Exam 2 Review

Trigonometry
Exam 2 Review
6.4, 6.5, 6.6 – Graphing trig functions:
1. Use the amplitude, period, and phase shift to graph one period of each functions.
a. 𝑦 = 3 sin 4π‘₯
b. 𝑦 = βˆ’2 cos 2π‘₯
3
e. 𝑦 = βˆ’3 cos(π‘₯ + πœ‹)
2
2. Graph two periods of each function.
1
πœ‹
e. 𝑦 = βˆ’ cot π‘₯
2
2
πœ‹
f. 𝑦 = cos οΏ½2π‘₯ + οΏ½
h. 𝑦 = sin(2π‘₯) + 1
a. 𝑦 = 4 tan π‘₯
c. 𝑦 = 3 cos
4
πœ‹
d. 𝑦 = βˆ’ sin πœ‹π‘₯
3
πœ‹
g. 𝑦 = βˆ’3 sin οΏ½ π‘₯ βˆ’ 3πœ‹οΏ½
3
πœ‹
b. 𝑦 = βˆ’2 tan π‘₯
i. 𝑦 = 3 sec(π‘₯ + πœ‹)
π‘₯
4
c. 𝑦 = βˆ’ tan οΏ½π‘₯ βˆ’ οΏ½
πœ‹
f. 𝑦 = 2 cot οΏ½π‘₯ + οΏ½
2
5
4
j. 𝑦 = csc(π‘₯ βˆ’ πœ‹)
g. 𝑦 = 3 sec 2πœ‹π‘₯
d. 𝑦 = 2 cot 3π‘₯
h. 𝑦 = βˆ’2 csc πœ‹π‘₯
2
7.1, 7.2 – Inverse trig functions:
3.
4.
Find the exact value of each expression.
a. sinβˆ’1 1
c. tanβˆ’1 1
d. sinβˆ’1 οΏ½βˆ’
Find the exact value of each expression.
a. cos οΏ½sinβˆ’1
5.
b. cosβˆ’1 1
√2
2
οΏ½
4
5
e. tan οΏ½cosβˆ’1 οΏ½βˆ’ οΏ½οΏ½
√3
οΏ½
2
1
2
e. cos βˆ’1 οΏ½βˆ’ οΏ½
3
b. sin(cosβˆ’1 0)
1
3
3
4
c. cos οΏ½tanβˆ’1 4οΏ½
f. sin οΏ½tanβˆ’1 οΏ½βˆ’ οΏ½οΏ½
f. tanβˆ’1 οΏ½βˆ’
d. tan οΏ½sinβˆ’1 οΏ½βˆ’ οΏ½οΏ½
Find the exact value of each expression or write undefined if necessary.
a. sin οΏ½sinβˆ’1
√7
8
i. sinβˆ’1 οΏ½sin
2πœ‹
οΏ½
3
οΏ½
e. cos(cos βˆ’1 πœ‹)
b. sin οΏ½sinβˆ’1
1
8
√7
f. tan οΏ½tanβˆ’1 2οΏ½
j. sinβˆ’1 οΏ½sin
7πœ‹
οΏ½
9
οΏ½
3
c. cos οΏ½cosβˆ’1 4οΏ½
g. tan(tanβˆ’1 2)
πœ‹
4
k. cosβˆ’1 οΏ½cos οΏ½βˆ’ οΏ½οΏ½
d. cos(cosβˆ’1 3.14)
πœ‹
7
h. sinβˆ’1 οΏ½sin οΏ½
l. cos βˆ’1 οΏ½cos οΏ½βˆ’
27πœ‹
οΏ½οΏ½
14
√3
οΏ½
3
7.3 – Trig equations:
6.
7.
For each equation, find all solutions.
a. cos π‘₯ = βˆ’
1
2
b. sin π‘₯ =
√2
2
c. 2 sin π‘₯ + 1 = 0
Solve the equation on [0,2πœ‹).
a. cos 2π‘₯ = βˆ’1
b. 4 sin 3π‘₯ βˆ’ 4 = 0
i. sin π‘₯ = tan π‘₯
j. sin π‘₯ = βˆ’0.6031
e. cos2 π‘₯ βˆ’ 2cos π‘₯ = 3
π‘₯
2
d. √3 tan π‘₯ βˆ’ 1 = 0
c. tan = βˆ’1
f. 2 cos 2 π‘₯ βˆ’ sin π‘₯ = 1
e. cos 2π‘₯ = βˆ’1
d. tan π‘₯ = 2 cos π‘₯ tan π‘₯
g. 4 sin2 π‘₯ = 1
k. 5 cos2 π‘₯ βˆ’ 3 = 0
h. cos2 π‘₯ βˆ’ sin2 π‘₯ βˆ’ sin π‘₯ = 1
l. sec 2 π‘₯ = 4 tan π‘₯ βˆ’ 2
7.4 – Verifying identities:
8.
Verify each identity.
a. sec π‘₯ βˆ’ cos π‘₯ = tan π‘₯ sin π‘₯
d. (sec πœƒ βˆ’ 1)(sec πœƒ + 1) = tan2 πœƒ
g.
1+sin 𝑑
cos2 𝑑
= tan2 𝑑 + 1 + tan 𝑑 sec 𝑑
j. (tan πœƒ + cot πœƒ)2 = sec 2 πœƒ + csc 2 πœƒ
l.
cos 𝑑
cot π‘‘βˆ’5 cos 𝑑
=
1
csc π‘‘βˆ’5
m.
c. sin2 πœƒ (1 + cot 2 πœƒ) = 1
b. cos π‘₯ + sin π‘₯ tan π‘₯ = sec π‘₯
1βˆ’cos 𝑑
1+cos 𝑑
e.
h.
1βˆ’tan π‘₯
sin π‘₯
cos π‘₯
1βˆ’sin π‘₯
k.
f.
= csc π‘₯ βˆ’ sec π‘₯
=
1+sin π‘₯
cos π‘₯
1
sin πœƒ+π‘π‘œπ‘ πœƒ
+
= (csc 𝑑 βˆ’ cot 𝑑)2
i. 1 βˆ’
1
sin πœƒβˆ’cos πœƒ
=
1
1
+
sin π‘‘βˆ’1
sin 𝑑+1
sin2 π‘₯
1+cos π‘₯
= βˆ’2 tan 𝑑 sec 𝑑
= cos π‘₯
2 sin πœƒ
sin4 πœƒβˆ’cos4 πœƒ
7.5 – Sum and difference formulas:
9.
Use a sum or difference formula to find the exact value of the expression.
a. cos(45∘ + 30∘ )
b. sin 195∘
f. sin 80∘ cos 50∘ βˆ’ sin 50∘ cos 80∘
4πœ‹
3
c. tan οΏ½
πœ‹
4
βˆ’ οΏ½
d. tan
5πœ‹
12
e. cos 65∘ cos 5∘ + sin 65∘ sin 5∘
10.
Suppose tan 𝛼 = βˆ’3 with 𝛼 in quadrant II, and cot 𝛽 = βˆ’3 with 𝛽 in quadrant IV, find the following.
a. sin(𝛼 + 𝛽)
11.
12.
b. cos(𝛼 βˆ’ 𝛽)
1
3
Suppose sin 𝛼 = βˆ’ with πœ‹ < 𝛼 <
a. sin(𝛼 + 𝛽)
Verify each identity.
πœ‹
6
3πœ‹
,
2
b. cos(𝛼 βˆ’ 𝛽)
πœ‹
3
c. tan(𝛼 + 𝛽)
c. tan(𝛼 + 𝛽)
a. sin οΏ½π‘₯ + οΏ½ βˆ’ cos οΏ½π‘₯ + οΏ½ = √3 sin π‘₯
d.
cos(π›Όβˆ’π›½)
cos 𝛼 cos 𝛽
= 1 + tan 𝛼 tan 𝛽
1
3
and cos 𝛽 = βˆ’ with 15πœ‹ < 4𝛽 + 3πœ‹ < 17πœ‹, find the following.
b. tan οΏ½π‘₯ +
3πœ‹
οΏ½
4
=
tan π‘₯βˆ’1
1+tan π‘₯
c. sec(𝛼 + 𝛽) =
sec 𝛼 sec 𝛽
1βˆ’tan 𝛼 tan 𝛽