6665 Core C3 Mark Scheme (Post standardisation) Question Number 1 (b) (a) Scheme Marks sin 2 cos 2 1 2 2 cos cos cos 2 2 2 Completion : 1 + tan sec (no errors seen) M1 Use of 1 tan 2 sec 2 : M1 Dividing by cos 2 : 2 (sec 2 1) sec 1 A1 (2) [ 2 sec 2 sec 3 0 ] Factorising or solving: (2 sec 3)(sec 1) 0 3 [ sec – cos – or sec 1 ] 2 0 M1 B1 2 3 ; M1 A1 1 131.8 ° 2 228.2 ° A1√ (6) [A1ft for 2 360° – 1 ] [8] 1 6665 Core C3 Mark Scheme (Post standardisation) Question Number 2 Scheme Marks (a) (i) 6 sin x cos x 2 sec 2 x tan 2 x or 3 sin 2 x (ii) M1A1A1 (3) 2sec 2 x tan 2 x [M1 for 6 sin x] B1M1A1 (3) 1 3( x ln 2 x) 2 (1 ) x [ B1 for 3( x ln 2 x) 2 ] (b) Differentiating numerator to obtain 10x – 10 Differentiating denominator to obtain 2(x-1) Using quotient rule formula correctly: To obtain dy ( x 1) 2 (10 x 10) (5 x 2 10 x 9)2( x 1) dx ( x 1) 4 2( x 1)[5( x 1) 2 (5 x 2 10 x 9) ( x 1) 4 Simplifying to form = 3 (a) 8 ( x 1) 3 * (c.s.o.) 5x 1 3 ( x 2)( x 1) x 2 5 x 1 3( x 1) = ( x 2)( x 1) M1 for combining fractions even if the denominator is not lowest common = 2x 4 = ( x 2)( x 1) 2( x 2) 2 = ( x 2)( x 1) x 1 B1 M1 M1 A1 cso (4) * M1 must have linear numerator (b) 2 xy y 2 xy = 2 + y x 1 2x f –1(x) = o.e. x 2 2 (attempt) [ ] fg(x) = 2 " g" 1 x 4 1 2 = and finding x2 = …; x = 2 Setting 2 4 x 4 y= M1A1 A1 (3) M1 M1; A1 (3) [10] 2 6665 Core C3 Mark Scheme (Post standardisation) Question Number 4 (a) Scheme f (x) = 3 ex – 3e x (c) M1A1A1 1 2x (3) M1 1 =0 2x 6 e 1 Marks 1 6 e A1 cso (*) x1 0.0613..., x 2 0.1568.., x3 0.1425..., x 4 0.1445.... (2) M1 A1 (2) [M1 at least x1 correct , A1 all correct to 4 d.p.] (d) 1 with suitable interval 2x e.g. f (0.14425) = – 0.0007 Using f (x) = 3 ex – M1 f (0.14435) = + 0.002(1) Accuracy (change of sign and correct values) A1 (2) [9] 3 6665 Core C3 Mark Scheme (Post standardisation) Question Number 5 Scheme Marks (a) cos 2A = cos2 A – sin2 A ( + use of cos2 A + sin2 A 1) = (1 – sin2 A); – sin2 A = 1 – 2 sin2 A (*) A1 2sin 2 3cos 2 3sin 3 4sin cos ; 3(1 2sin 2 ) 3sin 3 (b) (2) B1; M1 M1 4 sin cos 6 sin 2 3 sin (*) sin (4 cos 6 sin 3) (c) M1 A1 (4) 4 cos 6 sin R sin cos R cos sin Complete method for R (may be implied by correct answer) [ R 2 4 2 6 2 , R sin 4 , R cos 6 ] R= A1 52 or 7.21 Complete method for ; (d) 0.588 (allow 33.7º) sin ( 4 cos + 6 sin 3 ) = 0 3 M1 A1 (4) M1 0 sin( 0.588) = M1 B1 0.4160.. (24.6º) M1 52 0.588 = (0.4291), 2.7125 [or 33.7 ° = (24.6º), 155.4°] dM1 2.12 A1 cao (5) [15] 4 6665 Core C3 Mark Scheme (Post standardisation) Question Number 6. Scheme (a) Marks Translation by 1 M1 Intercepts correct A1 x 0, correct “shape” B1 y 0 –2 x 2 (2) a (b) y [provided not just original] –3 0 3 x b (c) Reflection in y-axis B1 Intercepts correct B1 (3) B1 B1 (2) a = – 2, b = – 1 (d) Intersection of y = 5x with y = – x – 1 Solving to give x = – M1A1 M1A1 (4) 1 6 [11] [Notes: (i) If both values found for 5x = – x – 1 and 5x = x – 3, or solved algebraically, can score 3 out of 4 for x = – 1 6 and x = – ¾; required to eliminate x = – ¾ for final mark. (ii) Squaring approach: M1 correct method, 24x2 + 22x + 3 = 0 ( correct 3 term quadratic, any form) A1 Solving M1, Final correct answer A1.] 5 6665 Core C3 Mark Scheme (Post standardisation) Question Number 7 (a) Scheme (300 = 2500a); (b) 2800a 1 a a = 0.12 (c.s.o) * Setting p = 300 at t = 0 300 = Marks M1 dM1A1 (3) 2800(0.12)e 0.2 t ; e 0.2 t 16.2... 0.2 t 1 0.12e Correctly taking logs to 0.2 t = ln k M1A1 t = 14 A1 (4) B1 (1) 1850 = M1 (13.9..) (c) Correct derivation: (Showing division of num. and den. by e 0.2 t ; using a) M1 (d) Using t , e 0.2t 0, p A1 336 2800 0.12 (2) [10] 6
© Copyright 2026 Paperzz