Modeling Carbon Sequestration in High Alpine Forest Ecosystems Stephan A. Pietsch Hubert Hasenauer Institute of Forest Growth Research University of Agricultural Sciences Vienna Peter-Jordan-Straße 82 1190 Vienna, AUSTRIA Introduction Characteristics of High Alpine Ecosystems • • • • • Day/Night temperature extremes Cold temperatures → growing season Low partial pressure of CO2 High radiation loads Potential water stress in winter Trade off: Carbon Uptake vs. Water Loss Carbon Sequestration High Alpine Forest Ecosystems • • • • Uptake and storage of carbon Photosynthesis reacts more sensitive Changes in climate and CO2? Method for assessing carbon cycle: Biogeochemical-mechanisitc modeling Methods The Model: BIOME-BGC (Thornton 1998) • Simulates the fluxes of water, energy, carbon and nitrogen on a daily time step • Original model includes 4 forest biomes • 46 Parameters: turnover, mortality, C/Nratios, phenology, ecophysiology, etc. • Species specific parameter settings: beech, oak, spruce Objectives Carbon Sequestration in Alpine Forests • Parameterisation of the BGC-model for stone pine forests ecosystems • Model validation using an independent data set Data • Parameterisation: literature • Evaluation: 1 plot with detailed measurements • Validation: 23 stone pine stands with Volume and 10 year volume increment data Results – Evaluation Stomatal Conductance Summer 96 Conductance [m s-1] 0.0014 0.0012 0.001 0.0008 0.0006 0.0004 0.0002 Observations Predictions 0 15.Mai 12.Jun 10.Jul 07.Aug 04.Sep 02.Okt 30.Okt Results – Evaluation Stomatal Conductance Winter 94/95 Standard Model Conductance [m s-1] 0.0014 0.0012 Predictions Observations 0.001 0.0008 0.0006 0.0004 0.0002 0 01.Nov 29.Nov 27.Dez 24.Jän 21.Feb 21.Mär 18.Apr 16.Mai Reducing Stomatal Conductance Due to Low Temperatures: What options do we have: • Previous night Tmin (standard model) • 3d-mean Tmin (Körner 1994) • Stem temperature (Wieser 2002) Results – Model Changes Stomatal Conductance Winter 94/95 3d-mean Tmin (According to Körner 1994) Conductance [m s-1] 0.0012 Observations 0.001 0.0008 0.0006 Predictions 0.0004 0.0002 0 01.Nov 29.Nov 27.Dez 24.Jän 21.Feb 21.Mär 18.Apr 16.Mai Results – Model Changes Stem Temperature Prediction • Stem temperature is a predictor for stomatal conductance (Wieser 2002) • How to predict stem temperature? – Tmin, Tavg, 3d-mean Tavg, .... Results – Model Changes 3d-mean Tnight vs. Stem Temperature y = 0.89x + 0.06 15 2 R = 0.88 10 5 0 -15 -10 -5 -5 0 -10 -15 5 10 15 Results – Model Changes Stomatal Conductance Winter 94/95 Conductance [m s-1] Stem Temperature 0.0012 0.001 Observations 0.0008 0.0006 Predictions 0.0004 0.0002 0 1. Nov. 29. Nov. 27. Dez. 24. Jän. 21. Feb. 21. Mär. 18. Apr. 16. Mai. Model Validation Carbon Sequestration in Stone pine Forests 23 stone pine stands Stand age [yrs] Elevation [m] Volume [m3 ha-1] Site class SDI mean 134 1753 355 4.9 626 min 66 1555 112 1.6 83 max 250 2050 553 7.3 4342 Results – Validation Observed Vol. [m3 ha-1] Standing tree volume – 23 stands 600 500 400 300 200 y = 0.93x + 13.9 R2 = 0.78 100 0 0 100 200 300 400 500 Predicted Vol. [m3 ha-1] 600 Results – Validation Observed [m3 ha-1 10yr.-1] 10-year Volume Increment – 23 stands y = 0.97x + 1.7 50 2 R = 0.84 40 30 20 10 0 0 10 20 30 40 Predicted [m3 ha-1 10yr.-1] 50 Results – Validation Residual Analysis of the Increment Data Stand age Elevation 3 3 2 2 1 1 0 -1 0 50 100 150 200 0 -11500 1600 1700 1800 1900 2000 2100 250 -2 -2 -3 -3 Site class SDI 3 3 2 2 1 1 0 0 -1 0 1 2 3 4 5 6 7 8 -1 0 -2 -2 -3 -3 200 400 600 800 1000 Results – Validation Error Analyses Volume [% of obs.] 10-yr. Vol. Incr. [% of obs.] Confidence Int. -4.8 to 8.7 -3.5 to 11.4 Prediction Int. -32.0 to 36.1 -33.5 to 41.5 Tolerance Int. -41.2 to 45.1 -42.8 to 50.8 Summary of Model Changes Carbon Sequestration in Stone pine Forests • 3-d mean night temperature is a precise predictor for stem temperature in stone pines • Stem temperature is good predictor for reducing stomatal conductance Conclusion Carbon Sequestration in Stone pine Forests • • • • Model adaptation was important Improved the accuracy of predictions Model validation exhibited no bias BGC-Model for stone pine forest ecosystems
© Copyright 2026 Paperzz