57:020 Mechanics of Fluids and Transport

57:020 Mechanics of Fluids and Transport
December 9, 2013
NAME
Fluids-ID
Quiz 15. A 60-mph (i.e. 88-fps) wind of air (ρ = 0.00238 slugs/ft3 and Ξ½ = 1.57×10-4 ft2/s) blows past the
water tower shown in figures (a) and (b). Use the drag coefficient shown in figure (c), estimate
the total drag, 𝐷𝐷, acting on the water tower. You may treat the water tower as a sphere resting
on a circular cylinder and assume that the total drag is the sum of the drag from these parts, 𝐷𝐷𝑠𝑠
and 𝐷𝐷𝑐𝑐 , respectively.
𝐢𝐢𝐷𝐷 = 1
2
𝐷𝐷
πœŒπœŒπ‘ˆπ‘ˆ2 𝐴𝐴
;
𝑅𝑅𝑅𝑅 =
π‘ˆπ‘ˆπ‘ˆπ‘ˆ
𝜈𝜈
Note: Attendance (+2 points), format (+1 point)
Solution:
1
1
πœ‹πœ‹
𝐷𝐷𝑠𝑠 = πœŒπœŒπ‘ˆπ‘ˆ 2 𝐴𝐴 β‹… 𝐢𝐢𝐷𝐷𝐷𝐷 = πœŒπœŒπ‘ˆπ‘ˆ 2 β‹… οΏ½ 𝑑𝑑𝑐𝑐2 οΏ½ β‹… 𝐢𝐢𝐷𝐷𝐷𝐷
2
2
4
1
1
𝐷𝐷𝑐𝑐 = πœŒπœŒπ‘ˆπ‘ˆ 2 𝐴𝐴 β‹… 𝐢𝐢𝐷𝐷𝐷𝐷 = πœŒπœŒπ‘ˆπ‘ˆ 2 β‹… (𝑏𝑏𝑏𝑏𝑐𝑐 ) β‹… 𝐢𝐢𝐷𝐷𝐷𝐷
2
2
(+2 points)
Calculating Reynolds number
𝑅𝑅𝑒𝑒𝑠𝑠 =
π‘ˆπ‘ˆπ‘‘π‘‘π‘ π‘  (88 𝑓𝑓𝑓𝑓/𝑠𝑠)(40𝑓𝑓𝑓𝑓)
=
= 2.24 βˆ— 107
𝜈𝜈
1.57 βˆ— 10βˆ’4 ft 2 ⁄s
𝑅𝑅𝑒𝑒𝑐𝑐 =
π‘ˆπ‘ˆπ‘‘π‘‘π‘π‘ (88 𝑓𝑓𝑓𝑓/𝑠𝑠)(15𝑓𝑓𝑓𝑓)
=
= 8.41 βˆ— 106
𝜈𝜈
1.57 βˆ— 10βˆ’4 ft 2 ⁄s
(+2 point)
57:020 Mechanics of Fluids and Transport
December 9, 2013
From Figure 𝐢𝐢𝐷𝐷𝐷𝐷 β‰ˆ 0.3 and 𝐢𝐢𝐷𝐷𝐷𝐷 β‰ˆ 0.7
(+2 points)
Thus,
1
πœ‹πœ‹
𝐷𝐷𝑠𝑠 = (0.00238 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/𝑓𝑓𝑑𝑑 3 )(88 ft⁄s)2 οΏ½ οΏ½ (40 𝑓𝑓𝑓𝑓)2 (0.3) = 3,470 lb
2
4
Thus,
1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
οΏ½ (88 ft⁄s)2 (50𝑓𝑓𝑓𝑓 βˆ— 15𝑓𝑓𝑓𝑓)2 (0.7) = 4,840 lb
𝐷𝐷𝑐𝑐 = οΏ½0.00238
2
𝑓𝑓𝑑𝑑 3
𝐷𝐷 = 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑐𝑐 = 3,470 + 4,840 = πŸ–πŸ–, πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘ π₯π₯π₯π₯
(+1 point)