The effect of quality bucking and automatic bucking on

The effect of quality bucking and automatic bucking
on harvesting productivity and product recovery in a
pine dominated stand
Asst. Prof. Eric R. Labelle, Moritz Bergen, Dr. Johannes Windisch
FORMEC 2016 – From theory to Practice: Challenges for Forest Engineering
Warsaw, Poland - 07.09.2016
FORMEC 2016
Eric R. Labelle
1
Outline
 Introduction
 Experimental design and field operations
 Results
 Inventory
 Time and motion
 Productivity
 Recovery
 Conclusions
FORMEC 2016
Eric R. Labelle
2
Introduction
 OBC in harvesters have been
available since the early 1990s.
 Benefits of these systems are
known and utilized in other
countries.
 In German forestry (with special
conditions) optimization systems
are still generally poorly used
and/or investigated.
FORMEC 2016
Eric R. Labelle
3
Selecting the optimal cross-cutting point by price list
Price list per species
Prediction of the stem
300
250
200
150
100
Tukki 550
Log
550
Kuitu 495
Pulp
495
Bucking proposal
Bucking alternatives
FORMEC 2016
Tukki 520
Log
520
Eric R. Labelle
4
Objectives of automatic bucking
 Increase the quality and value of the logs
 Make the bucking more efficient
 Make the work of operator easier
Study objectives
 Determine and quantify the influence of using quality bucking
compared to automatic bucking on:
i) Harvesting productivity
ii) Product recovery
iii) Value recovery
FORMEC 2016
Eric R. Labelle
5
Methods
 Study location / description
 Experimental design
 Pre-harvest inventory
 Time and motion
FORMEC 2016
Eric R. Labelle
6
Study location and stand description
Stand description
 9.6 ha in size
 95% Scots pine, 5%
Norway spruce
 Avg. 120 years old
 Avg. standing volume
pre-harvest 280 m3/ha
 Commercial thinning
 Target removal 25-30
% of standing volume
 Forester selected
trees for removal
FORMEC 2016
Eric R. Labelle
7
Experimental design
Machine operating trail
Forest road / landing
A
B
C
Forest road / landing
Z
Buffer zone
30 m
100 m
FORMEC 2016
Eric R. Labelle
8
Pre-harvest inventory
FORMEC 2016
Eric R. Labelle
9
Atlas Königstiger T23
A
B
KEY SPECS
- Excavator based
- 28 metric tons
- 14.5 m long boom
- Ponsse H6
harvesting head
FORMEC 2016
Eric R. Labelle
10
Product list
Species
Pine
Spruce
FORMEC 2016
Assortment and
length [m]
sawlog (4)
pallet (2.35)
pulpwood (2)
sawlog (4 and 5)
pallet (2.35)
pulpwood (2 and 3)
Eric R. Labelle
Small-end diameters
[cm]†
≥ 12
≥ 13
≥9
≥ 12 for both
≥ 13
≥ 7 and ≥ 9
11
Results
 Inventory
 Cycle elements
 Harvesting productivity
 Product recovery
 Value recovery
FORMEC 2016
Eric R. Labelle
12
Treatment
OFF
OFF
ON
ON
Summary
OFF
ON
DBH
DBH
(cm)[cm]†
Plot
ID
Sample size
Pine/Spruce
A3
A4
A5
A7
B1
B4
C1
C2
C4
C5
Z1
A1
A2
A6
B2
B3
B5
B6
C3
C6
Z2
Z3
33P / 6S
24P / 11S
41P / 5S
33P / 2S
32P / 0S
28P / 0S
33P / 1S
24P / 0S
27P / 0S
38P / 5S
26P / 12S
26P / 13S
29P / 12S
49P / 6S
32P / 0S
32P / 0S
29P / 0S
36P / 2S
23P / 0S
42P / 1S
29P / 11S
38P / 10S
30.6
28.7
25.2
29.7
32.2
32.3
29.8
33.5
29.3
29.9
24.6
26.2
27.7
27.7
29.3
32.2
31.2
30.2
31.4
28.0
23.5
23.9
Std.
err.
1.12
1.70
1.22
1.40
0.93
1.06
1.19
1.11
1.28
0.92
1.09
1.30
1.44
0.93
1.04
1.10
0.91
1.13
1.37
1.15
1.01
1.15
11 pl.
11 pl.
338P / 42S
365P / 55S
29.3a
27.9b
0.39
0.37
Avg.
Stem vol.
3/tree)
Height
(m3/tree]‡
Height
(m) [m] Stem vol.[m
22.9
21.6
22.5
25.2
26.4
26.6
25.4
27.2
22.9
21.8
20.9
21.0
22.1
23.7
26.1
26.2
25.4
24.5
22.8
23.2
21.1
21.0
Std.
err.
0.62
0.88
0.64
0.58
0.40
0.36
0.58
0.52
0.70
0.44
0.75
0.89
0.79
0.48
0.57
0.38
0.48
0.53
0.71
0.63
0.62
0.66
23.7a
23.2a
0.21
0.21
Avg.
Avg.
0.86
0.82
0.62
0.90
1.03
1.05
0.89
1.14
0.78
0.76
0.53
0.64
0.77
0.73
0.86
1.04
0.93
0.89
0.88
0.74
0.48
0.53
0.83a
0.75b
Std.
err.
0.07
0.11
0.07
0.09
0.08
0.08
0.08
0.09
0.08
0.06
0.06
0.07
0.10
0.06
0.06
0.09
0.07
0.08
0.08
0.07
0.05
0.07
0.02
0.02
Avg. productivity
B
Harvesting
productivity
A
Harvesting productivity (m3/PMH)
OFF = 36.0 m3/PMH
ON = 34.0 m3/PMH
dbh (cm)
FORMEC 2016
Eric R. Labelle
14
Chart
ofof
Mean(
%%
difference
) )) difference )
Chart
of
Mean(
%
vol
difference
Chart
ofof
Mean(
%%
vol
difference
Chart
of
Volume
recovery
Chart
of
Mean(
%)vol
difference
Chart
Mean(
difference
Chart
of
Mean(
%vol
vol
difference
)ofMean(
Chart
ofof
Mean(
%%
vol
difference
))vol
Chart
Mean(
vol
difference
)of
Chart
Mean(
difference
)vol
Chart
Mean(%%
%vol
vol difference
difference ))
Chart
Mean(
vol
aa
aa
aa
a
aa
aa
a
aa
a
a aa a
a aa a
a
a
3030
30
3030
30
a
2020
20
2020
a20
a
aa
a aa a
aa
aa
4040
40
4040
40
aa
aa
anel 1a
variable:
species
2a
2b
3a
3b
42a 2b2b1a
variable:
species
Panel
variable:
species
Panel
variable:
2b 3a
3a 1b
1a
1b
2b
3b3bspecies
4 4 Panel
1a
1b
2a
3a3a 1b
3b3b 2a
44
es
es
Panel
variable:
species
Panel
variable:
species
10 10
10
1010
10
0 0
00 00
aa
aa
aa
2b 1a
3a 1b
3b 2a
4
40
40
40
a
a
30
30
30
20
a20
20
a
10
10
10
0
1b
2a
2b
3a
3b
4
40
40
40
30
30
30
20
20
20
0
00
2b 3a
50
50
50
10
10
10
Diameters
10-14 cm
15-19 cm
initial stem volume (%)
aa
50
50
50
1a
60
60
60
Treatment
Treatment
Treatment
OFF
OFF
OFF
ON
ON
ON
Mean of % vol difference
Mean of % vol difference
Difference between recovered and
aa
60
60
60
6060
60
6060
60
5050
50
5050
50
Diameter
classes
initial stem volume (%)
Volume recovered (m3/tree)
a
7070
70
7070
70
Mean of % vol difference
Mean of % vol difference
Difference between recovered and
a
a
aa
b
Treatment
Treatment
Treatment
OFF
70
OFF
OFF
70
70
ON
ON
ON
Spruce
Treatment
Treatment
Spruce
Spruce
Treatment
Treatment
70
Treatment
Treatment
Spruce
70
70
OFF
OFF
OFF
OFF
OFF
OFF
ONON
ON
ON
ON
ON
initial stem volume (%)
initial stem volume (%)
b
b
aa
Spruce
Spruce
Spruce
Spruce
Spruce
Spruce
Pine
Spruce
Spruce
Spruce
Spruce
Pine
Pine
Spruce
Spruce
Pine
Mean of % vol difference
Mean
Meanofof%%vol
voldifference
difference
Volume
relation to
Meanrecoveed
of % vol in
difference
Difference between recovered and
Pine
Pine
Pine
Pine
ine
ne
Pine
ine
Pine
ine
Pine
Pine
20-24 cm
25-29 cm
30-34 cm
35-39 cm
≥ 40 cm
00
3b 4
classes
of standing
trees of standing trees
Diameterclasses
classesDiameter
standing
trees
Diameter
ofofstanding
trees
Diameter
classes
FORMEC 2016
Eric R. Labelle
15
Pine
Pine
Pine
Pine
Spruce
Spruce
Spruce
Spruce
Diameter Treatment
classes
Diameters
70
1a 70
10-14 cm
70
b
1b60
2a
60
60
Average revenue (€/m3)
50
50
2b 50
aa
a
a
ab
aa
b
aa
b
3a40 a
3b
a
a
aa
aa
aa
4 a3030
30
a
a
a
a
aa
aa
aa
aa
3a
3b 4
1a
40
40
a
aa
Panel 1a
variable:
1bspecies
2a 2b
Panel variable:
variable:
species
Panel
species
Mean of % vol difference
Mean of % vol difference
Difference between recovered and
a
aa
Treatment
Treatment
OFF
OFF
OFF
ON
ON
ON
20
20
20
10
10
10
aa
0
1b
2a
2b 3a
a
15-19 cm
20-24 cm
a
a
a
initial stem volume (%)
Chart
Value recovery
Chartofof
ofMean(
Mean(%%
%vol
voldifference
difference) ))
Chart
Mean(
vol
difference
25-29 cm
30-34 cm
a
35-39 cm
≥ 40 cm
00
3b 4
Diameter classes of standing trees
Diameter classes of standing trees
FORMEC 2016
Eric R. Labelle
16
Conclusions
 Could not support our hypothesis of increased product recovery with
automatic bucking…in pine dominated stand.
 Scots pine can have frequent sweeps, crooks and forks which makes
computer predictions more difficult.
 Continue to assess data to see if
tree form information can be used to
shed more light.
FORMEC 2016
Eric R. Labelle
17
Acknowledgements
 Robert Morigl and Florian Geiger (Kuratorium)
 Bruno Starke, Sebastian Berger, and Daphne Weihrich (BaySF)




Reinhard Lenz, Klaus Bichlmaier, Raimund Pöllmann, and Martin Dollhopf (BaySF)
Thomas Zimmermann (harvester operator)
Max Kammermeier, Kevin Lemmer, and Sönke Böttcher (TU München)
Roland Scholl and Frank Gleibs (Wahlers Forsttechnik GmbH)
 Dr. Raffaele Spinelli (CNR Ivalsa)
 Prof. Dr. Michel Soucy (Université de Moncton)
FORMEC 2016
Eric R. Labelle
18
Questions
Asst. Prof. Dr. Eric R. Labelle, Moritz Bergen, Dr. Johannes Windisch
Forest Operations / Forstliche Verfahrenstechnik
Email: [email protected]
Tel: +49.8161.71.4760
19
Appendices
FORMEC 2016
Eric R. Labelle
20
Automatic bucking
Stem curve prediction
= known part of the stem
300
 reference diameter
200
100
550
200
1150
1890
Prognos 1 251
180
160
Stem data base (180 pce /tree species)
 8 nearest (reference diameter)
 Average curve
Prognos 3 806
140
120
100
80
Data base is updated after each stem
60
40
20
0
1
21
41
FORMEC 2016
61
81
101
121
141
161
181
201
221
241
Eric R. Labelle
21
Automatic bucking
 Bucking = evaluate the suitable bucking alternative of the
stem according to the dimensions and value of the wood
 Automatic bucking: using information technology for
calculating the alternative automatically according to the
dimensions of the stem (vs. quality bucking)
FORMEC 2016
4,6
3,4
4,3
3,7
4,0
4,0
3,7
4,3
Eric R. Labelle
22
Price matrix
Tree species
assortment
length
Prices for each
dimension
diameter
FORMEC
All this information (and more) are
used when calculating the prognosis
Eric R. Labelle
23
Measured length
spruce
Measured diameter
sawlog
suggested assortment and dimensions
The log that has already
been cut
FORMEC 2016
Suggestion how to cut
the top of the stem
Eric R. Labelle
24
sawlog
value 100 / m3
sawlog
value 100 / m3
sawlog
value 100 / m3
pallet
value 75/ m3
pulp
value 65 / m3
o The measuring system calculates the bucking combination that gives the
highest value for the whole stem according to the price lists. This means
that the highest value log section is always utilized to the maximum.
FORMEC 2016
Eric R. Labelle
25
Bucking alternatives
Minimum
diameter for
sawlogs
8m
Log section
Pulpwood
section
Several alternatives with a optimal situation  no timber over minimum diameter
needs to cut into pulpwood
4,6
3,4
4,3
3,7
4,0
4,0
3,7
4,3
FORMEC 2016
Eric R. Labelle
26
Bucking alternatives
6.3 m
Log section
Pulp section
Available log lengths:
3,4; 3,7; 4,0; 4,3; 4,6; 4,9; 5,2 and 5,5 meters
3.4
3.4
5.5
Pulp
Best choice: 5.5 m log and cut 0.8 m of sawlog section into pulpwood
FORMEC 2016
Eric R. Labelle
27
Measuring devices
Measuring wheel  length
Reaction bar from feed rollers  diameter
Raw data is calculated into measures in
millimeter and then corrected with
calibration settings  shown on the screen
in the cabin
FORMEC 2016
Eric R. Labelle
28
 Experimental design
 subdivide study site into 22 plots
 allocate randomly which plot will be harvested with OBC
„ON or OFF“
 Pre-inventory
 Establish treatment plots in the harvest block
 Measure (DBH, height, stem form)
 Identify trees with individual alpha-numeric code
 Operation
 Mount a Gopro camera in the cabin of the harvester to
record the entire operation
 Harvest plots in order of appearance while performing time and
motion analysis
FORMEC 2016
Eric R. Labelle
29
FORMEC 2016
Eric R. Labelle
30
Distribution of work cycle elements
ne
N = 338
ine
OFF,
12.0%
N = 42
OFF, Pine
Pine
N
= 338
OFF, Pine
4.5%
N = 338
OFF, Spruce
OFF,
Spruce N = 42
OFF,
Spruce
OFF, Spruce
OFF, Spruce
N = 42
5.2%
12.0%
5.2%
13.8%
13.8%
14.3%
14.3%
18.1%
10.5%
58.7%
10.5%
N = 365
ON, Pine
5.4%
ne
N = 365
ine
53.4%
9.5%
53.4%
ON, Pine
ON, Pine
N = 365
N = 55
3.9%
15.3%
10.2%
12.0%
ON, Spruce
ON, Spruce
3.9%
9.9%
15.3%
9.5%
ON, Spruce
Spruce N = 55
ON,ON,
Spruce
9.9%
N = 55
18.1%
Cycle
elements
Cycle elements
Tracking
Tracking
Boom-out
Boom-out
Felling
Felling
Processing
Processing
Manipulation
Manipulation
12.0%
23.2%
51.2%
59.1%
9.6%
23.2%
FORMEC 2016
Eric R. Labelle
31