Trigonometry Exam 2 Review 6.4, 6.5, 6.6 β Graphing trig functions: 1. Use the amplitude, period, and phase shift to graph one period of each functions. a. π¦ = 3 sin 4π₯ b. π¦ = β2 cos 2π₯ 3 e. π¦ = β3 cos(π₯ + π) 2 2. Graph two periods of each function. 1 π e. π¦ = β cot π₯ 2 2 π f. π¦ = cos οΏ½2π₯ + οΏ½ h. π¦ = sin(2π₯) + 1 a. π¦ = 4 tan π₯ c. π¦ = 3 cos 4 π d. π¦ = β sin ππ₯ 3 π g. π¦ = β3 sin οΏ½ π₯ β 3ποΏ½ 3 π b. π¦ = β2 tan π₯ i. π¦ = 3 sec(π₯ + π) π₯ 4 c. π¦ = β tan οΏ½π₯ β οΏ½ π f. π¦ = 2 cot οΏ½π₯ + οΏ½ 2 5 4 j. π¦ = csc(π₯ β π) g. π¦ = 3 sec 2ππ₯ d. π¦ = 2 cot 3π₯ h. π¦ = β2 csc ππ₯ 2 7.1, 7.2 β Inverse trig functions: 3. 4. Find the exact value of each expression. a. sinβ1 1 c. tanβ1 1 d. sinβ1 οΏ½β Find the exact value of each expression. a. cos οΏ½sinβ1 5. b. cosβ1 1 β2 2 οΏ½ 4 5 e. tan οΏ½cosβ1 οΏ½β οΏ½οΏ½ β3 οΏ½ 2 1 2 e. cos β1 οΏ½β οΏ½ 3 b. sin(cosβ1 0) 1 3 3 4 c. cos οΏ½tanβ1 4οΏ½ f. sin οΏ½tanβ1 οΏ½β οΏ½οΏ½ f. tanβ1 οΏ½β d. tan οΏ½sinβ1 οΏ½β οΏ½οΏ½ Find the exact value of each expression or write undefined if necessary. a. sin οΏ½sinβ1 β7 8 i. sinβ1 οΏ½sin 2π οΏ½ 3 οΏ½ e. cos(cos β1 π) b. sin οΏ½sinβ1 1 8 β7 f. tan οΏ½tanβ1 2οΏ½ j. sinβ1 οΏ½sin 7π οΏ½ 9 οΏ½ 3 c. cos οΏ½cosβ1 4οΏ½ g. tan(tanβ1 2) π 4 k. cosβ1 οΏ½cos οΏ½β οΏ½οΏ½ d. cos(cosβ1 3.14) π 7 h. sinβ1 οΏ½sin οΏ½ l. cos β1 οΏ½cos οΏ½β 27π οΏ½οΏ½ 14 β3 οΏ½ 3 7.3 β Trig equations: 6. 7. For each equation, find all solutions. a. cos π₯ = β 1 2 b. sin π₯ = β2 2 c. 2 sin π₯ + 1 = 0 Solve the equation on [0,2π). a. cos 2π₯ = β1 b. 4 sin 3π₯ β 4 = 0 i. sin π₯ = tan π₯ j. sin π₯ = β0.6031 e. cos2 π₯ β 2cos π₯ = 3 π₯ 2 d. β3 tan π₯ β 1 = 0 c. tan = β1 f. 2 cos 2 π₯ β sin π₯ = 1 e. cos 2π₯ = β1 d. tan π₯ = 2 cos π₯ tan π₯ g. 4 sin2 π₯ = 1 k. 5 cos2 π₯ β 3 = 0 h. cos2 π₯ β sin2 π₯ β sin π₯ = 1 l. sec 2 π₯ = 4 tan π₯ β 2 7.4 β Verifying identities: 8. Verify each identity. a. sec π₯ β cos π₯ = tan π₯ sin π₯ d. (sec π β 1)(sec π + 1) = tan2 π g. 1+sin π‘ cos2 π‘ = tan2 π‘ + 1 + tan π‘ sec π‘ j. (tan π + cot π)2 = sec 2 π + csc 2 π l. cos π‘ cot π‘β5 cos π‘ = 1 csc π‘β5 m. c. sin2 π (1 + cot 2 π) = 1 b. cos π₯ + sin π₯ tan π₯ = sec π₯ 1βcos π‘ 1+cos π‘ e. h. 1βtan π₯ sin π₯ cos π₯ 1βsin π₯ k. f. = csc π₯ β sec π₯ = 1+sin π₯ cos π₯ 1 sin π+πππ π + = (csc π‘ β cot π‘)2 i. 1 β 1 sin πβcos π = 1 1 + sin π‘β1 sin π‘+1 sin2 π₯ 1+cos π₯ = β2 tan π‘ sec π‘ = cos π₯ 2 sin π sin4 πβcos4 π 7.5 β Sum and difference formulas: 9. Use a sum or difference formula to find the exact value of the expression. a. cos(45β + 30β ) b. sin 195β f. sin 80β cos 50β β sin 50β cos 80β 4π 3 c. tan οΏ½ π 4 β οΏ½ d. tan 5π 12 e. cos 65β cos 5β + sin 65β sin 5β 10. Suppose tan πΌ = β3 with πΌ in quadrant II, and cot π½ = β3 with π½ in quadrant IV, find the following. a. sin(πΌ + π½) 11. 12. b. cos(πΌ β π½) 1 3 Suppose sin πΌ = β with π < πΌ < a. sin(πΌ + π½) Verify each identity. π 6 3π , 2 b. cos(πΌ β π½) π 3 c. tan(πΌ + π½) c. tan(πΌ + π½) a. sin οΏ½π₯ + οΏ½ β cos οΏ½π₯ + οΏ½ = β3 sin π₯ d. cos(πΌβπ½) cos πΌ cos π½ = 1 + tan πΌ tan π½ 1 3 and cos π½ = β with 15π < 4π½ + 3π < 17π, find the following. b. tan οΏ½π₯ + 3π οΏ½ 4 = tan π₯β1 1+tan π₯ c. sec(πΌ + π½) = sec πΌ sec π½ 1βtan πΌ tan π½
© Copyright 2025 Paperzz