Middlesex Community College Math Review Topics

Course Topic
Khan Videos
Khan Practice Sets
Arithmetic
(Week 1)
Adding/Subtracting
Integers
1a. Example: Adding Negative Numbers
b. Example: Adding Integers With Different
Signs
2. Adding and Subtracting Negative Number
examples
3. Negative Number Word Problems 1
Multiplying/Dividing
Integers
1. Multiplying Positive and Negative Numbers
2. Dividing Positive and Negative Numbers
3. Example: Multiplying Numbers With Different
Signs
Rounding Numbers
Rounding Decimals
Number Line
1.Points on a Number Line
Square Roots
2.Positve and Negative Decimals on a Number
Line
1. Understanding Square Roots
2. Approximating Square Roots
Fractions
(Week 1)
Understanding
Fractions
Adding/Subtracting
Fractions
Multiplying Fractions
Dividing Fractions
Videos
1. Identifying Fraction Parts
2. Plotting Fractions on the Number Line
3. Fraction Word Problems 1 Exercise
Adding and Subtracting Fractions
Multiplying Fractions
1 .Understanding Fractions as Division
2. Conceptual Understanding of Dividing
Fractions by Fractions
3. Dividing Fractions Example
Decimals and Percents
(Week 2)
Videos
Place Value
Decimal Place Value
Adding/Subtracting
Decimals
1. Adding Decimals Example 1
Adding Decimals Example 2
Adding Decimals Example 3
Math Blast: Fall, 2014
Coach: Linda Devlin
1. Adding Negative Numbers
J
a
2. Adding and Subtracting Negative
Numbers
m
J
3. Negative Number Word Problems
e
J
a
s
a
m
__________
m
e
d
__________
e
s
3. Multiplying and Dividing Negative
e
s
Numbers
Jd
Rounding Numbers
G
J
d
ae
u
a
e
1a.Decimalsmon the Number Line 1
m
b.DecimalseG
on the Number
Linez 2 J
aJ
2. Decimals son
Linem3
e
G
u the Number
Jm
a
a
s
z
aemu
1. Square Roots of Perfect Squares
n
d
J ez
m
2. EstimatingmSquare Roots
s
J
d
ea
easm
e
a(
a
n
sm
d
0
m
Practice
G Sets
edn
e
1
e
G
1. Recognizing
Fractions
u(
se
d
2. Fractionszon
Line
u
s J51 J (
0 the Number
eG
3. Fraction Word
Problems
1 a6
z
m
1
J
dG0
a
m
Adding and Subtracting
Fractions
with
u
d 2a
m
a5
eu1
m
G
unlike Denominators
e
a J e 5m ez 5
6
Multiplying nPositive
and Negative
um
z
s4
a
n
2
Fractions
e
szGm6
J
a
m G 7sNumbers
1a. Dividing(5Fractions by Whole
ua2
m
a
n
b. Dividing04Whole
Numbers
( e by
ud)Fractions
zn5
d
a
m
0 s z ed
17
enm4
3a.Dividing Fractions
by
Fractions
and
e
(
m
1
5)
e
a( 7
Whole Numbers
Applications
s
0
J
5 d aG
G
b. Dividing 6Positive and Negative
(n10)
u
6 e n aG
Fractions 2
u
051
zm
dJ
2
5
u
z1( 5
ea
6
e
5 G (m
Practice4 Sets
z
06
m
5
m
2
4 uValue
0 asm
Money and Decimal
Place
Intuition
7
12
a
6
Ge
5
7 z 1 na
)
55
n
2
us
4
1. Adding Decimals
1 ) m 5d
J
n
64
5
Adding Decimals
2
(
z
7
aJa 6 e
(427
0
d
m
)
man 2 (
075)
1
e
a
em 5 G0
1)4
5
n
se( 4 u1
7
6z 1 5
G
s0 7Page
5
6)
2m
(u
1
)
d
6
2
5a
0z
d
5
e
2
5
J
Ja
am
m
e
es
s
d
d
e
eJ
G
a
G
um
u
ze
zm
s
m
a
and
ne
(
(0
2. Subtracting Decimals
Multiplying/Dividing
Decimals
1. Multiplying Decimals
More Involved Multiplying Decimals Example
2. Dividing Decimals
Equating Decimals,
Percents, Fractions
1. Describing the Meaning of Percent
2. Representing a Number as a Decimal, Percent,
and Fraction
Writng and Solving
Proportions
1. Writing proportions
2. Finding an unknown in a Proportion
Simplifying Rates and
Ratios
1. Simplifying Rates and Ratios
Ratio Word Problem Exercise Example 1
Ratio Word Problem Exercise Example 2
Real Numbers
(Week 3)
Absolute Value
Order of Operations
and Simplifying
Expressions
Videos
1. Absolute Value and Number Lines
Absolute Value 1
2. Absolute Value Word Problems Exercise
1. Order of Operations
More Complicated Order of Operations
Example
Exponents and Roots
(Week 3)
Multiplying/Dividing
Monomials
Videos
1. Exponent rules part 1
Exponent rules part 2
Exponent Properties involving quotients
2. Multiplying and Dividing Monomials 3
Exponent Properties 1 - 7
Polynomials
(Week 4 & 5)
Adding/Subtracting
Polynomials
Multiplying
Polynomials
Videos
1. Adding and Subtracting Polynomials 1
Example: Adding Polynomials With Multiple
Variables
1. Multiplying Monomials by Polynomials
Multiplying Polynomials example
Multiplying Polynomials example 3
2. Foil for Multiplying Binomials
Math Blast: Fall, 2014
Coach: Linda Devlin
2. Subtracting Decimals
Subtracting Decimals 2
1. Multiplying Decimals 2
Multiplying Decimals 3
J
aJ
Jm
a
aeJm
a
2. Dividing Decimals 1
se
J m
Dividing Decimals 2
J em
s
a
Dividing Decimals 3
e
Jm
a sd
s
ed
2a. Converting Decimals toaemPercents
J
de
b. Converting Percents tom
seDecimals
aJ
d
c. Converting Decimals toes Fractions
eG
1
maJ
sd ueG
ema
1. Writing Proportions d G
u
z
J
e
2. Proportions 1
sem
G
J
deau
z
m
se
a
eGmzau
m
1. Ratio Word Problems
ds
Jm
z
m
G
a
n
uea m
ed
e
G
zusman
ed
a
s
um
z n
(
Ge
Practice Sets zmde0n(
as
uG
d
m
ae(10
n
zuG
1. Finding Absolute Values
e
an 05(1 J
mz u
d
n( G160
5a
2. Absolute Value Word Problems
e51
Jamz
G
(
m
6
2
1a. Order of Operations 0u
anam
u with
(10zJ 655
e
2Negative
b. Order of Operations
G
mna
a26
z
Numbers
051m
5s
4
J
u
e( n
m
165am572
4
a
z
s0(
a
526ne4)5
7d
m Sets
10(
m
Practice
n
652s74
) e
e
a)7
d510
1. Using exponent
rules to25evaluate
(
4
expressions s
n
e651
J
(
5740d) G
265
a
0 Expressions
4)71e u
2. SimplifyingdRational
with 6
(
G52
m 1
7) 5 z
Exponent Properties
e
u452
e
5 J ) 60G m
z745
s
6 a 21u a
G Sets m 5
m)74
Practice
z n
2
5
6m
a)7
1. Adding anduSubtracting
d
5 e Polynomials
J
4
z
n )
e
4 s 72a (
a
m
5n
7
0
m
1. Multiplyinga Polynomials
d )4 J
(
G
)
1
e
n
e 17(
0
2a. MultiplyinguBinomials
5aJ
s
)0 m
1
b. Multiplyingz Binomials 2
6J a
(
G 1 e
.
5
m
2a m
d
0
u
6
s
5
a
5
e
1
z 6 me
2
n
4e s
5
m 2 Page
5
7sd 2
G
6
a 5 e
4
(
) d
u
2
n 4
7
0
z
de
5
Factoring Polynomials
1. Factoring Quadratic Expressions
2. Example 1: Factoring Trinomials With a
Common Factor
3. Factoring Quadratics with Two Variables
4. Example 1: Factoring Difference of Squares
5. Example 2: Factoring Difference of Squares
Solving Equations and Inequalities
(Week 6 & 7)
Solving Linear
Equations
Videos
1. Examples of one-step equations like ax=b and
x+a=b
2. Two-Step Equations
3. Example1: Variables on both sides
4. Solving Equations With the Distributive
Property
Solving Percent
Problems
Solving Linear
Inequalities
Taking Percentages
Solving Quadratics by
Factoring
1. Solving a quadratic equation by factoring
Word Problems with
Linear Equations
Basic Linear Equation Word Problems
1a. Inequalities using addition and subtraction
b. Inequalities using multiplication and division
2a. Multi-Step Inequalities2
b. Multi-Step Inequalities3
Geometry and Measurement
(Week 8)
Videos
**Scale and
Measurement
1. Interpreting Scale Drawings Example
2. Constructing Scale Drawings
Area, Perimeter,
Circumference
1a. Introduction to Perimeter
b. Perimeter of a Shape
2. Rectangle Area as a product of dimensions
same as counting squares
3. Triangle Area Proofs
4. Circles: Radius, Diameter and Circumference
5. Area of a Circle
Pythagorean Theorem
1a. The Pythagorean Theorem Intro
b. Pythagorean Theorem 2
**optional
Math Blast: Fall, 2014
Coach: Linda Devlin
1. Factoring Quadratics 1
2. Factoring Quadratics 2
J
Ja
am Two
3. Factoring Quadratics With
m
Variables
e
J
es
a
4. Factoring Difference
of Squares
1
s
m
5. Factoring Difference
of Squares 2 J
d
aJ
e
d
a
e
m
Practice sSets
e
em
1.One Step Equations
J
G
se
d
s
a G
u
2. 2-step Equations
e
J
m onu
3. Equations with variables
z both sides
d
4. Multi-step Equationsa With
Distribution
e zm
ed
G
ms m
e
a
u
e
an
G
Percentage Word
1
z Problems
s d n J
uG
m
1. One step Inequalities e ( a zu
a
d J 0
( m z
m
n
2. Multi-Step Linear Inequalities
e Ga 1
0 eJ m
a
m1 s
u 5
a
na
(
G z e 5
6
m n
1a. Solving Quadratics
by Factoring
0
s 6 d
u
2
b. Solving Quadratics
bymFactoring
e2 (J
1
J
z a 2
5 e s 0(a
5
d
Linear Equation Wordm
Problems
0ma
n 5
4
1
J
6
a e 7
4 Gd 1e m
a5 e
2
n (
)7 u e m65s
5
Practice Sets
G
s
0 ) z e26
1. Interpreting 4Scale Drawings
( 1u
m
J G s52d
2. Constructing7Scale Drawings
z
0 5
aJau 5e d
4
)
1 6m
namz 4 e
1a. Perimeter 1
d7
J
5 2a
m
em e)7G
b. Finding Perimeter
2. Area Problems a 6 5J n
(esa )u G
J
m 2 4a
0sn z u
G
a
3. Area of Triangles
m
(
e J5 7
1d mz
u m
4. Radius, Diameter and
Circumference
s ma4 )e 0
a
d
5
e
(
5a. Area of a Circle e
z a
s
1
Jm
7
6e0 n
b. Shaded Areas
mn
5
d Js ea)
2G1
a
e a sm d 6
1. Pythagorean Theorem
5G
u5 n (
J
de e 2
m
4u
z6 0 (
a
e
G e ds 5
10
7z
m m2 (
G
4
u se
)m
a 51
Gd u 7 e 5 0 5
z
a 6
s n4 1
u
z
)
e
d
m G
n7 2 6
z
Page
3 5 52
a eu m
(
)
d
6
n mzG a
(0 4 5
e
2
au n
G
01 7 4
m
5
J
Ja
am
me
es
s
d
de
e
G
Gu
uz
zm
ma
an
n
(
(0
01
15
56
62
2J 5
5a4
4m7
7e)
)s
d
e
G
u
z