ u B ~ - 08 ~~O tn t- a-, en On " 000'_.0 O e as 0 e a as as 4 "4"O I:i4 0 ~ ~ Z ~ ~ ~ I en . '0e 40 40 e0 10 ~ 0' 0~~~0 ~ 4.1 ~ ~ ~ 4-4~~~~~~~~~~~~~~~~~~~4 0 ~~~~~~~~~~0.1! 0000000000000000A. 0 W ~ 0 ONasBu N j in 00 R 0 OO%bqenq 10 0 00 4n .-s " - 400 0 ? t- 00' -4 Cen .4 00 n en en B%0~~0%0%0%0%as ~~~~~~~~~~~~~~t ^ 00 e % ~ ~ et 4 % - 44It:- ~~~~4P~~~4~~OOOOOOO ~~ooU~~~~ 4)~ 4) ~~ -W (-4 ~~~~~~~!.:3 mM %%t ; "4 4 This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions ~ C >? W. F. HUMPHREYS co <g< O<0 >< <0 <0 Co N -- (O C; t: (' a 00 en t- t- 00 t- -0 C 0 00 0 en Womr N 00 ?r N 00 (' A CF ao ooC (ON , t -Ci2 ZZZ> (W< o 00 en m 0 00 00 00 (O t ^^o c--, ri2 co co cocJ F 0 e as t ob t-o a - -F o " OC1~0Cf0Or.O 0 en (0 h t-n ^N en 00 Cd d co 0 o co cc co o o o oO. O. o; 0;O, oo o - o o o o o; O. o; O. O. C-k 9 0S944 i~~~ ~ ~ %) e4Bmmmx Q s4 o o o; O. O. ~~ ~~- -- iz t00 o o O. ~ 0 O, o o o; O. o o O. o o o o o o O. o o o; O. o; o; 04 O., ~~ g3g?00000 '00000 I'. ~ ~ oJ~~ W CR4- - :: S& r 000 At This content downloaded from 149.156.165.237 on Mon, 20 Oct 2014 12:09:40 PM All use subject to JSTOR Terms and Conditions 453
© Copyright 2026 Paperzz