(1.) |x - 7| = 3 here is the problem x - 7 = 3 x - 7 = -3 + 7 +7 __________ x = 10 (2.) set equal to 3 and to +7 +7 add 7 to each side ____________ x = 4 add ; |3x + 2| = 5 here is the problem 3x + 2 = 5 3x + 2 = -5 -2 -2 __________ 3x = 3 __ __ 3 3 -2 -2 subtract 2 from each side ____________ 3x = -7 subtract __ ___ 3 3 divide each side by 3 ; x = 1 (3.) -3 ; set equal to 5 and to -5 x = -7/3 cancel |5x + 4| = -3 [no solution] (4.) |5 - 3x| = -2 [no solution] (5.) |2x - 6| = |4 - 5x| 2x - 6 = 4 - 5x here is the problem 2x - 6 = -4 + 5x + 6 +6 +6 +6 _____________ __________________ 2x = 10 - 5x ; 2x = 2 + 5x + 5x + 5x ________________ 7x = 10 ; ___ ___ 7 7 x = 10/7 add 6 to each side add -2x -2x add this to ea side _________________ 0 = 2 + 3x add ___ ___ ___ 3 3 3 divide thru by 3 ; 0 = (2/3) + x divide ____________ x = 10/3 results: (6.) -2/3 -2/3 _______________ -2/3 = x = 10/3 x subtract x = -2/3 |2x - 1| = |4x + 3| 2x - 1 = 4x + 3 here is the problem 2x - 1 = -4x - 3 + 1 + 1 _______________ 2x = 4x + 4 +1 + 1 add 1 to ea side ___________________ 2x = -4x - 2 add -4x -4x _________________ -2x = 4 ____ __ 2 2 + x = -2 ; results: x = -2 ; _____ (7.) √x - 3 = 4 4x + 4x add this to ea side __________________ 6x = -2 add ___ ___ 6 6 div ea side by this x = -1/3 dividez x = -1/3 here is the problem x - 3 = 16 square each side + 3 + 3 ______________ x = 19 ______ (8.) √3x + 1 = 5 add 3 to each side add here is the problem 3x + 1 = 25 -1 -1 _________________ 3x = 24 ___ ___ 3 3 x = 8 __ _ subtract 2/3 fr ea side __ square each side subtract 1 from each side subtract divide each side by 3 divide and cancel _ (9.) √5x + √3 = √3x - √5 - √3 -√3 here is the problem subtract √3 from each side ____________________________ √5x = √3x - √5 - √3 subtract - √3x -√3x subtract this from each side ____________________________ √5x - √3x = -√5 - √3 subtract √3x - √5x = √5 + √3 multiply thru by -1 3x - 2x√15 + 5x = √5 + √3 foil multiply [and combine like terms] 8x - 2x√15 = √5 + √3 combine like terms on the left x(8 - 2√15) = √5 + √3 ___________ __________ 8 - 2√15 8 - 2√15 factor x = (√5 + √3)/(8 - 2√15) (10.) divide each side by this cancel _ _____ √x = 7 + √x - 7 here is the problem x = 49 + 14√x - 7 + x - 7 -x -x ______________________________ 0 = 49 + 14√x - 7 - 7 0 = 49 + 14√x - 14 0 = 35 + 14√x -35 -35 ________________ square each side subtract x from ea side subtract combine like terms combine like terms subtract 35 from each side -35 = 14√x subtract result: (11.) no solution __ _ √2x - 2 = 2x - √2 Let u = √2x here is the problem use this substitution u - 2 = u2 - √2 make the substitution + 2 + 2 add 2 to each side ____________________ u = u2 - √2 + 2 add -u - u _______________________ 0 = u2 - u - √2 + 2 b2 - 4ac = subtract u from each side subtract use the discriminant formula (-1)2 - 4(1)(-√2 + 2) make substitutions = 1 + 4√2 - 8 multiply thru parentheses = 4√2 - 7 combine like terms = -1.34314575 result: use calculator no solution ______ _____ (12.) √4x + 5 + 2√x - 3 = 17 here is the problem ______ _____ 4x + 5 + 4√4x + 5√x - 3 + 4(x - 3) = 289 square each side _______________ 4x + 5 + 4√(4x + 5)(x - 3) + 4x - 12 = 289 multiply _______________ 8x - 7 + 4√(4x + 5)(x - 3) = 289 combine like terms + 7 + 7 add 7 to each side _________________________________________________ 8x + 4√(4x + 5)(x - 3) = 296 add -8x -8x subtract 8x from each side ______________________________________ 4√(4x + 5)(x - 3) = 296 - 8x subtract __________________ ____ ___ 4 4 4 divide thru by 4 _______________ √(4x + 5)(x - 3) = 74 - 2x divide (4x + 5)(x - 3) = 5476 - 296x + 4x2 4x2 - 7x - 15 = 5476 - 296x + 4x2 foil multiply -4x2 -4x2 subtract from ea side ______________________________________ -7x - 15 = 5476 - 296x subtract +296x + 296x add this to each side _______________________________ 289x - 15 = 5476 add + 15 +15 __________________ 289x = 5491 _____ ______ 289 289 x = 19 add 15 to each side add divide each side by 289 cancel _____ _____ √x - 2 - √x + 3 = 1 here is the problem _____ _____ x - 2 - 2(√x - 2)(√x + 3) + x + 3 = 1 square each side _____ _____ 2x + 1 - 2(√x - 2)(√x + 3) = 1 combine like terms (13.) -1 -1 subtract 1 from each side _________________________________ 2x - 2(√x - 2)(√x + 3) = 0 subtract x - (√x - 2)(√x + 3) = 0 -x + (√x - 2)(√x + 3) = 0 divide thru by 2, cancel multiply thru by -1 +x + x add x to each side _____________________________ (√x - 2)(√x + 3)= x add (x - 2)(x + 3) = x2 square each side x2 + x - 6 = x2 foil multiply combine like terms -x2 -x2 subtract x2 from each side ___________________ x - 6 = 0 subtract + 6 +6 _____________ x = 6 NO SOLUTION (1.) add 6 to each side add [6 does not check out in the original problem] |5 - 2x| > 3 here is the problem 5 - 2x > 3 5 - 2x < -3 -5 + 2x < -3 -5 + 2x > 3 multiply thru by -1 and change signs + 5 + 5 + 5 + 5 _________________ 2x < 2 ; 2x > 8 ___ __ __ __ 2 2 2 2 x < 1 ; |(4/5)x - 1| > 3 (4/5)x - 1 > 3 4x - 5 > 15 + 5 + 5 ____________ add divide each side by 2 x > 4 (-ininity, 1) U (4, infinity) (2.) add 5 to each side divide and cancel this is the interval notation here is the problem (4/5)x - 1 < -3 4x - 5 < -15 + 5 +5 _______________ multiply thru by 5 add 5 to each side 4x ___ 4 > 20 ___ 4 4x ___ 4 x > 5 < -10 ____ 4 x < -2.5 |-2x + 6| > 8 divide ea side by 4 divide (-ininity, -2.5) U (5, infinity) (3.) add this is the interval notation here is the problem -2x + 6 > 8 -2x + 6 < -8 2x - 6 < -8 2x - 6 > 8 multiply thru by -1, and change signs + 6 +6 ________________ 2x < -2 __ __ 2 2 x < -1 +6 +6 add 6 to each side ____________ 2x > 14 add ___ ____ 2 2 divide each side by 2 x > 7 divide and cancel (-infinity, -1) U (7, infinity) (4.) |3x - 4| >_ 2 3x - 4 >_ 2 this is the interval notation here is the problem 3x - 4 <_ -2 +4 +4 +4 + 4 add 4 to each side ____________ _______________ 3x >_ 6 ; 3x <_ 2 add ___ __ __ ___ 3 3 3 3 divide each side by 3 x >_ 2 ; x <_ 2/3 cancel (-infinity, 2/3] U [2, infinity) (5.) |2x - 1| < 5 -5 < 2x - 1 < 5 this is the interval notation here is the problem +1 + 1 + 1 add 1 to each side ___________________ -4 < 2x < 6 add ___ ___ ___ 2 2 2 divide thru by 2 -2 < x < 3 (-2,3) (6.) divide and cancel this is the interval notation |2x - 3| <_ 4 -4 <_ 2x - 3 <_ here is the problem 4 +3 + 3 +3 _____________________ -1 <_ 2x <_ 7 ___ ___ ___ 2 2 2 -1/2 <_ [-1/2, 7/2] (7.) x <_ add 3 to each side add divide thru by 2 7/2 cancel this is the interval notation |3x - 1| <_ 8 -8 <_ 3x - 1 <_ 8 + 1 + 1 + 1 ___________________ -7 <_ 3x <_ 9 __ ___ ___ 3 3 3 -7/3 <_ [-7/3, 3] (8.) x <_ 3 add 1 to each side add divide thru by 3 divide and cancel this is the interval notation |(x/3) - 7| <_ 5 here is the problem -5 <_ (x/3) - 7 <_ 5 -15 <_ x - 21 <_ 15 multiply thru by 3, cancel + 21 + 21 + 21 add 21 to each side ________________________ 6 <_ x [6,36] (9.) <_ 36 add this is the interval notation |(x/3) + 2| < 4 -4 < (x/3) + 2 here is the problem < 4 -12 < x + 6 < 12 -6 -6 -6 ___________________ -18 < x subtract 6 from each side < 6 (-18, 6) (10.) multiply thru by 3 subtract this is the interval notation |(4/3) + x| <_ 2/5 here is the problem -2/5 <_ (4/3) + x <_ 2/5 -6 <_ 20 + 15x <_ 6 multiply thru by 15, cancel -20 -20 -20 subtract 20 from each side ________________________ -26 <_ 15x <_ -14 subtract ___ ____ ____ 15 15 15 divide thru by 15 -26/15 <_ [-26/15 , (11.) x <_ -14/15 -14/15] this is the interval notation |2x + 5| <_ x + 3 case 1: cancel here is the problem 2x + 5 <_ x + 3 -x -x subtract x from each side __________________________ x + 5 <_ 3 subtract -5 -5 subtract 5 from each side __________________________ x case 2: <_ -2 subtract 2x + 5 >_ -x - 3 +x +x add x to each side ________________________ 3x + 5 >_ -3 add -5 -5 subtract 5 from each side _______________________ 3x >_ -8 subtract ____ ___ 3 3 divide each side by 3 x >_ -8/3 cancel -8/3 <_ x <_ -2 [-8/3, -2] this is the interval notation
© Copyright 2025 Paperzz