Modeling Carbon Sequestration in High Alpine Forest

Modeling Carbon Sequestration
in High Alpine Forest
Ecosystems
Stephan A. Pietsch
Hubert Hasenauer
Institute of Forest Growth Research
University of Agricultural Sciences Vienna
Peter-Jordan-Straße 82
1190 Vienna, AUSTRIA
Introduction
Characteristics of High Alpine Ecosystems
•
•
•
•
•
Day/Night temperature extremes
Cold temperatures → growing season
Low partial pressure of CO2
High radiation loads
Potential water stress in winter
Trade off: Carbon Uptake vs. Water Loss
Carbon Sequestration
High Alpine Forest Ecosystems
•
•
•
•
Uptake and storage of carbon
Photosynthesis reacts more sensitive
Changes in climate and CO2?
Method for assessing carbon cycle:
Biogeochemical-mechanisitc modeling
Methods
The Model: BIOME-BGC (Thornton 1998)
• Simulates the fluxes of water, energy,
carbon and nitrogen on a daily time step
• Original model includes 4 forest biomes
• 46 Parameters: turnover, mortality, C/Nratios, phenology, ecophysiology, etc.
• Species specific parameter settings:
beech, oak, spruce
Objectives
Carbon Sequestration in Alpine Forests
• Parameterisation of the
BGC-model for stone pine
forests ecosystems
• Model validation using an
independent data set
Data
• Parameterisation: literature
• Evaluation: 1 plot with
detailed measurements
• Validation: 23 stone pine
stands with Volume and 10
year volume increment data
Results – Evaluation
Stomatal Conductance Summer 96
Conductance [m s-1]
0.0014
0.0012
0.001
0.0008
0.0006
0.0004
0.0002
Observations
Predictions
0
15.Mai
12.Jun
10.Jul
07.Aug
04.Sep
02.Okt
30.Okt
Results – Evaluation
Stomatal Conductance Winter 94/95
Standard Model
Conductance [m s-1]
0.0014
0.0012
Predictions
Observations
0.001
0.0008
0.0006
0.0004
0.0002
0
01.Nov 29.Nov 27.Dez 24.Jän 21.Feb 21.Mär 18.Apr 16.Mai
Reducing Stomatal Conductance
Due to Low Temperatures:
What options do we have:
• Previous night Tmin (standard model)
• 3d-mean Tmin (Körner 1994)
• Stem temperature (Wieser 2002)
Results – Model Changes
Stomatal Conductance Winter 94/95
3d-mean Tmin
(According to Körner 1994)
Conductance [m s-1]
0.0012
Observations
0.001
0.0008
0.0006
Predictions
0.0004
0.0002
0
01.Nov 29.Nov 27.Dez 24.Jän 21.Feb 21.Mär 18.Apr 16.Mai
Results – Model Changes
Stem Temperature Prediction
• Stem temperature is a predictor for
stomatal conductance (Wieser 2002)
• How to predict stem temperature?
– Tmin, Tavg, 3d-mean Tavg, ....
Results – Model Changes
3d-mean Tnight vs. Stem Temperature
y = 0.89x + 0.06
15
2
R = 0.88
10
5
0
-15
-10
-5
-5 0
-10
-15
5
10
15
Results – Model Changes
Stomatal Conductance Winter 94/95
Conductance [m s-1]
Stem Temperature
0.0012
0.001
Observations
0.0008
0.0006
Predictions
0.0004
0.0002
0
1. Nov. 29. Nov. 27. Dez. 24. Jän. 21. Feb. 21. Mär. 18. Apr. 16. Mai.
Model Validation
Carbon Sequestration in Stone pine Forests
23 stone pine stands
Stand age [yrs]
Elevation [m]
Volume [m3 ha-1]
Site class
SDI
mean
134
1753
355
4.9
626
min
66
1555
112
1.6
83
max
250
2050
553
7.3
4342
Results – Validation
Observed Vol. [m3 ha-1]
Standing tree volume – 23 stands
600
500
400
300
200
y = 0.93x + 13.9
R2 = 0.78
100
0
0
100
200
300
400
500
Predicted Vol. [m3 ha-1]
600
Results – Validation
Observed [m3 ha-1 10yr.-1]
10-year Volume Increment – 23 stands
y = 0.97x + 1.7
50
2
R = 0.84
40
30
20
10
0
0
10
20
30
40
Predicted [m3 ha-1 10yr.-1]
50
Results – Validation
Residual Analysis of the Increment Data
Stand age
Elevation
3
3
2
2
1
1
0
-1 0
50
100
150
200
0
-11500 1600 1700 1800 1900 2000 2100
250
-2
-2
-3
-3
Site class
SDI
3
3
2
2
1
1
0
0
-1 0
1
2
3
4
5
6
7
8
-1 0
-2
-2
-3
-3
200
400
600
800
1000
Results – Validation
Error Analyses
Volume
[% of obs.]
10-yr. Vol. Incr.
[% of obs.]
Confidence Int.
-4.8 to 8.7
-3.5 to 11.4
Prediction Int.
-32.0 to 36.1
-33.5 to 41.5
Tolerance Int.
-41.2 to 45.1
-42.8 to 50.8
Summary of Model Changes
Carbon Sequestration in Stone pine Forests
• 3-d mean night temperature
is a precise predictor for stem
temperature in stone pines
• Stem temperature is good
predictor for reducing
stomatal conductance
Conclusion
Carbon Sequestration in Stone pine Forests
•
•
•
•
Model adaptation was important
Improved the accuracy of predictions
Model validation exhibited no bias
BGC-Model for stone pine forest
ecosystems