Periodic Table of 2x2 Games Strict ordinal games Symmetric games on diagonal axis Left Right Payoffs Up 1 4 3 3 Row Column Nash equilbrium Down 2 2 4 1 Pareto-inferior Prisoner's Dilemma L4 Nc Ha Pc 2 3 3 4 2 2 3 4 2 1 3 4 Ch 1 1 4 2 1 1 4 3 1 2 4 3 ChNc Ba Hr ChHa ChPc 3 3 2 4 3 2 2 4 3 1 2 4 1 1 4 2 1 1 4 3 1 2 4 3 BaNc BaHa BaPc 3 3 1 4 3 2 1 4 3 1 1 4 2 1 4 2 2 1 4 3 2 2 4 3 HrNc HrHa HrPc 2 3 1 4 2 2 1 4 2 1 1 4 Cm 3 1 4 2 3 1 4 3 3 2 4 3 CmNc Dl Pd Sh As Co Pc Ha Nc CmHa CmPc 1 3 2 4 1 2 2 4 1 1 2 4 3 1 4 2 3 1 4 3 3 2 4 3 DlNc DlHa DlPc 1 3 3 4 1 2 3 4 1 1 3 4 2 1 4 2 2 1 4 3 2 2 4 3 PdNc PdHa PdPc Harmonious Payoff swaps link neighboring games Payoff Families Stag Hunt 1↔2 Low swaps form tiles of 4 games Win-win 4,4 Battle 2↔3 Middle swaps join tiles into 4 layers Tile Biased 4,3 Self-serving Benevolent Samaritan 3↔4 High swaps cross layers, bonding bands of tiles CC9966 Scrolling Prisoner's Dilemma to center shows relationships Second Best 3,3 Winner Loser Layers and table (toruses) wrap side-to-side & top-to-bottom Unfair 4,2 Sad 3,2 Layers differ by alignment of best payoffs Inferior Dilemma 2,2 Alibi 3,2 Payoffs from symmetric games form asymmetric games Indeterminate High swaps turn Pd into Asym Dilemma (ShPd) and Stag Hunt Cyclic Co As Sh Pd Dl Cm Hr Ba Ch L1 2 1 3 4 2 2 3 4 2 3 3 4 2 4 3 3 2 4 3 2 2 4 3 1 2 4 3 1 2 4 3 2 2 4 3 3 1 3 4 2 1 3 4 1 1 2 4 1 1 2 4 1 1 3 4 1 1 3 4 2 1 2 4 3 1 1 4 3 1 1 4 2 ChCo ChAs ChSh ChPd ChDl ChCm ChHr ChBa Chicken 3 1 2 4 3 2 2 4 3 3 2 4 3 4 2 3 3 4 2 2 3 4 2 1 3 4 2 1 3 4 2 2 3 4 2 3 1 3 4 2 1 3 4 1 1 2 4 1 1 2 4 1 1 3 4 1 1 3 4 2 1 2 4 3 1 1 4 3 1 1 4 2 BaCo BaAs BaSh BaPd BaDl BaCm BaHr Battle-Chicken Battle 3 1 1 4 3 2 1 4 3 3 1 4 3 4 1 3 3 4 1 2 3 4 1 1 3 4 1 1 3 4 1 2 3 4 1 3 2 3 4 2 2 3 4 1 2 2 4 1 2 2 4 1 2 3 4 1 2 3 4 2 2 2 4 3 2 1 4 3 2 1 4 2 HrCo HrAs HrSh HrPd HrDl HrCm Quasi Battle Hero-Chicken Hero 2 1 1 4 2 2 1 4 2 3 1 4 2 4 1 3 2 4 1 2 2 4 1 1 2 4 1 1 2 4 1 2 2 4 1 3 3 3 4 2 3 3 4 1 3 2 4 1 3 2 4 1 3 3 4 1 3 3 4 2 3 2 4 3 3 1 4 3 3 1 4 2 CmCo CmAs CmSh CmPd CmDl Unfair Type Compromise Comp.-Hero Protector 1 1 2 4 1 2 2 4 1 3 2 4 1 4 2 3 1 4 2 2 1 4 2 1 1 4 2 1 1 4 2 2 1 4 2 3 3 3 4 2 3 3 4 1 3 2 4 1 3 2 4 1 3 3 4 1 3 3 4 2 3 2 4 3 3 1 4 3 3 1 4 2 DlCo DlAs DlSh DlPd Deadlock-Hero Deadlock-Battle Bully Deadlock Asym Lock 1 1 3 4 1 2 3 4 1 3 3 4 1 4 3 3 1 4 3 2 1 4 3 1 1 4 3 1 1 4 3 2 1 4 3 3 2 3 4 2 2 3 4 1 2 2 4 1 2 2 4 1 2 3 4 1 2 3 4 2 2 2 4 3 2 1 4 3 2 1 4 2 PdCo PdAs PdSh Dilemma-Hero Patron Called Bluff Prisoner D Total Conflict Misery 1 3 4 4 1 2 4 4 1 1 4 4 1 1 4 4 1 2 4 4 1 3 4 4 2 1 3 2 2 1 3 3 2 2 3 3 2 3 3 2 2 3 3 1 2 2 3 1 ShNc ShHa ShPc ShCo ShAs Stag Hunt 1 3 4 4 1 2 4 4 1 1 4 4 1 1 4 4 1 2 4 4 1 3 4 4 3 1 2 2 3 1 2 3 3 2 2 3 3 3 2 2 3 3 2 1 3 2 2 1 AsNc AsHa AsPc AsCo Assurance Asym Assur. 2 3 4 4 2 2 4 4 2 1 4 4 2 1 4 4 2 2 4 4 2 3 4 4 3 1 1 2 3 1 1 3 3 2 1 3 3 3 1 2 3 3 1 1 3 2 1 1 CoNc CoHa CoPc Coordination Pure Assur. Asym. Coord. 3 3 4 4 3 2 4 4 3 1 4 4 3 1 4 4 3 2 4 4 3 3 4 4 2 1 1 2 2 1 1 3 2 2 1 3 2 3 1 2 2 3 1 1 2 2 1 1 PcNc PcHa Peace-Coord. Privileged Pure Aligned Peace 3 3 4 4 3 2 4 4 3 1 4 4 3 1 4 4 3 2 4 4 3 3 4 4 1 1 2 2 1 1 2 3 1 2 2 3 1 3 2 2 1 3 2 1 1 2 2 1 HaNc Harmony Asym Harmony Harmony-Coord.Harmony-Assur. Harmony-Hunt 2 3 4 4 2 2 4 4 2 1 4 4 2 1 4 4 2 2 4 4 2 3 4 4 1 1 3 2 1 1 3 3 1 2 3 3 1 3 3 2 1 3 3 1 1 2 3 1 Anticipation Concord Pure Harmony Concord-Peace Concord-Coord. Mutualism 1 4 4 3 1 4 4 2 1 4 4 1 1 4 4 1 1 4 4 2 1 4 4 3 2 2 3 1 2 3 3 1 2 3 3 2 2 2 3 3 2 1 3 3 2 1 3 2 Asym Dilemma Hamlet Big Bully Crisis Cycle Inspector Cycle Endless Cycle 1 4 4 3 1 4 4 2 1 4 4 1 1 4 4 1 1 4 4 2 1 4 4 3 3 2 2 1 3 3 2 1 3 3 2 2 3 2 2 3 3 1 2 3 3 1 2 2 Alibi Assurance-Lock 2nd Best ZeroSum Cycle Tragic Cycle Inferior Cycle 2 4 4 3 2 4 4 2 2 4 4 1 2 4 4 1 2 4 4 2 2 4 4 3 3 2 1 1 3 3 1 1 3 3 1 2 3 2 1 3 3 1 1 3 3 1 1 2 Revelation Coord.-Lock Coord.-Compro. Pursuit Cycle Quasi Cycle Biased Cycle 3 4 4 3 3 4 4 2 3 4 4 1 3 4 4 1 3 4 4 2 3 4 4 3 2 2 1 1 2 3 1 1 2 3 1 2 2 2 1 3 2 1 1 3 2 1 1 2 Impure Altruist Peace-Lock Benevolent Peace-Hero Generous Samaritan Type 3 4 4 3 3 4 4 2 3 4 4 1 3 4 4 1 3 4 4 2 3 4 4 3 1 2 2 1 1 3 2 1 1 3 2 2 1 2 2 3 1 1 2 3 1 1 2 2 Altruist Type BenevolentType Harm.-Compro. Harmony-Hero Harmony-Battle Samaritan's D 2 4 4 3 2 4 4 2 2 4 4 1 2 4 4 1 2 4 4 2 2 4 4 3 1 2 3 1 1 3 3 1 1 3 3 2 1 2 3 3 1 1 3 3 1 1 3 2 Hegemon Type Blackmail Type Hostage Delilah Samson Hegemony www.BryanBruns.com Based on Robinson & Goforth 2005 The Topology of the 2x2 Games: A New Periodic Table www.cs.laurentian.ca/dgoforth/home.html For more diagrams, explanations, and references, see Changing Games: An Atlas of Conflict and Cooperation in 2x2 Games www.2x2atlas.org To find a game: Make ordinal 1<2<3<4. Put column with Row's 4 right row with Column's 4 up; find layer by alignment of 4s; find symmetric games with Row & Column payoffs. L3 CC-BY-SA 2014.14.02 Symmetric Games with Ties Low Ties ln lh lo ld Games with ties lie between strict ordinal games, linked by half-swaps that make or break ties. For example, Low Battle is between Battle and Hero, and Middle Battle (Volunteer's Dilemma) is between Chicken and Battle Middle Ties lk lb mh Low Battle Mid Harmony Mid Peace 1 3 4 4 3 1 4 4 1 1 4 4 1 4 3 3 1 4 1 1 3 4 1 1 1 1 3 1 1 1 1 3 3 3 1 1 1 1 4 1 3 3 4 1 1 1 4 3 Low Concord Low Harmony Low Coordination Low Dilemma Low Lock High Ties hn 2 4 4 4 2 4 4 4 1 1 4 2 1 1 4 2 High Concord =High Chicken Zero ze 0 0 0 0 0 0 0 0 Zero mp mu mk mm Basic bh hh hm 4 2 4 4 2 4 1 1 1 1 2 4 4 4 4 2 High Harmony ≈HiCompromise bd Mid Hunt Midlock MidCompromiseMid Battle 1 1 4 4 1 4 1 1 1 1 1 1 1 1 4 1 Basic Harmony Basic Dilemma hp hk ho hs hu hd he hb High Peace ≈High Lock High Coord. ≈High Assurance High Hunt =High Dilemma High Hero ≈High Battle do de du dn Double Hunt =DoubleConcord 4 1 4 4 1 4 2 2 2 2 1 4 4 4 4 1 Triple Ties th mb 3 3 4 4 3 1 4 4 1 3 4 4 1 4 3 3 3 4 1 1 3 4 3 3 1 1 3 3 3 3 1 3 3 3 3 1 3 3 4 1 3 3 4 3 1 1 4 3 Making high ties (and double ties) creates duplicate games, identical or equivalent by switching rows or columns hc L2 tk 4 4 4 4 4 1 4 4 1 1 4 4 4 4 1 4 Triple Harmony Triple Lock 2 1 4 4 1 2 4 4 4 4 1 2 4 4 2 1 Double Ties dh dp 4 1 4 4 4 1 4 4 1 1 1 4 1 1 1 4 DoubleHarmony =Double Peace 1 4 4 4 1 4 4 4 2 2 4 1 2 2 4 1 1 1 4 4 4 4 1 1 4 4 1 1 1 1 4 4 Double Coord. ≈Double Hero 4 4 1 1 4 4 2 2 2 2 4 4 1 1 4 4 1 4 4 4 1 4 4 4 1 1 4 1 1 1 4 1 Transforming Conflict and Cooperation in Strategic Situations A map to win-win, a menu of models, a chart for changing games a. Twelve payoff patterns make 144 games b. Dominant strategies define quadrants The Robinson-Goforth topology of payoff 4 1 swaps conveniently arranges two-person twoCh ⇅ Ch move (2x2) games in a natural order. Ba ⇅ Ba Symmetric games on the diagonal. Games Hr Samaritan Cyclic Patron-Client Battle ⇅ Hr where each faces the same payoff pattern form Cm ⇊ Cm a diagonal axis. Payoff patterns from Dl ⇊ Dl symmetric games combine to make Pd Patron-Client ⇊ Jeky-ll-Hyde Type Second-Best Deadlock Pd asymmetric games, and so can give names for Sh Sh games. As As Payoff swaps link games. Starting from any Co Privileged Stag Hunt Second-Best Cyclic Co strict ordinal 2x2 game (with four ranked Pc ⇈ Pc payoffs and no ties), swaps in the lowest Ha ⇈ Ha payoffs (1↔2) generate a tile of four games. Nc ⇈ Harmonious Privileged Nc Jekyll-Hyde type Samaritan Middle swaps (2↔3) start new tiles. More low Nc Ha Pc Co As Sh Pd Dl Cm Hr Ba Ch 3 2 and middle swaps complete a layer of nine Reflections around axis switch row & column positions 1 0/2 (if ordinal) D1 Column D0 None tiles and 36 games, forming a torus that wraps 4 games per tile, 36 games and 9 tiles per layer 1 1 D2 Both D1 Row top to bottom, and left to right. Swapping the 66 asymmetric pairs: 66 + 12 = 78 "unique" 2x2 games Nash Equilibria Dominant strategies highest payoffs (3↔4) starts a new layer. c. Payoff changes can turn games into win-win d. Incentives induce externalities Layers differ by the alignment of highest Ch 1 1 1 1 1 1 2 2 2 1 1 2 Ch payoffs. Scrolling Pd to the center splits tiles Ba 2 1 1 2 2 2 1 1 1 1 1 1 Ba so the entire chart is also a torus: high swaps 3 Hr 2 1 1 2 2 1 1 1 1 1 1 Hr (3↔4) link layers, wrapping top to bottom and 3 Cp 2 1 1 2 2 2 2 2 1 1 2 Cm left to right. 3 Dl 2 1 1 2 2 2 2 2 1 1 2 Dl Dominant strategies define quadrants. In each 3 Pd 1 1 1 1 1 1 2 2 1 1 2 Pd layer's lower left quadrant, both players have a Sh Sh 1 2 3 2 2 1 Sh dominant strategy, better whatever the other 3 As 1 2 2 2 1 As As does, leading to a Nash Equilibrium, from Co 1 2 2 2 2 1 Co Co which neither can unilaterally improve their Pc 1 1 1 1 1 1 Pc Pc payoff. In neighboring quadrants, one has a Ha 1 1 1 1 1 1 Ha Ha dominant strategy, so the other's best choice Nc 1 2 2 2 2 1 Nc Nc leads to an equilibrium. In the upper right Interests may be aligned, opposed, or mixed Nc Ha Pc Co As Sh Pd Dl Cm Hr Ba Ch quadrant, neither has a dominant strategy; with Jekyll-Hyde Type Pure Cooperation Swaps realign incentives to make win-win situations no equilibrium in pure strategies, as incancyclic 1= single 3↔4 swap reaches win-win. 2 or 3 step games; or two equilibria, as in Stag Hunts and paths may include 2↔3 and 1↔2 swaps Jekyll-Hyde Type Pure Conflict Battles in the coordination quadrants. Zero Sum # Bold = paths for both. Pareto-efficient paths, each An elegant array. Social dilemmas, including swap step results in same or better-ranked payoff see Schelling 1963 The Strategy of Conflict Prisoner's Dilemma, Chicken, Battles, and Stag Zero-sum games are hardest to remedy Greenberg 1990 Theory of Social Situations, R&G 2005 Hunts, form a compact connected region in the e. High swaps (3↔4) link layers f. Simpler games with ties form borderlines space of 2x2 games. Most games can be Pd scrolled to upper right to unify tiles Nc Ha Pc Co As Sh Pd Dl Cm Hr Ba Ch transformed into win-win by a single swap. Ch Ch Equivalently-located bands of 3 tiles slide and spin to link Games of pure conflict, where one person's Ba Ba incentives always encourage moves that make C bands criss-cross diagonally. H bands slide in row or column. Hr Hr 6 Hotspots double-link pairs of tiles on two layers e.g. 1:3 things worse for the other, negative Cm Cm 6 Pipes link quartets of tiles on four layers, e.g., H::H (Harmony) Pipe externalities, lie on a diagonal linking the C D H C D Dl Dl 4 H 1 cyclic tiles, including the zero-sum (fixed Pd Pd Pd rank-sum) games. Zero-sum games are farthest D 3:4 D::C D::D 1:2 D::C D::D Sh Sh Ch from win-win. Most games have mixed As Ba As interests. C C::H 2:4 C::D C::H 1:3 C::D Co Hr Co Mapping payoff space. If payoffs occur Cm Pc Pc randomly, then the chart shows the expected H H::H H::C 1:4 H::H H::C 1:4 Dl Ha Ha proportions of different games. Half swaps Nc Nc make games with ties, between strict games. Nc Ordinal games with ties (indifference) Games with payoffs normalized to a 1-4 scale D 1:2 D::C D::D 3:4 D::C D::D Sh games, at grid intersections lie between strict map onto the topology, so the chart shows the As Strict Half-swaps: 2≈1 2≈3 3≈4 payoff space of all normalized 2x2 games, and C C::H 1:3 C::D C::H 2:4 C::D see Robinson, Goforth and Cargill 2007. Co the adjacent possible of changes in payoffs. Pc Normalizing payoffs mapa all 2x2 games onto the chart Sources See Robinson and Goforth 2005 The H H::H H::C 2:3 H::H H::C 2:3 0 -1 3 4 4 3 Ha -5 -1 Topology of 2x2 Games: A New Periodic Table 1 4 3 3 -3 -5 3 1 1 3 mu mb Dl Cm Hr Ba Ch Pd 2 and Bruns 2014 Changing Games: An Atlas of 3 Ha Pc Co As Sh Nc -3 0 3 3 1 4 Rousseau's Hunt Volunteer's Dilemma Axelrod's Pd Row swaps switch row, column swaps switch column Conflict and Cooperation in 2x2 Games.
© Copyright 2026 Paperzz